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Abstract: This research aimed to evaluate the effects of high-dose cholecalciferol (VD3) supplements
(50,000 IU/week) on selected circulating cytokines associated with cytokine storms in adults with
vitamin D deficiency. This clinical trial, based in Jordan, included 50 participants receiving vitamin
D3 supplements (50,000 IU/week) for 8 weeks; the exact number was assigned to the control group.
Interleukin-6 (IL-6), interleukin-1β (IL-1β), interleukin-10 (IL-10), tumor necrotic factor-α (TNF-α),
and leptin were measured in serum at baseline and 10 weeks (wash out: 2 weeks). Our results
revealed that vitamin D3 supplementation significantly increased the serum levels of 25OHD, IL-6,
IL-10, IL-1β, and leptin compared with baseline. In contrast, the serum level of TNF-α insignificantly
increased in the group receiving vitamin D3 supplementation. Although the observations of this trial
may refer to a potential negative effect of VD3 supplementation during cytokine storms, further trials
are required to clarify the potential benefits of VD3 supplement during cytokine storms.

Keywords: vitamin D deficiency; vitamin D3; cytokine; storm; interleukin 6; interleukin 10; interleukin
1β; TNF-α

1. Introduction

The new coronavirus infection (COVID-19) is a global pandemic that has aggressively
propagated worldwide [1]. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)
is responsible for the pandemic viral pneumonia known as COVID-19. A recent study
observed elevated serum levels of specific cytokines, such as those seen during the COVID-
19 cytokine storm (CS), which may be associated with severe complications resulting from
the infection [2]. These cytokines include tumor necrosis factor-alpha (TNF-α), interleukin-1
beta (IL-1β), IL-6, IL-, 10, IL-17, interferon-gamma (IFN-γ), and many other cytokines [1].
Accordingly, hypercytokinemia has been recently suggested to be one of the main hallmarks
of COVID-19 [1]. However, many COVID-19 symptoms can be treated based on the
patient’s clinical condition. Hence, because there is no specific treatment for COVID-19
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yet, supportive care, including dietary vitamins and minerals for infected persons, can be
highly effective.

In this manner, vitamins D (VD) and C, in addition to zinc supplementations, are
recommended by the Jordan Ministry of Health as a part of the treatment protocol for
COVID-19 patients. VD increases innate cellular immunity and provides direct antibac-
terial activity against various microorganisms, including enveloped and nonenveloped
viruses [3]. It has also been shown that VD may mitigate the CS induced by the innate im-
mune system [4]. A previous study [5] concluded that VD modulates the immune response
via its effects on dendritic cells (DCs) and T cells. This may enhance the clearance of the
virus and decrease inflammatory reactions associated with symptoms. However, vitamin
D deficiency (VDD) is still a global problem; over one billion people are either VD deficient
or insufficient, and the incidence of VDD was reported to be higher in Mediterranean coun-
tries such as Jordan [6–8]. VDD is known to be directly associated with bone disorders, but
nonskeletal outcomes grabbed the most attention [9]. It was linked with different disorders,
including diabetes, cardiovascular disease (CVD), atherosclerosis, and cancer [10,11], and
certain abnormal immune conditions, including infections [5]. Recent reviews indicated
the ability of VD to reduce the risk of microbial infections through different potential
mechanisms: physical barrier, natural cellular, and adaptive immunity [12,13].

Consequently, raising 25-hydroxyvitamin D (25OHD) levels by 1,25(OH)2D3 (VD3)
supplementation is highly recommended to reduce the risk of infection and is advised as
part of the treatment protocol for people who are sick with influenza [4]. However, the
modulatory effects of VD on proinflammatory and anti-inflammatory, as well as cellular
and humoral immune, responses are mixed and unclear. There is a study that showed
that VD could suppress the production of T-helper (Th)1 proinflammatory cytokine [14]
and augment Th2 cell development [15]. Furthermore, VD3 enhances T regulatory cell
induction, thus inhibiting inflammatory processes [16].

A previous study [17] showed the safety of VD and a protection activity against acute
respiratory tract infection. VDD has been correlated with acute respiratory distress syn-
drome (ARDS), and case fatality rates (CFRs) increase with age and comorbidity with
chronic diseases, both of which are associated with lower 25OHD concentration [4]. There-
fore, this randomized clinical trial (RCT) was designed to measure serum levels of IL-1β,
IL-6, IL-10, and TNF-α as part of the immune response during CS before and 8 weeks after
high-dose VD3 50,000 IU in adults with VDD.

2. Materials and Methods
2.1. Patient Characteristics

This RCT was approved by the Institutional Review Board of Applied Science Private
University (ASU) (protocol number 2020-PHA-16) and undertaken between October 2020
and December 2020. The clinical trial was conducted following the Helsinki Declaration.
Each individual who was enrolled provided informed consent for this clinical trial. With an
average baseline age of 38.37 ± 9.77 years, volunteers included were Jordanian and from
ASU staff and their families (ranging from 30 to 66). Eligible participants were included
in the trial depending on a diagnosis of VDD confirmed by medical consultants at Ibn
Al-Haytham clinical laboratories. Because prolonged VD3 administration is related to
the formation of kidney stones, patients with kidney abnormalities were excluded from
the study [18]. COVID-19 or chronic medical conditions, such as osteoporosis, cancer,
endocrine disorders, and a history of allergic responses to VD3 supplements, were also
among the exclusion criteria from this study.

