Postoperative Osteoporosis in Subjects with Morbid Obesity Undergoing Bariatric Surgery with Gastric Bypass or Sleeve Gastrectomy
Abstract
:1. Introduction
2. Methods
3. Pathogenic Aspects of Bone Loss and Nutrient Deficiencies
3.1. Nutrient Deficiencies in Morbid Obesity before Bariatric Surgery
3.2. Postoperative Vitamin Deficiencies Which Can Lead to Bone Loss
3.3. Postoperative Mineral and Trace Element Deficiencies Which Can Accelerate Bone Loss
3.3.1. Calcium
3.3.2. Copper
3.3.3. Zinc
4. Postoperative Osteopenia and Osteoporosis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bluher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Casimiro, I.; Sam, S.; Brady, M.J. Endocrine implications of bariatric surgery: A review on the intersection between incretins, bone, and sex hormones. Physiol. Rep. 2019, 7, e14111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angrisani, L.; Santonicola, A.; Iovino, P.; Vitiello, A.; Higa, K.; Himpens, J.; Scopinaro, N.I.F.S.O. IFSO worldwide survey 2016: Primary, endoluminal, and revisional procedures. Obes. Surg. 2018, 28, 3783–3794. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.B.; Zimmet, P.; Alberti, K.G.; Rubino, F. Bariatric surgery: An IDF statement for obese type 2 diabetes. Diabetes Med. 2011, 28, 628–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchwald, H.; Oien, D.M. Metabolic/bariatric surgery worldwide 2008. Obes. Surg. 2009, 19, 1605–1611. [Google Scholar] [CrossRef]
- Saad, R.K.; Ghezzawi, M.; Habli, D.; Alami, R.S.; Chakhtoura, M. Fracture risk following bariatric surgery: A systematic review and meta-analysis. Osteoporos. Int. 2022, 33, 511–526. [Google Scholar] [CrossRef]
- Krzizek, E.C.; Brix, J.M.; Herz, C.T.; Kopp, H.P.; Schernthaner, G.H.; Schernthaner, G.; Ludvik, B. Prevalence of micronutrient deficiency in patients with morbid obesity before bariatric surgery. Obes. Surg. 2018, 28, 643–648. [Google Scholar] [CrossRef]
- Hewitt, S.; Aasheim, E.T.; Søvik, T.T.; Jahnsen, J.; Kristinsson, J.; Eriksen, E.F.; Mala, T. Relationships of serum 25-hydroxyvitamin D, ionized calcium and parathyroid hormone after obesity surgery. Clin. Endocrinol. 2018, 88, 372–379. [Google Scholar] [CrossRef]
- Paccou, J.; Caiazzo, R.; Lespessailles, E.; Cortet, B. Bariatric surgery and osteoporosis. Calcif. Tissue Int. 2022, 110, 576–591. [Google Scholar] [CrossRef]
- Bernert, C.P.; Ciangura, C.; Coupaye, M.; Czernichow, S.; Bouillot, J.L.; Basdevant, A. Nutritional deficiency after gastric bypass: Diagnosis, prevention and treatment. Diabetes Metab. 2007, 33, 13–24. [Google Scholar] [CrossRef]
- WHO Scientific Group on Prevention; Management of Osteoporosis; World Health Organization. Prevention and Management of Osteoporosis: Report of a WHO Scientific Group; No. 921; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Karaguzel, G.; Holick, M.F. Diagnosis and treatment of osteopenia. Rev. Endocr. Metab. Disord. 2010, 11, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.B. Osteoporosis in gastrointestinal diseases. Transl. Gastrointest. Cancer 2014, 4, 57–68. [Google Scholar]
- Xanthakos, S.A. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr. Clin. 2009, 56, 1105–1121. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Santos, M.; Costa, P.D.F.; Assis, A.D.; Santos, C.D.S.; Santos, D.D. Obesity and vitamin D deficiency: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Ghergherechi, R.; Hazhir, N.; Tabrizi, A. Comparison of vitamin D deficiency and secondary hyperparathyroidism in obese and non-obese children and adolescents. Pak. J. Biol. Sci. PJBS 2012, 15, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Gillis, L.; Gillis, A. Nutrient inadequacy in obese and non-obese youth. Can. J. Diet. Pract. Res. 2005, 66, 237–242. [Google Scholar] [CrossRef]
