The Effect of Weekly 50,000 IU Vitamin D3 Supplements on the Serum Levels of Selected Cytokines Involved in Cytokine Storm: A Randomized Clinical Trial in Adults with Vitamin D Deficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
2.2. Intervention
2.3. Anthropometric Measurement
2.4. Clinical Parameter Assays
2.5. Statistical Analysis
3. Results
3.1. Baseline Values of the Participants
3.2. Baseline Clinical Characteristics
3.3. Connection between Selected Cytokine Variables and 25OHD Concentrations
3.4. Changes in the Serum Levels of 25OHD and PTH
3.5. Changes in the Serum Levels of Selected Cytokines Associated with Cytokine Storm at Baseline and 10-Week Follow-Up
3.6. Stepwise Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamilloux, Y.; Henry, T.; Belot, A.; Viel, S.; Fauter, M.; El Jammal, T.; Walzer, T.; François, B.; Sève, P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun. Rev. 2020, 19, 102567. [Google Scholar] [CrossRef]
- Mangalmurti, N.; Hunter, C.A. Cytokine Storms: Understanding COVID-19. Immunity 2020, 53, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Herr, C.; Shaykhiev, R.; Bals, R. The role of cathelicidin and defensins in pulmonary inflammatory diseases. Expert Opin. Biol. Ther. 2007, 7, 1449–1461. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltzer, D.O.; Best, T.J.; Zhang, H.; Vokes, T.; Arora, V.; Solway, J. Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw. Open 2020, 3, e2019722. [Google Scholar] [CrossRef] [PubMed]
- Abu-Samak, M.S.; AbuRuz, M.E.; Masa’Deh, R.; Khuzai, R.; Jarrah, S. Correlation of selected stress associated factors with vitamin D deficiency in Jordanian men and women. Int. J. Gen. Med. 2019, 12, 225–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Shaer, A.H.; Abu-Samak, M.S.; Hasoun, L.Z.; Mohammad, B.A.; Basheti, I.A. Assessing the effect of omega-3 fatty acid combined with vitamin D3 versus vitamin D3 alone on estradiol levels: A randomized, placebo-controlled trial in females with vitamin D deficiency. Clin. Pharmacol. Adv. Appl. 2019, 11, 25–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barham, A.; Mohammad, B.; Hasoun, L.; Awwad, S.; Mosleh, I.; Aljaberi, A.; Abu-Samak, M. The combination of omega-3 fatty acids with high doses of vitamin D3 elevate A1c levels: A randomized Clinical Trial in people with vitamin D deficiency. Int. J. Clin. Pract. 2021, 75, e14779. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. An update on vitamin D and human immunity. Clin. Endocrinol. 2012, 76, 315–325. [Google Scholar] [CrossRef]
- Shirazi, L.; Almquist, M.; Borgquist, S.; Malm, J.; Manjer, J. Serum vitamin D (25OHD3) levels and the risk of different subtypes of breast cancer: A nested case-control study. Breast 2016, 28, 184–190. [Google Scholar] [CrossRef]
- Kunadian, V.; Ford, G.A.; Bawamia, B.; Qiu, W.; Manson, J.E. Vitamin D deficiency and coronary artery disease: A review of the evidence. Am. Heart J. 2014, 167, 283–291. [Google Scholar] [CrossRef]
- Kast, J.I.; McFarlane, A.J.; Głobińska, A.; Sokolowska, M.; Wawrzyniak, P.; Sanak, M.; Schwarze, J.; Akdis, C.A.; Wanke, K. Respiratory syncytial virus infection influences tight junction integrity. Clin. Exp. Immunol. 2017, 190, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.A.; Fanous, H.; Colin, A.A. Viral strategies predisposing to respiratory bacterial superinfections. Pediatr. Pulmonol. 2020, 55, 1061–1073. [Google Scholar] [CrossRef]
