Exploring the Longitudinal Stability of Food Neophilia and Dietary Quality and Their Prospective Relationship in Older Adults: A Cross-Lagged Panel Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Procedure
2.2. Participants
2.3. Measures
2.3.1. Food Neophilia
2.3.2. Dietary Quality
2.3.3. Additional Database of Government Policies during the COVID-19 Pandemic
2.4. Statistical Analyses
2.5. Missing Data
3. Results
3.1. Descriptive Analyses
3.2. Temporal Stability and Reciprocal Effects of Food Neophilia and Dietary Quality
3.3. Exploratory Multigroup Comparisons
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Healthy Diet; Fact Sheet No. 394; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Mozaffarian, D. Dietary quality among men and women in 187 countries in 1990 and 2010: A systematic assessment. Lancet Glob. Health 2015, 3, 132–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing populations: The challenges ahead. Lancet 2009, 374, 1196–1208. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015; ISBN 9789240694811. [Google Scholar]
- Milte, C.M.; McNaughton, S.A. Dietary patterns and successful ageing: A systematic review. Eur. J. Nutr. 2016, 55, 423–450. [Google Scholar] [CrossRef] [Green Version]
- Baer, N.-R.; Deutschbein, J.; Schenk, L. Potential for, and readiness to, dietary-style changes during the retirement status passage: A systematic mixed-studies review. Nutr. Rev. 2020, 78, 969–988. [Google Scholar] [CrossRef]
- Eng, P.M.; Kawachi, I.; Fitzmaurice, G.; Rimm, E.B. Effects of marital transitions on changes in dietary and other health behaviours in US male health professionals. J. Epidemiol. Community Health 2005, 59, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Heuberger, R.; Wong, H. The association between depression and widowhood and nutritional status in older adults. Geriatr. Nurs. 2014, 35, 428–433. [Google Scholar] [CrossRef]
- Shatenstein, B. Impact of health conditions on food intakes among older adults. J. Nutr. Elder. 2008, 27, 333–361. [Google Scholar] [CrossRef]
- Lara, J.; Hobbs, N.; Moynihan, P.J.; Meyer, T.D.; Adamson, A.J.; Errington, L.; Rochester, L.; Sniehotta, F.F.; White, M.; Mathers, J.C. Effectiveness of dietary interventions among adults of retirement age: A systematic review and meta-analysis of randomized controlled trials. BMC Med. 2014, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Rosenberg, I.; Uauy, R. History of modern nutrition science-implications for current research, dietary guidelines, and food policy. BMJ 2018, 361, 2392. [Google Scholar] [CrossRef] [Green Version]
- Zaragoza-Martí, A.; Cabañero-Martínez, M.J.; Hurtado-Sánchez, J.A.; Laguna-Pérez, A.; Ferrer-Cascales, R. Evaluation of Mediterranean diet adherence scores: A systematic review. BMJ Open 2018, 8, e019033. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. Education and lifestyle predict change in dietary patterns and diet quality of adults 55 years and over. Nutr. J. 2019, 18, 67. [Google Scholar] [CrossRef] [Green Version]
- Samieri, C.; Okereke, O.I.; Devore, E.E.; Grodstein, F. Long-term adherence to the Mediterranean diet is associated with overall cognitive status, but not cognitive decline, in women. J. Nutr. 2013, 143, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.; Hodge, A.; Clifton, P.; Shivappa, N.; Hebert, J.R.; Dennerstein, L.; Campbell, S.; Szoeke, C. Longitudinal nutritional changes in aging Australian women. Asia Pac. J. Clin. Nutr. 2019, 28, 139–149. [Google Scholar] [CrossRef]
- Harrington, J.M.; Dahly, D.L.; Fitzgerald, A.P.; Gilthorpe, M.S.; Perry, I.J. Capturing changes in dietary patterns among older adults: A latent class analysis of an ageing Irish cohort. Public Health Nutr. 2014, 17, 2674–2686. [Google Scholar] [CrossRef] [Green Version]
- Jannasch, F.; Nickel, D.V.; Bergmann, M.M.; Schulze, M.B. A New Evidence-Based Diet Score to Capture Associations of Food Consumption and Chronic Disease Risk. Nutrients 2022, 14, 2359. [Google Scholar] [CrossRef]