- Dennis, E.A.; Flack, K.D.; Davy, B.M. Beverage consumption and adult weight management: A review. Eat. Behav. 2009, 10, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Bettencourt, A.; Boleixa, D.; Reis, J.; Oliveira, J.C.; Mendonça, D.; Costa, P.P.; da Silva, A.M. Serum 25-hydroxyvitamin D levels in a healthy population from the North of Portugal. J. Steroid Biochem. Mol. Biol. 2018, 175, 97–101. [Google Scholar] [CrossRef]
- Turer, C.B.; Lin, H.; Flores, G. Prevalence of vitamin D deficiency among overweight and obese US children. Pediatrics 2013, 131, e152–e161. [Google Scholar] [CrossRef] [Green Version]
- Vranić, L.; Mikolašević, I.; Milić, S. Vitamin D deficiency: Consequence or cause of obesity? Medicina 2019, 55, 541. [Google Scholar] [CrossRef] [Green Version]
- Mikalsen, S.M.; Bjørke-Monsen, A.L.; Whist, J.E.; Aaseth, J. Improved magnesium levels in morbidly obese diabetic and non-diabetic patients after modest weight loss. Biol. Trace Elem. Res. 2019, 188, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Rude, R.K.; Gruber, H.E. Magnesium deficiency and osteoporosis: Animal and human observations. J. Nutr. Biochem. 2004, 15, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Kaidar-Person, O.; Person, B.; Szomstein, S.; Rosenthal, R.J. Nutritional deficiencies in morbidly obese patients: A new form of malnutrition? Obes. Surg. 2008, 18, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A. Obesity, diets, and social inequalities. Nutr. Rev. 2009, 67 (Suppl. 1), S36–S39. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, C.; Weiss, R.; Berry, E.; Keidar, A. Nutritional deficiencies in bariatric surgery candidates. Obes. Surg. 2010, 20, 193–197. [Google Scholar] [CrossRef]
- Mikalsen, S.M.; Aaseth, J.; Flaten, T.P.; Whist, J.E.; Bjørke-Monsen, A.L. Essential trace elements in Norwegian obese patients before and 12 months after Roux-en-Y gastric bypass surgery: Copper, manganese, selenium and zinc. J. Trace Elem. Med. Biol. 2020, 62, 126650. [Google Scholar] [CrossRef]
- Ernst, B.; Thurnheer, M.; Schmid, S.M.; Schultes, B. Evidence for the necessity to systematically assess micronutrient status prior to bariatric surgery. Obes. Surg. 2009, 19, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Astrup, A.; Bügel, S. Overfed but undernourished: Recognizing nutritional inadequacies/deficiencies in patients with overweight or obesity. Int. J. Obes. 2019, 43, 219–232. [Google Scholar] [CrossRef]
- de Luis, D.A.; Pacheco, D.; Izaola, O.; Terroba, M.C.; Cuellar, L.; Cabezas, G. Micronutrient status in morbidly obese women before bariatric surgery. Surg. Obes. Relat. Dis. 2013, 9, 323–327. [Google Scholar] [CrossRef]
- Bloomberg, R.D.; Fleishman, A.; Nalle, J.E.; Herron, D.M.; Kini, S. Nutritional deficiencies following bariatric surgery: What have we learned? Obes. Surg. 2005, 15, 145–154. [Google Scholar] [CrossRef]