- White, J.H. Vitamin D metabolism and signaling in the immune system. Rev. Endocr. Metab. Disord. 2012, 13, 21–29. [Google Scholar] [CrossRef]
- Boonstra, A.; Barrat, F.J.; Crain, C.; Heath, V.L.; Savelkoul, H.F.; O’Garra, A. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J. Immunol. 2001, 167, 4974–4980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffery, L.E.; Burke, F.; Mura, M.; Zheng, Y.; Qureshi, O.S.; Hewison, M.; Walker, L.S.; Lammas, D.A.; Raza, K.; Sansom, D.M. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 2009, 183, 5458–5467. [Google Scholar] [CrossRef] [Green Version]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ (Clin. Res. Ed.) 2017, 356, i6583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, R.D.; LaCroix, A.Z.; Gass, M.; Wallace, R.B.; Robbins, J.; Lewis, C.E.; Bassford, T.; Beresford, S.A.; Black, H.R.; Blanchette, P.; et al. Calcium plus vitamin D supplementation and the risk of fractures. N. Engl. J. Med. 2006, 354, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wacker, M.; Holick, M.F. Sunlight and Vitamin D: A global perspective for health. Derm.-Endocrinol. 2013, 5, 51–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colotta, F.; Jansson, B.; Bonelli, F. Modulation of inflammatory and immune responses by vitamin D. J. Autoimmun. 2017, 85, 78–97. [Google Scholar] [CrossRef]
- Hirani, V. Vitamin D status and pain: Analysis from the Health Survey for England among English adults aged 65 years and over. Br. J. Nutr. 2012, 107, 1080–1084. [Google Scholar] [CrossRef] [Green Version]
- D’Aurizio, F.; Villalta, D.; Metus, P.; Doretto, P.; Tozzoli, R. Is vitamin D a player or not in the pathophysiology of autoimmune thyroid diseases? Autoimmun. Rev. 2015, 14, 363–369. [Google Scholar] [CrossRef]
- Costenbader, K.H.; MacFarlane, L.A.; Lee, I.M.; Buring, J.E.; Mora, S.; Bubes, V.; Kotler, G.; Camargo, C.A., Jr.; Manson, J.E.; Cook, N.R. Effects of One Year of Vitamin D and Marine Omega-3 Fatty Acid Supplementation on Biomarkers of Systemic Inflammation in Older US Adults. Clin. Chem. 2019, 65, 1508–1521. [Google Scholar] [CrossRef]
- Naghavi Gargari, B.; Behmanesh, M.; Shirvani Farsani, Z.; Pahlevan Kakhki, M.; Azimi, A.R. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. Int. Immunopharmacol. 2015, 28, 414–419. [Google Scholar] [CrossRef]
- Ramos-Martínez, E.; López-Vancell, M.R.; Fernández de Córdova-Aguirre, J.C.; Rojas-Serrano, J.; Chavarría, A.; Velasco-Medina, A.; Velázquez-Sámano, G. Reduction of respiratory infections in asthma patients supplemented with vitamin D is related to increased serum IL-10 and IFNγ levels and cathelicidin expression. Cytokine 2018, 108, 239–246. [Google Scholar] [CrossRef]