- Stok, F.M.; Hoffmann, S.; Volkert, D.; Boeing, H.; Ensenauer, R.; Stelmach-Mardas, M.; Kiesswetter, E.; Weber, A.; Rohm, H.; Lien, N.; et al. The DONE framework: Creation, evaluation, and updating of an interdisciplinary, dynamic framework 2.0 of determinants of nutrition and eating. PLoS ONE 2017, 12, e0171077. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Rasmussen, M.A.; Prescott, J. Relationships between food neophobia and food intake and preferences: Findings from a sample of New Zealand adults. Appetite 2017, 116, 410–422. [Google Scholar] [CrossRef]
- Rozin, P. The Selection of Foods by Rats, Humans, and Other Animals. In Advances in the Study of Behavior; Rosenblatt, J.S., Hinde, R.A., Shaw, E., Beer, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1976; pp. 21–76. [Google Scholar]
- Siegrist, M.; Hartmann, C.; Keller, C. Antecedents of food neophobia and its association with eating behavior and food choices. Food Qual. Prefer. 2013, 30, 293–298. [Google Scholar] [CrossRef]
- Raudenbush, B.; Capiola, A. Physiological responses of food neophobics and food neophilics to food and non-food stimuli. Appetite 2012, 58, 1106–1108. [Google Scholar] [CrossRef] [PubMed]
- Pliner, P.; Hobden, K. Development of a scale to measure the trait of food neophobia in humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Rabadán, A.; Bernabéu, R. A systematic review of studies using the Food Neophobia Scale: Conclusions from thirty years of studies. Food Qual. Prefer. 2021, 93, 104241. [Google Scholar] [CrossRef]
- Hazley, D.; McCarthy, S.N.; Stack, M.; Walton, J.; McNulty, B.A.; Flynn, A.; Kearney, J.M. Food neophobia and its relationship with dietary variety and quality in Irish adults: Findings from a national cross-sectional study. Appetite 2022, 169, 105859. [Google Scholar] [CrossRef]
- Predieri, S.; Sinesio, F.; Monteleone, E.; Spinelli, S.; Cianciabella, M.; Daniele, G.M.; Dinnella, C.; Gasperi, F.; Endrizzi, I.; Torri, L.; et al. Gender, Age, Geographical Area, Food Neophobia and Their Relationships with the Adherence to the Mediterranean Diet: New Insights from a Large Population Cross-Sectional Study. Nutrients 2020, 12, 1778. [Google Scholar] [CrossRef]
- Knaapila, A.J.; Sandell, M.A.; Vaarno, J.; Hoppu, U.; Puolimatka, T.; Kaljonen, A.; Lagström, H. Food neophobia associates with lower dietary quality and higher BMI in Finnish adults. Public Health Nutr. 2015, 18, 2161–2171. [Google Scholar] [CrossRef] [Green Version]
- Sarin, H.V.; Taba, N.; Fischer, K.; Esko, T.; Kanerva, N.; Moilanen, L.; Saltevo, J.; Joensuu, A.; Borodulin, K.; Männistö, S.; et al. Food neophobia associates with poorer dietary quality, metabolic risk factors, and increased disease outcome risk in population-based cohorts in a metabolomics study. Am. J. Clin. Nutr. 2019, 110, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.; Silva, C.; Oliveira, A. Food neophobia and its association with food preferences and dietary intake of adults. Nutr. Diet. 2020, 77, 542–549. [Google Scholar] [CrossRef]
- Schickenberg, B.; van Assema, P.; Brug, J.; de Vries, N.K. Are the Dutch acquainted with and willing to try healthful food products? The role of food neophobia. Public Health Nutr. 2008, 11, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Steenkamp, J.-B.E. Food Consumption Behavior. In European Advances in Consumer Research; Van Raaij, W.F., Bamossy, G.J., Eds.; Association for Consumer Research: Provo, Utah, 1993; pp. 401–409. [Google Scholar]
- Lenglet, F. FNS or the Varseek-scale? Proposals for a valid operationalization of neophilia. Food Qual. Prefer. 2018, 66, 76–84. [Google Scholar] [CrossRef]
- Wortmann, H.R.; Gisch, U.A.; Warschburger, P. Psychometric evaluation of the German version of the Variety Seeking Tendency Scale (VARSEEK). Food Qual. Prefer. 2021, 94, 104319. [Google Scholar] [CrossRef]
- Seligman, M.E.; Csikszentmihalyi, M. Positive psychology: An introduction. Am. Psychol. 2000, 55, 5–14. [Google Scholar] [CrossRef]
- Tylka, T.L. Development and psychometric evaluation of a measure of intuitive eating. J. Couns. Psychol. 2006, 53, 226–240. [Google Scholar] [CrossRef] [Green Version]
- Ruzanska, U.A.; Warschburger, P. How is intuitive eating related to self-reported and laboratory food intake in middle-aged adults? Eat. Behav. 2020, 38, 101405. [Google Scholar] [CrossRef]
- Lavelle, F.; Bucher, T.; Dean, M.; Brown, H.M.; Rollo, M.E.; Collins, C.E. Diet quality is more strongly related to food skills rather than cooking skills confidence: Results from a national cross-sectional survey. Nutr. Diet. 2020, 77, 112–120. [Google Scholar] [CrossRef]