- Blom-Høgestøl, I.K.; Hewitt, S.; Chahal-Kummen, M.; Brunborg, C.; Gulseth, H.L.; Kristinsson, J.A.; Mala, T. Bone metabolism, bone mineral density and low-energy fractures 10 years after Roux-en-Y gastric bypass. Bone 2019, 127, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Chakhtoura, M.T.; Nakhoul, N.N.; Shawwa, K.; Mantzoros, C.; Fuleihan, G.A.E.H. Hypovitaminosis D in bariatric surgery: A systematic review of observational studies. Metabolism 2016, 65, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, S.; Søvik, T.T.; Aasheim, E.T.; Kristinsson, J.; Jahnsen, J.; Birketvedt, G.S.; Mala, T. Secondary hyperparathyroidism, vitamin D sufficiency, and serum calcium 5 years after gastric bypass and duodenal switch. Obes. Surg. 2013, 23, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Lespessailles, E.; Toumi, H. Vitamin D alteration associated with obesity and bariatric surgery. Exp. Biol. Med. 2017, 242, 1086–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Rutte, P.V.; Aarts, E.O.; Smulders, J.F.; Nienhuijs, S.W. Nutrient deficiencies before and after sleeve gastrectomy. Obes. Surg. 2014, 24, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Granado-Lorencio, F.; Simal-Antón, A.; Blanco-Navarro, I.; González-Dominguez, T.; Pérez-Sacristán, B. Depletion of serum carotenoid and other fat-soluble vitamin concentrations following obesity surgery. Obes. Surg. 2011, 21, 1605–1611. [Google Scholar] [CrossRef]
- Sherf-Dagan, S.; Goldenshluger, A.; Azran, C.; Sakran, N.; Sinai, T.; Ben-Porat, T. Vitamin K–what is known regarding bariatric surgery patients: A systematic review. Surg. Obes. Relat. Dis. 2019, 15, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Finnes, T.E.; Lofthus, C.M.; Meyer, H.E.; Søgaard, A.J.; Tell, G.S.; Apalset, E.M.; Holvik, K. A combination of low serum concentrations of vitamins K1 and D is associated with increased risk of hip fractures in elderly Norwegians: A NOREPOS study. Osteoporos. Int. 2016, 27, 1645–1652. [Google Scholar] [CrossRef]
- Hao, G.; Zhang, B.; Gu, M.; Chen, C.; Zhang, Q.; Zhang, G.; Cao, X. Vitamin K intake and the risk of fractures: A meta-analysis. Medicine 2017, 96, e6725. [Google Scholar] [CrossRef]
- Bartholomay, L.M.; Berlin, K.; McInerney, M.; Garcia, L. Vitamin K status in women of childbearing years before or after bariatric surgery. Curr. Dev. Nutr. 2019, 3, nzz056. [Google Scholar] [CrossRef] [Green Version]
- Van Ballegooijen, A.J.; Pilz, S.; Tomaschitz, A.; Grübler, M.R.; Verheyen, N. The synergistic interplay between vitamins D and K for bone and cardiovascular health: A narrative review. Int. J. Endocrinol. 2017, 2017, 7454376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA); Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; et al. Dietary reference values for vitamin K. EFSA J. 2017, 15, e04780. [Google Scholar]
- Lupoli, R.; Lembo, E.; Saldalamacchia, G.; Avola, C.K.; Angrisani, L.; Capaldo, B. Bariatric surgery and long-term nutritional issues. World J. Diabetes 2017, 8, 464. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.A.; de Jersey, S.; Seymour, M.; Hopkins, G.; Hickman, I.; Osland, E. Iron, vitamin B12, folate and copper deficiency after bariatric surgery and the impact on anaemia: A systematic review. Obes. Surg. 2020, 30, 4542–4591. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, L.L.G.D.; Carvalho, C.M.R.G.D.; Cavalcanti, J.C. Vitamin B12, bone mineral density and fracture risk in adults: A systematic review. Rev. Da Assoc. Médica Bras. 2017, 63, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.; Saumoy, M. Treatment of Micronutrient Deficiencies Pre and Post Bariatric Surgery. Curr. Treat. Options Gastroenterol. 2021, 19, 169–182. [Google Scholar] [CrossRef]