- Yegorov, S.; Bromage, S.; Boldbaatar, N.; Ganmaa, D. Effects of Vitamin D Supplementation and Seasonality on Circulating Cytokines in Adolescents: Analysis of Data From a Feasibility Trial in Mongolia. Front. Nutr. 2019, 6, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, J.A.; Zughaier, S.M.; Law, J.; Hao, L.; Wasse, H.; Ziegler, T.R.; Tangpricha, V. Effects of high-dose cholecalciferol on serum markers of inflammation and immunity in patients with early chronic kidney disease. Eur. J. Clin. Nutr. 2013, 67, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meireles, M.S.; Kamimura, M.A.; Dalboni, M.A.; Giffoni de Carvalho, J.T.; Aoike, D.T.; Cuppari, L. Effect of cholecalciferol on vitamin D-regulatory proteins in monocytes and on inflammatory markers in dialysis patients: A randomized controlled trial. Clin. Nutr. 2016, 35, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Caglar, K.; Peng, Y.; Pupim, L.B.; Flakoll, P.J.; Levenhagen, D.; Hakim, R.M.; Ikizler, T.A. Inflammatory signals associated with hemodialysis. Kidney Int. 2002, 62, 1408–1416. [Google Scholar] [CrossRef]
- Pecoits-Filho, R.; Heimbürger, O.; Bárány, P.; Suliman, M.; Fehrman-Ekholm, I.; Lindholm, B.; Stenvinkel, P. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2003, 41, 1212–1218. [Google Scholar] [CrossRef]
- Haidari, F.; Abiri, B.; Iravani, M.; Ahmadi-Angali, K.; Vafa, M. Randomized Study of the Effect of Vitamin D and Omega-3 Fatty Acids Cosupplementation as Adjuvant Chemotherapy on Inflammation and Nutritional Status in Colorectal Cancer Patients. J. Diet. Suppl. 2020, 17, 384–400. [Google Scholar] [CrossRef]
- Bashashati, M.; Moradi, M.; Sarosiek, I. Interleukin-6 in irritable bowel syndrome: A systematic review and meta-analysis of IL-6 (-G174C) and circulating IL-6 levels. Cytokine 2017, 99, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Barker, T.; Rogers, V.E.; Levy, M.; Templeton, J.; Goldfine, H.; Schneider, E.D.; Dixon, B.M.; Henriksen, V.T.; Weaver, L.K. Supplemental vitamin D increases serum cytokines in those with initially low 25-hydroxyvitamin D: A randomized, double blind, placebo-controlled study. Cytokine 2015, 71, 132–138. [Google Scholar] [CrossRef]
- Khoo, A.L.; Chai, L.Y.; Koenen, H.J.; Sweep, F.C.; Joosten, I.; Netea, M.G.; van der Ven, A.J. Regulation of cytokine responses by seasonality of vitamin D status in healthy individuals. Clin. Exp. Immunol. 2011, 164, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Jamka, M.; Woźniewicz, M.; Walkowiak, J.; Bogdański, P.; Jeszka, J.; Stelmach-Mardas, M. The effect of vitamin D supplementation on selected inflammatory biomarkers in obese and overweight subjects: A systematic review with meta-analysis. Eur. J. Nutr. 2016, 55, 2163–2176. [Google Scholar] [CrossRef]
- Yusupov, E.; Li-Ng, M.; Pollack, S.; Yeh, J.K.; Mikhail, M.; Aloia, J.F. Vitamin d and serum cytokines in a randomized clinical trial. Int. J. Endocrinol. 2010, 2010, 305054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubesch, A.; Quenstedt, L.; Saleh, M.; Rüschenbaum, S.; Schwarzkopf, K.; Martinez, Y.; Welsch, C.; Zeuzem, S.; Welzel, T.M.; Lange, C.M. Vitamin D deficiency is associated with hepatic decompensation and inflammation in patients with liver cirrhosis: A prospective cohort study. PLoS ONE 2018, 13, e0207162. [Google Scholar] [CrossRef] [PubMed]
- Miroliaee, A.E.; Salamzadeh, J.; Shokouhi, S.; Sahraei, Z. The study of vitamin D administration effect on CRP and Interleukin-6 as prognostic biomarkers of ventilator associated pneumonia. J. Crit. Care 2018, 44, 300–305. [Google Scholar] [CrossRef]