- McGowan, L.; Pot, G.K.; Stephen, A.M.; Lavelle, F.; Spence, M.; Raats, M.; Hollywood, L.; McDowell, D.; McCloat, A.; Mooney, E.; et al. The influence of socio-demographic, psychological and knowledge-related variables alongside perceived cooking and food skills abilities in the prediction of diet quality in adults: A nationally representative cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 111. [Google Scholar] [CrossRef] [Green Version]
- Carbonneau, E.; Lamarche, B.; Provencher, V.; Desroches, S.; Robitaille, J.; Vohl, M.-C.; Bégin, C.; Bélanger, M.; Couillard, C.; Pelletier, L.; et al. Associations Between Nutrition Knowledge and Overall Diet Quality: The Moderating Role of Sociodemographic Characteristics—Results from the PREDISE Study. Am. J. Health Promot. 2021, 35, 38–47. [Google Scholar] [CrossRef]
- Van Trijp, H.C. Variety-Seeking in Product Choice Behavior: Theory with Applications in the Food Domain; Wageningen University: Wageningen, The Netherlands; Research ProQuest Dissertations Publishing: Ann Arbor, MI, USA, 1995. [Google Scholar]
- Meiselman, H.L.; Mastroianni, G.; Buller, M.; Edwards, J. Longitudinal measurement of three eating behavior scales during a period of change. Food Qual. Prefer. 1998, 10, 1–8. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Ruzanska, U.; Anton, V.; Wallroth, R.; Ohla, K.; Knüppel, S.; Schulze, M.B.; Pischon, T.; Deutschbein, J.; Schenk, L.; et al. The NutriAct Family Study: A web-based prospective study on the epidemiological, psychological and sociological basis of food choice. BMC Public Health 2018, 18, 963. [Google Scholar] [CrossRef]
- Brauns, H.; Scherer, S.; Steinmann, S. The CASMIN Educational Classification in International Comparative Research. In Advances in Cross-National Comparison; Hoffmeyer-Zlotnik, J.H.P., Wolf, C., Eds.; Springer: Boston, MA, USA, 2003; pp. 221–244. [Google Scholar]
- Van Trijp, H.C.; Steenkamp, J.-B.E. Consumers’ variety seeking tendency with respect to foods: Measurement and managerial implications. Eur. Rev. Agric. Econ. 1992, 19, 181–195. [Google Scholar] [CrossRef]
- Hayes, A.F.; Coutts, J.J. Use Omega Rather than Cronbach’s Alpha for Estimating Reliability. But…. Commun. Methods Meas. 2020, 14, 1–24. [Google Scholar] [CrossRef]
- Knüppel, S.; Clemens, M.; Conrad, J.; Gastell, S.; Michels, K.; Leitzmann, M.; Krist, L.; Pischon, T.; Krause, G.; Ahrens, W.; et al. Dietary assessment in the German National Cohort (GNC). Proc. Nutr. Soc. 2020, 79, E85. [Google Scholar] [CrossRef]
- Freese, J.; Feller, S.; Harttig, U.; Kleiser, C.; Linseisen, J.; Fischer, B.; Leitzmann, M.F.; Six-Merker, J.; Michels, K.B.; Nimptsch, K.; et al. Development and evaluation of a short 24-h food list as part of a blended dietary assessment strategy in large-scale cohort studies. Eur. J. Clin. Nutr. 2014, 68, 324–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nöthlings, U.; Hoffmann, K.; Bergmann, M.M.; Boeing, H. Fitting portion sizes in a self-administered food frequency questionnaire. J. Nutr. 2007, 137, 2781–2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuer, T.; Krems, C.; Moon, K.; Brombach, C.; Hoffmann, I. Food consumption of adults in Germany: Results of the German National Nutrition Survey II based on diet history interviews. Br. J. Nutr. 2015, 113, 1603–1614. [Google Scholar] [CrossRef]
- Wolfram, G.; Bechthold, A.; Boeing, H.; Ellinger, S.; Hauner, H.; Kroke, A.; Leschik-Bonnet, E.; Linseisen, J.; Lorkowski, S.; Schulze, M.; et al. Evidence-based guideline of the German Nutrition Society: Fat intake and prevention of selected nutrition-related diseases. Ann. Nutr. Metab. 2015, 67, 141–204. [Google Scholar] [CrossRef]
- Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-Blake, E.; Hallas, L.; Majumdar, S.; et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 2021, 5, 529–538. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. Stat. Theory Appl. 1979, 6, 65–70. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Lenhard, W.; Lenhard, A. Computation of Effect Sizes. 2017. Available online: https://www.psychometrica.de/effect_size.html (accessed on 1 August 2022).