- Al-Jafar, H.; Al-Zamil, K.; Al Ageeli, M.; Alhaifi, M.; Al-Sabah, S. Potential hematology and nutritional complications of bariatric surgery. Ann. Hematol. Oncol. 2018, 5, 1209. [Google Scholar] [CrossRef] [Green Version]
- Antoniewicz, A.; Kalinowski, P.; Kotulecka, K.J.; Kocoń, P.; Paluszkiewicz, R.; Remiszewski, P.; Zieniewicz, K. Nutritional deficiencies in patients after Roux-en-Y gastric bypass and sleeve gastrectomy during 12-month follow-up. Obes. Surg. 2019, 29, 3277–3284. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, M.; Peter Schmidt, J.; Umanskaya, N.; Wagner, A.; Taban-Shomal, O.; Widmann, T.; Herrmann, W. The role of hyperhomocysteinemia as well as folate, vitamin B6 and B12 deficiencies in osteoporosis–a systematic review. Clin. Chem. Lab. Med. 2007, 45, 1621–1632. [Google Scholar] [CrossRef]
- Aaseth, E.; Fagerland, M.W.; Aas, A.M.; Hewitt, S.; Risstad, H.; Kristinsson, J.; Aasheim, E.T. Vitamin concentrations 5 years after gastric bypass. Eur. J. Clin. Nutr. 2015, 69, 1249–1255. [Google Scholar] [CrossRef]
- Hansen, E.P.; Metzsche, C.; Henningsen, E.; Toft, P. Severe scurvy after gastric bypass surgery and a poor postoperative diet. J. Clin. Med. Res. 2012, 4, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechanick, J.I.; Youdim, A.; Jones, D.B.; Garvey, W.T.; Hurley, D.L.; McMahon, M.M.; Heinberg, L.J.; Kushner, R.; Adams, T.D.; Shikora, S.; et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures–2019 update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Surg. Obes. Relat. Dis. 2020, 16, 175–247. [Google Scholar] [PubMed]
- Freeland-Graves, J.H.; Lee, J.J.; Mousa, T.Y.; Elizondo, J.J. Patients at risk for trace element deficiencies: Bariatric surgery. J. Trace Elem. Med. Biol. 2014, 28, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Aaseth, J.; Boivin, G.; Andersen, O. Osteoporosis and trace elements—An overview. J. Trace Elem. Med. Biol. 2012, 26, 149–152. [Google Scholar] [CrossRef]
- Iyengar, G.V.; Tandon, L. Minor and Trace Elements in Human Bones and Teeth; Report NAHRES 39; IAEA: Vienna, Austria, 1999. [Google Scholar]
- Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J.A. Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients 2013, 5, 3022–3033. [Google Scholar] [CrossRef] [Green Version]
- Galchenko, A.; Gapparova, K.; Sidorova, E. The influence of vegetarian and vegan diets on the state of bone mineral density in humans. Crit. Rev. Food Sci. Nutr. 2021, 63, 845–861. [Google Scholar] [CrossRef]
- Bae, Y.J.; Kim, M.H. Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biol. Trace Elem. Res. 2008, 124, 28–34. [Google Scholar] [CrossRef]
- Tsay, J.; Yang, Z.; Ross, F.P.; Cunningham-Rundles, S.; Lin, H.; Coleman, R.; Vogiatzi, M.G. Bone loss caused by iron overload in a murine model: Importance of oxidative stress. Blood J. Am. Soc. Hematol. 2010, 116, 2582–2589. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Sharma, A.; Wermers, R.A.; Kennel, K.A.; Kellogg, T.A.; Mundi, M.S. Hypocalcemia after bariatric surgery: Prevalence and associated risk factors. Obes. Surg. 2017, 27, 2905–2911. [Google Scholar] [CrossRef]
- Johnson, J.M.; Maher, J.W.; Samuel, I.; Heitshusen, D.; Doherty, C.; Downs, R.W. Effects of gastric bypass procedures on bone mineral density, calcium, parathyroid hormone, and vitamin D. J. Gastrointest. Surg. 2005, 9, 1106–1111. [Google Scholar] [CrossRef]
- de Sander Diniz, F.H.M.; Costa Diniz, T.M.; Almeida Sanches, S.R.; de Almeida Salgado, P.P.C.; Valadão, M.M.A.; Caldeira Araújo, F.; Lages Savassi Rocha, A. Elevated serum parathormone after Roux-en-Y gastric bypass. Obes. Surg. 2004, 14, 1222–1226. [Google Scholar] [CrossRef] [PubMed]