- Goncalves-Mendes, N.; Talvas, J.; Dualé, C.; Guttmann, A.; Corbin, V.; Marceau, G.; Sapin, V.; Brachet, P.; Evrard, B.; Laurichesse, H.; et al. Impact of Vitamin D Supplementation on Influenza Vaccine Response and Immune Functions in Deficient Elderly Persons: A Randomized Placebo-Controlled Trial. Front. Immunol 2019, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Haddad Kashani, H.; Seyed Hosseini, E.; Nikzad, H.; Soleimani, A.; Soleimani, M.; Tamadon, M.R.; Keneshlou, F.; Asemi, Z. The Effects of Vitamin D Supplementation on Signaling Pathway of Inflammation and Oxidative Stress in Diabetic Hemodialysis: A Randomized, Double-Blind, Placebo-Controlled Trial. Front. Pharm. 2018, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Bueloni-Dias, F.N.; Orsatti, C.L.; Cangussu, L.M.; Poloni, P.F.; Spadoto-Dias, D.; Nahas-Neto, J.; Nahas, E.A.P. Isolated vitamin D supplementation improves the immune-inflammatory biomarkers in younger postmenopausal women: A randomized, double-blind, placebo-controlled trial. Menopause. 2018, 25, 897–903. [Google Scholar] [CrossRef]
- Duggan, C.; de Dieu Tapsoba, J.; Mason, C.; Imayama, I.; Korde, L.; Wang, C.Y.; McTiernan, A. Effect of Vitamin D3 Supplementation in Combination with Weight Loss on Inflammatory Biomarkers in Postmenopausal Women: A Randomized Controlled Trial. Cancer Prev. Res. 2015, 8, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, R.; Morshedi, M.; Asghari Jafarabadi, M.; Altafi, D.; Saeed Hosseini-Asl, S.; Rafie-Arefhosseini, S. Anti-inflammatory effects of dietary vitamin D(3) in patients with multiple sclerosis. Neurol. Genet. 2018, 4, e278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi, A.; Vahedi, H.; Nedjat, S.; Rafiei, H.; Hosseinzadeh-Attar, M.J. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: A randomized placebo-controlled trial. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2019, 127, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Pramyothin, P.; Holick, M.F. Vitamin D supplementation: Guidelines and evidence for subclinical deficiency. Curr. Opin. Gastroenterol. 2012, 28, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Laaksi, I.; Ruohola, J.P.; Mattila, V.; Auvinen, A.; Ylikomi, T.; Pihlajamäki, H. Vitamin D supplementation for the prevention of acute respiratory tract infection: A randomized, double-blinded trial among young Finnish men. J. Infect. Dis. 2010, 202, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. The National Academies Collection: Reports funded by National Institutes of Health. In Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press (US), National Academy of Sciences: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Sondarwa, K.; Buttar, R.S.; Hensley, V.; Melamed, M.L. Vitamin D and Cardiovascular Disease. In Extraskeletal Effects of Vitamin D; Springer: Cham, Switzerland, 2018; pp. 151–164. [Google Scholar]
- Dror, Y.; Giveon, S.M.; Hoshen, M.; Feldhamer, I.; Balicer, R.D.; Feldman, B.S. Vitamin D levels for preventing acute coronary syndrome and mortality: Evidence of a nonlinear association. J. Clin. Endocrinol. Metab. 2013, 98, 2160–2167. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020, 53, 38–42. [Google Scholar] [CrossRef]