- Geiser, C. Longitudinal Structural Equation Modeling with Mplus: A Latent State-Trait Perspective; The Guilford Press: New York, NY, USA, 2021. [Google Scholar]
- Sörbom, D. Detection of correlated errors in longitudinal data. Br. J. Math. Stat. Psychol. 1975, 28, 138–151. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Chen, F.F. Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Struct. Equ. Model. Multidiscip. J. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Geiser, C.; Eid, M.; Nussbeck, F.W.; Courvoisier, D.S.; Cole, D.A. Analyzing true change in longitudinal multitrait-multimethod studies: Application of a multimethod change model to depression and anxiety in children. Dev. Psychol. 2010, 46, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Muthén, L.K.; Muthén, B. Mplus: The Comprehensive Modelling Program for Applied Researchers: User’s Guide; Muthén & Muthén: Los Angeles, CA, USA, 2018. [Google Scholar]
- Little, R.J.A. A Test of Missing Completely at Random for Multivariate Data with Missing Values. J. Am. Stat. Assoc. 1988, 83, 1198–1202. [Google Scholar] [CrossRef]
- Schafer, J.L.; Graham, J.W. Missing data: Our view of the state of the art. Psychol. Methods 2002, 7, 147–177. [Google Scholar] [CrossRef]
- Enders, C.K. Applied Missing Data Analysis; Guilford Press: New York, NY, USA, 2022. [Google Scholar]
- Dovey, T.M.; Staples, P.A.; Gibson, E.L.; Halford, J.C.G. Food neophobia and ‘picky/fussy’ eating in children: A review. Appetite 2008, 50, 181–193. [Google Scholar] [CrossRef]
- Nurmi, J.-E. Age Differences in Adult Life Goals, Concerns, and Their Temporal Extension: A Life Course Approach to Future-oriented Motivation. Int. J. Behav. Dev. 1992, 15, 487–508. [Google Scholar] [CrossRef]
- Selig, J.P.; Little, T.D. Autoregressive and cross-lagged panel analysis for longitudinal data. In Handbook of Developmental Research Methods; Laursen, B., Little, T.D., Card, N.A., Eds.; Guilford Press: New York, NY, USA, 2012; pp. 265–278. [Google Scholar]
- Pliner, P.; Salvy, S.J. Food neophobia in humans. In The Psychology of Food Choice; Shepherd, R., Raats, M., Eds.; CABI: Wallingford, UK, 2010; pp. 75–92. [Google Scholar]
- Vadiveloo, M.; Parekh, N.; Mattei, J. Greater healthful food variety as measured by the US Healthy Food Diversity index is associated with lower odds of metabolic syndrome and its components in US adults. J. Nutr. 2015, 145, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Vadiveloo, M.; Dixon, L.B.; Parekh, N. Associations between dietary variety and measures of body adiposity: A systematic review of epidemiological studies. Br. J. Nutr. 2013, 109, 1557–1572. [Google Scholar] [CrossRef] [Green Version]
- Vadiveloo, M.; Dixon, L.B.; Mijanovich, T.; Elbel, B.; Parekh, N. Development and evaluation of the US Healthy Food Diversity index. Br. J. Nutr. 2014, 112, 1562–1574. [Google Scholar] [CrossRef] [Green Version]
- Drescher, L.S.; Thiele, S.; Mensink, G.B.M. A new index to measure healthy food diversity better reflects a healthy diet than traditional measures. J. Nutr. 2007, 137, 647–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bimbo, F.; Bonanno, A.; Nocella, G.; Viscecchia, R.; Nardone, G.; de Devitiis, B.; Carlucci, D. Consumers’ acceptance and preferences for nutrition-modified and functional dairy products: A systematic review. Appetite 2017, 113, 141–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büyükkaragöz, A.; Bas, M.; Sağlam, D.; Cengiz, Ş.E. Consumers’ awareness, acceptance and attitudes towards functional foods in Turkey. Int. J. Consum. Stud. 2014, 38, 628–635. [Google Scholar] [CrossRef]