- Khazai, N.; Judd, S.E.; Tangpricha, V. Calcium and vitamin D: Skeletal and extraskeletal health. Curr. Rheumatol. Rep. 2008, 10, 110–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, B.M.; Eslick, G.D.; Nowson, C.; Smith, C.; Bensoussan, A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: A meta-analysis. Lancet 2007, 370, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Kuang, X.; Li, K.; Guo, X.; Deng, Q.; Li, D. Effects of combined calcium and vitamin D supplementation on osteoporosis in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Food Funct. 2020, 11, 10817–10827. [Google Scholar] [CrossRef]
- Fusaro, M.; Cianciolo, G.; Brandi, M.L.; Ferrari, S.; Nickolas, T.L.; Tripepi, G.; Cheung, A. Vitamin K and osteoporosis. Nutrients 2020, 12, 3625. [Google Scholar] [CrossRef]
- Schoppa, A.M.; Chen, X.; Ramge, J.M.; Vikman, A.; Fischer, V.; Haffner-Luntzer, M.; Ignatius, A. Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice. Dis. Model. Mech. 2022, 15, dmm049392. [Google Scholar] [CrossRef]
- Zheng, J.; Mao, X.; Ling, J.; He, Q.; Quan, J. Low serum levels of zinc, copper, and iron as risk factors for osteoporosis: A meta-analysis. Biol. Trace Elem. Res. 2014, 160, 15–23. [Google Scholar] [CrossRef]
- Ernst, B.; Thurnheer, M.; Schultes, B. Copper deficiency after gastric bypass surgery. Obesity 2009, 17, 1980. [Google Scholar] [CrossRef]
- Yamaguchi, M. Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Biochem. 2010, 338, 241–254. [Google Scholar] [CrossRef]
- Amin, N.; Clark, C.C.; Taghizadeh, M.; Djafarnejad, S. Zinc supplements and bone health: The role of the RANKL-RANK axis as a therapeutic target. J. Trace Elem. Med. Biol. 2020, 57, 126417. [Google Scholar] [CrossRef]
- Sallé, A.; Demarsy, D.; Poirier, A.L.; Lelièvre, B.; Topart, P.; Guilloteau, G.; Rohmer, V. Zinc deficiency: A frequent and underestimated complication after bariatric surgery. Obes. Surg. 2010, 20, 1660–1670. [Google Scholar] [CrossRef] [Green Version]
- Ruz, M.; Carrasco, F.; Rojas, P.; Codoceo, J.; Inostroza, J.; Basfi-fer, K.; Krebs, N.F. Zinc absorption and zinc status are reduced after Roux-en-Y gastric bypass: A randomized study using 2 supplements. Am. J. Clin. Nutr. 2011, 94, 1004–1011. [Google Scholar] [CrossRef] [Green Version]
- Shankar, P.; Boylan, M.; Sriram, K. Micronutrient deficiencies after bariatric surgery. Nutrition 2010, 26, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Søgaard, A.J.; Holvik, K.; Omsland, T.K.; Tell, G.S.; Dahl, C.; Schei, B.; Meyer, H.E. Abdominal obesity increases the risk of hip fracture. A population-based study of 43,000 women and men aged 60–79 years followed for 8 years. Cohort of N orway. J. Intern. Med. 2015, 277, 306–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briganti, S.I.; Naciu, A.M.; Tabacco, G.; Cesareo, R.; Napoli, N.; Trimboli, P.; Palermo, A. Proton pump inhibitors and fractures in adults: A critical appraisal and review of the literature. Int. J. Endocrinol. 2021, 2021, 8902367. [Google Scholar] [CrossRef] [PubMed]
- Saad, R.; Habli, D.; El Sabbagh, R.; Chakhtoura, M. Bone health following bariatric surgery: An update. J. Clin. Densitom. 2020, 23, 165–181. [Google Scholar] [CrossRef]
- Marquardt, M.L.; Done, S.L.; Sandrock, M.; Berdon, W.E.; Feldman, K.W. Copper deficiency presenting as metabolic bone disease in extremely low birth weight, short-gut infants. Pediatrics 2012, 130, e695–e698. [Google Scholar] [CrossRef] [Green Version]