- Urashima, M.; Segawa, T.; Okazaki, M.; Kurihara, M.; Wada, Y.; Ida, H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr. 2010, 91, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Manion, M.; Hullsiek, K.H.; Wilson, E.M.P.; Rhame, F.; Kojic, E.; Gibson, D.; Hammer, J.; Patel, P.; Brooks, J.T.; Baker, J.V.; et al. Vitamin D deficiency is associated with IL-6 levels and monocyte activation in HIV-infected persons. PLoS ONE 2017, 12, e0175517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Zhou, Y.H.; Yang, Z.Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol. 2016, 13, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Baek, S.; Hong, S.M.; Lee, J.; Jung, S.M.; Lee, J.; Cho, M.; Kwok, S.K.; Park, S.H. 1,25-dihydroxy Vitamin D3 and Interleukin-6 Blockade Synergistically Regulate Rheumatoid Arthritis by Suppressing Interleukin-17 Production and Osteoclastogenesis. J. Korean Med. Sci. 2020, 35, e40. [Google Scholar] [CrossRef] [PubMed]
- Brosbøl-Ravnborg, A.; Bundgaard, B.; Höllsberg, P. Synergy between vitamin D(3) and Toll-like receptor agonists regulates human dendritic cell response during maturation. Clin. Dev. Immunol. 2013, 2013, 807971. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.W.; McLoughlin, R.M.; Hammond, V.J.; Parker, C.R.; Williams, J.D.; Malhotra, R.; Scheller, J.; Williams, A.S.; Rose-John, S.; Topley, N.; et al. Loss of CD4+ T cell IL-6R expression during inflammation underlines a role for IL-6 trans signaling in the local maintenance of Th17 cells. J. Immunol. 2010, 184, 2130–2139. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.A. Directing transition from innate to acquired immunity: Defining a role for IL-6. J. Immunol. 2005, 175, 3463–3468. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Nakagawa, T.; Kitamura, H.; Atsumi, T.; Kamon, H.; Sawa, S.; Kamimura, D.; Ueda, N.; Iwakura, Y.; Ishihara, K.; et al. IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J. Immunol. 2004, 173, 3844–3854. [Google Scholar] [CrossRef] [Green Version]
- Széles, L.; Keresztes, G.; Töröcsik, D.; Balajthy, Z.; Krenács, L.; Póliska, S.; Steinmeyer, A.; Zuegel, U.; Pruenster, M.; Rot, A.; et al. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J. Immunol. 2009, 182, 2074–2083. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.T.; Stenger, S.; Tang, D.H.; Modlin, R.L. Cutting edge: Vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J. Immunol. 2007, 179, 2060–2063. [Google Scholar] [CrossRef] [Green Version]
Variable | Category | Frequency | % |
---|---|---|---|
Group | Control | 33 | 44.0 |
VD3 | 42 | 56.0 | |
Total | 75 | 100.0 | |
Gender | Male | 37 | 49.3 |
Female | 38 | 50.7 | |
Total | 75 | 100.0 | |
Morning sun exposure (20–30 min/day) | Yes | 43 | 57.3 |
No | 32 | 42.7 | |
Total | 75 | 100.0 |
Parameter | Mean (SD) |
---|---|
Age (year) | 38.37 (9.77) |
Weight (kg) | 78.51 (15.79) |
Height (cm) | 166.92 (7.42) |
BMI (kg.m−2) | 27.90 (4.76) |
Waist (cm) | 94.58 (14.12) |
Hip (cm) | 106.13 (11.52) |
WHR | 89.38 (11.39) |
Parameter | Mean (SD) | Normal Range |
---|---|---|
25OHD (ng/mL) | 17.29 (6.18) | 30–50 |
PTH (pg/mL) | 37.38 (7.57) | 9–90 |
Ca (mg/dl) | 9.30 (1.24) | 8.6–10.3 |
PO4 (mg/dl) | 4.05 (0.18) | 2.5–4.5 |
Leptin (ng/mL) | 7.86 (6.17) | NA |