- Prescott, J. Development of Food Preferences. In Handbook of Eating and Drinking; Meiselman, H.L., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 199–217. ISBN 978-3-030-14503-3. [Google Scholar]
- Bauhoff, S. Self-Report Bias in Estimating Cross-Sectional and Treatment Effects. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 5798–5800. [Google Scholar]
- Althubaiti, A. Information bias in health research: Definition, pitfalls, and adjustment methods. J. Multidiscip. Healthc. 2016, 9, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Carroll, R.J.; Midthune, D.; Subar, A.F.; Shumakovich, M.; Freedman, L.S.; Thompson, F.E.; Kipnis, V. Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. Am. J. Epidemiol. 2012, 175, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Naja, F.; Hamadeh, R. Nutrition amid the COVID-19 pandemic: A multi-level framework for action. Eur. J. Clin. Nutr. 2020, 74, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- González-Monroy, C.; Gómez-Gómez, I.; Olarte-Sánchez, C.M.; Motrico, E. Eating Behaviour Changes during the COVID-19 Pandemic: A Systematic Review of Longitudinal Studies. Int. J. Environ. Res. Public Health 2021, 18, 11130. [Google Scholar] [CrossRef]
- Statistisches Bundesamt. Bildungsstand der Bevölkerung: Ergebnisse des Mikrozensus 2019. 2020. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Bildungsstand/Publikationen/Downloads-Bildungsstand/bildungsstand-bevoelkerung-5210002197004.pdf?__blob=publicationFile (accessed on 17 May 2022).
- Hiza, H.A.B.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef]
Time 1 (T1) | Time 2 (T2) | ||
---|---|---|---|
Total sample (N) | 960 | 829 | |
Gender (n (%)) | |||
Women | 512 (53.3%) | 442 (53.3%) | |
Men | 447 (46.6%) | 386 (46.6%) | |
Nonbinary | 1 (0.1%) | 1 (0.1%) | |
Age (years) | |||
M (SD) | 63.4 (6.1) | 66.9 (5.9) | |
Min–Max | 50–84 | 53–88 | |
BMI (kg/m2) 1 | |||
M (SD) | 25.96 (4.13) | 25.79 (4.18) | |
Min–Max | 15.09–46.30 | 15.18–58.81 | |
Educational status 2 (n (%)) | |||
Low | 31 (3.2%) | 25 (3.0%) | |
Medium | 297 (30.9%) | 251 (30.3%) | |
High | 632 (65.9%) | 553 (66.7%) |
1. | 2. | 3. | 4. | ||
1. | T1 food neophilia | 1 | |||
2. | T1 dietary quality | .12 *** | 1 | ||
3. | T2 food neophilia | .80 *** | .14 *** | 1 | |
4. | T2 dietary quality | .07 * | .64 *** | .10 ** | 1 |
M (SD) | 4.30 (1.41) | 5.59 (0.88) | 4.15 (1.36) | 5.60 (0.95) | |
ICC | .21 *** | .31 *** | .23 *** | .26 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wortmann, H.R.; Gisch, U.A.; Bergmann, M.M.; Warschburger, P. Exploring the Longitudinal Stability of Food Neophilia and Dietary Quality and Their Prospective Relationship in Older Adults: A Cross-Lagged Panel Analysis. Nutrients 2023, 15, 1248. https://doi.org/10.3390/nu15051248
Wortmann HR, Gisch UA, Bergmann MM, Warschburger P. Exploring the Longitudinal Stability of Food Neophilia and Dietary Quality and Their Prospective Relationship in Older Adults: A Cross-Lagged Panel Analysis. Nutrients. 2023; 15(5):1248. https://doi.org/10.3390/nu15051248
Chicago/Turabian StyleWortmann, Hanna R., Ulrike A. Gisch, Manuela M. Bergmann, and Petra Warschburger. 2023. "Exploring the Longitudinal Stability of Food Neophilia and Dietary Quality and Their Prospective Relationship in Older Adults: A Cross-Lagged Panel Analysis" Nutrients 15, no. 5: 1248. https://doi.org/10.3390/nu15051248
APA StyleWortmann, H. R., Gisch, U. A., Bergmann, M. M., & Warschburger, P. (2023). Exploring the Longitudinal Stability of Food Neophilia and Dietary Quality and Their Prospective Relationship in Older Adults: A Cross-Lagged Panel Analysis. Nutrients, 15(5), 1248. https://doi.org/10.3390/nu15051248