- Hofsø, D.; Hillestad, T.O.W.; Halvorsen, E.; Fatima, F.; Johnson, L.K.; Lindberg, M.; Hjelmesæth, J. Bone mineral density and turnover after sleeve gastrectomy and gastric bypass: A randomized controlled trial (Oseberg). J. Clin. Endocrinol. Metab. 2021, 106, 501–511. [Google Scholar] [CrossRef]
- Brzozowska, M.M.; Tran, T.; Bliuc, D.; Jorgensen, J.; Talbot, M.; Fenton-Lee, D.; Center, J.R. Roux-en-Y gastric bypass and gastric sleeve surgery result in long term bone loss. Int. J. Obes. 2021, 45, 235–246. [Google Scholar] [CrossRef]
- Nakamura, K.M.; Haglind, E.G.C.; Clowes, J.A.; Achenbach, S.J.; Atkinson, E.J.; Melton, L.J.; Kennel, K.A. Fracture risk following bariatric surgery: A population-based study. Osteoporos. Int. 2014, 25, 151–158. [Google Scholar] [CrossRef]
- Lu, C.W.; Chang, Y.K.; Chang, H.H.; Kuo, C.S.; Huang, C.T.; Hsu, C.C.; Huang, K.C. Fracture risk after bariatric surgery: A 12-year nationwide cohort study. Medicine 2015, 94, e2087. [Google Scholar] [CrossRef]
- Axelsson, K.F.; Werling, M.; Eliasson, B.; Szabo, E.; Näslund, I.; Wedel, H.; Lorentzon, M. Fracture risk after gastric bypass surgery: A retrospective cohort study. J. Bone Miner. Res. 2018, 33, 2122–2131. [Google Scholar] [CrossRef] [Green Version]
- Svanevik, M.; Risstad, H.; Hofsø, D.; Blom-Høgestøl, I.K.; Kristinsson, J.A.; Sandbu, R.; Hjelmesæth, J. Bone turnover markers after standard and distal Roux-en-Y gastric bypass: Results from a randomized controlled trial. Obes. Surg. 2019, 29, 2886–2895. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Côté, M.M.; Cheney, M.C.; Lindeman, K.G.; Rushin, C.C.; Hutter, M.M.; Elaine, W.Y. Examining zoledronic acid for the prevention of bone loss in patients receiving bariatric surgery. Bone Rep. 2021, 14, 100760. [Google Scholar] [CrossRef] [PubMed]
- Kominiarek, M.A. Preparing for and managing a pregnancy after bariatric surgery. In Seminars in Perinatology; WB Saunders: Philadelphia, PA, USA, 2011; Volume 35, pp. 356–361. [Google Scholar]
- Harreiter, J.; Schindler, K.; Bancher-Todesca, D.; Göbl, C.; Langer, F.; Prager, G.; Krebs, M. Management of pregnant women after bariatric surgery. J. Obes. 2018, 2008, 4587064. [Google Scholar] [CrossRef]
- Hardcastle, S.A. Pregnancy and lactation associated osteoporosis. Calcif. Tissue Int. 2022, 110, 531–545. [Google Scholar] [CrossRef] [PubMed]
Element | |
---|---|
Ca | 150–250 g/kg |
Mg | 100–400 mg/kg |
Zn | 50–260 mg/kg |
Cu | 0.2–26 mg/kg |
Mn | 0.1–8 mg/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aaseth, J.O.; Alexander, J. Postoperative Osteoporosis in Subjects with Morbid Obesity Undergoing Bariatric Surgery with Gastric Bypass or Sleeve Gastrectomy. Nutrients 2023, 15, 1302. https://doi.org/10.3390/nu15061302
Aaseth JO, Alexander J. Postoperative Osteoporosis in Subjects with Morbid Obesity Undergoing Bariatric Surgery with Gastric Bypass or Sleeve Gastrectomy. Nutrients. 2023; 15(6):1302. https://doi.org/10.3390/nu15061302
Chicago/Turabian StyleAaseth, Jan O., and Jan Alexander. 2023. "Postoperative Osteoporosis in Subjects with Morbid Obesity Undergoing Bariatric Surgery with Gastric Bypass or Sleeve Gastrectomy" Nutrients 15, no. 6: 1302. https://doi.org/10.3390/nu15061302
APA StyleAaseth, J. O., & Alexander, J. (2023). Postoperative Osteoporosis in Subjects with Morbid Obesity Undergoing Bariatric Surgery with Gastric Bypass or Sleeve Gastrectomy. Nutrients, 15(6), 1302. https://doi.org/10.3390/nu15061302