Parameter | Mean (SD) | Range * |
---|---|---|
IL-1β | 3.24 (1.16) | 0.17–24 |
TNF-α | 32.38 (5.95) | 0.93–26.8 |
IL-6 | 5.08 (5.16) | 0.16–37.7 |
IL-10 | 2.09 (0.56) | 0.01–19.8 |
(TNF-α/IL10) | 1792.95 (1069.38) | |
(IL-1β/IL10) | 173.84 (97.53) | |
(IL6/IL10) | 243.21 (235.10) |
Variable | Baseline | Follow-Up | ||
---|---|---|---|---|
R | p-Value | R | p-Value | |
TNF-α | −0.072 | 0.538 | −0.027 | 0.867 |
IL1 | −0.280 | 0.015 | 0.215 | 0.171 |
IL6 | −0.174 | 0.136 | 0.037 | 0.815 |
IL10 | −0.206 | 0.076 | −0.059 | 0.712 |
Variable | Group | Control | D3 | p-Value |
---|---|---|---|---|
25OHD | Baseline | 18.42 ± 7.36 | 16.41 ± 4.99 | PB = 0.163 |
Follow-up | 17.31 ± 6.74 | 41.39 ± 12.19 | PC < 0.001 | |
Change | −1.11 | 24.98 | ||
PA | 0.062 | <0.001 | ||
PTH | Baseline | 36.75 ± 8.49 | 37.88 ± 6.82 | PB = 0.524 |
Follow-up | 33.85 ± 10.62 | 16.69 ± 8.72 | PC < 0.001 | |
Change | −2.90 | −21.19 | ||
PA | 0.052 | <0.001 |
Variable | Group | Control | D3 | p-Value |
---|---|---|---|---|
IL-1β (pg/mL) | Baseline | 3.27 ± 1.37 | 3.22 ± 0.99 | PB = 0.852 |
Follow-up | 3.59 ± 2.71 | 7.63 ± 2.36 | PC < 0.001 | |
Change | 0.32 | 4.41 | ||
PA | 0.574 | <0.001 | ||
IL-6 (pg/mL) | Baseline | 4.55 ± 2.62 | 5.5 ± 6.51 | PB = 0.431 |
Follow-up | 4.85 ± 4.84 | 26.99 ± 14.47 | PC < 0.001 | |
Change | 0.30 | 21.49 | ||
PA | 0.750 | <0.001 | ||
TNF-α (pg/mL) | Baseline | 31.16 ± 5.22 | 33.34 ± 6.36 | PB = 0.116 |
Follow-up | 33.65 ± 5.15 | 33.50 ± 6.18 | PC = 0.910 | |
Change | 2.49 | 0.16 | ||
PA | 0.100 | 0.899 | ||
IL-10 (pg/mL) | Baseline | 2.20 ± 0.52 | 2.01 ± 0.59 | PB = 0.159 |
Follow-up | 2.39 ± 1.39 | 4.46 ± 4.67 | PC = 0.016 | |
Change | 0.20 | 2.45 | ||
PA | 0.433 | 0.001 |
Dependent Variable | Univariate Effect Estimate | Coefficient | ||||
---|---|---|---|---|---|---|
B | F | R | R2 | p-Value | ||
TNF-α | Age | 0.257 | 8.220 | 0.413 | 0.170 | 0.007 |
IL-1β | Weight | 0.053 | 4.294 | 0.311 | 0.097 | 0.045 |
TNF-α /IL10 | WHR | 0.348 | 5.200 | 0.348 | 0.121 | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bader, D.A.; Abed, A.; Mohammad, B.A.; Aljaberi, A.; Sundookah, A.; Habash, M.; Alsayed, A.R.; Abusamak, M.; Al-Shakhshir, S.; Abu-Samak, M. The Effect of Weekly 50,000 IU Vitamin D3 Supplements on the Serum Levels of Selected Cytokines Involved in Cytokine Storm: A Randomized Clinical Trial in Adults with Vitamin D Deficiency. Nutrients 2023, 15, 1188. https://doi.org/10.3390/nu15051188
Bader DA, Abed A, Mohammad BA, Aljaberi A, Sundookah A, Habash M, Alsayed AR, Abusamak M, Al-Shakhshir S, Abu-Samak M. The Effect of Weekly 50,000 IU Vitamin D3 Supplements on the Serum Levels of Selected Cytokines Involved in Cytokine Storm: A Randomized Clinical Trial in Adults with Vitamin D Deficiency. Nutrients. 2023; 15(5):1188. https://doi.org/10.3390/nu15051188
Chicago/Turabian StyleBader, Dana A., Anas Abed, Beisan A. Mohammad, Ahmad Aljaberi, Ahmad Sundookah, Maha Habash, Ahmad R. Alsayed, Mohammad Abusamak, Sami Al-Shakhshir, and Mahmoud Abu-Samak. 2023. "The Effect of Weekly 50,000 IU Vitamin D3 Supplements on the Serum Levels of Selected Cytokines Involved in Cytokine Storm: A Randomized Clinical Trial in Adults with Vitamin D Deficiency" Nutrients 15, no. 5: 1188. https://doi.org/10.3390/nu15051188