2.2. Intervention

Before and after the VD3 supplement, baseline and follow-up values of anthropomet-
ric and clinical parameters were collected. At the conclusion of the 8-week interventional
phase, the subjects underwent a 2-week washout phase before and following VD3 adminis-
tration. VD3 is a fat-soluble vitamin with a long half-life; a washout period was achieved
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to avoid the potential effect of its cumulative dose. Then, all participants’ follow-up mea-
surements were obtained. An independent statistician developed a computer-generated
randomization process. According to the consortium chart (Figure 1), hundreds of eligible
participants were divided into two groups: group 1 received once weekly 50,000 IU of
VD3 in a Hi-Dee soft gelatin capsule (United Pharmaceuticals Company, Amman, Jordan).
Participants in group 2 did not receive any supplementation and acted as the control group.
In compliance with the Endocrine Society’s clinical guidelines for treating VDD in adults,
therapeutic protocols for VD3 supplements were approved [19]. Similarly, administering
VD3 to individuals throughout 12 months produced no toxicity [19]. All participants’
adherence to the therapy protocol was monitored by periodic text messages sent to their
mobile phones.
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Figure 1. Consort flow diagram for the study.

2.3. Anthropometric Measurement

This RCT was conducted throughout the winter of 2020 at the ASU Pharmacy school
laboratories to minimize seasonal fluctuations in vitamin D assays in the blood [20]. At the
beginning and end of the experiment, anthropometric measurements, such as body mass
index (BMI), body weight (BW), hip (H) circumference, waist/hip ratio (WHR), height (Ht),
and waist (W) circumference, were recorded.

2.4. Clinical Parameter Assays

Serum assay of clinical parameters was collected into labeled Eppendorf tubes at Ibn
Al-Haytham Hospital, Clinical Laboratories Department, Jordan.

The chemiluminescence immunoassay LIAISON 25OHD assay (DiaSorin, Saluggia,
Italy) measured total serum 25OHD. The assay quantifies serum 25OHD and is cross-
reactive with 25OHD2 and 25OHD3. Its lower limit was 4 ng/mL. An enzyme immunoas-
say kit measured serum leptin levels (leptin EIA-5302, DRG Diagnostics, Marburg, Ger-
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many). Test sensitivity was 0.1 ng/mL. An enzyme immunoassay kit tested serum PTH
levels (PTH Intact EIA-3645, DRG Diagnostics, Marburg, Germany). The sensitivity was
1.57 pg/mL. The calcium-ARSENAZO kit (M11570i-15) and the phosphorus phospho-
molybdate/Uv kit (M11508i-18, BioSystems, Barcelona, Spain) were used to measure the
levels of calcium and phosphorus (PO4) in serum. Serum IL-6 concentration was mea-
sured using the Human ELISA KIT (ab178013, Abcam, Newark, NJ, USA). Using a Human
ELISA Kit, serum IL-10 was measured (ab185986, Abcam). Human ELISA KIT assessed
serum IL-1β (ab214025, Abcam). The Human ELISA KIT assay measured serum TNF-α
(ab181421, Abcam).

2.5. Statistical Analysis

SPSS version 27 for Windows was used to execute the statistical analysis. A paired
t-test was performed to determine any significant variations in each trial group before
and after the delivery of the VD3 supplementation. Two independent sample t-tests were
utilized to identify whether there were significant differences between all items of distinct
groups (control, D3). Using correlation analysis, correlations were investigated between
the serum levels of TNF, IL-1β, IL-6, IL-10, and 25-OHD, as well as between their ratios
(TNF-α /IL-10, IL-1β /IL-10, and IL-6/IL-10). Simple linear regression was used to in-
vestigate the effect of VD3 supplementation on the items (TNF-α, IL-1β, IL6, IL10, ratio
(TNF-α /IL-10), ratio (IL-1β/IL-10), ratio (IL-6/IL-10)), while multiple linear regression
analysis was used to determine the predictors of the items (TNF-α, IL-1β, IL-6, IL-10, ratio
(TNF-α /IL-10), ratio (IL-1β/IL-10), and ratio (IL-6/IL-10)) at the follow-up level for the
(D) group. The Kolmogorov–Smirnov test was utilized to test the normality of distribution
for laboratory measurements. The results displayed a normal distribution curve.

3. Results
3.1. Baseline Values of the Participants

A total of 75 out of 127 (59.1%) participants in the trial adhered to the protocol and
finished the intervention period that lasted for 8 weeks. As indicated in Figure 1, the reasons
why participants dropped out (n = 27) included noncompliance, not fulfilling inclusion
criteria, and dropping out from the intervention group (n = 8) and the control group
(n = 17). In this trial, 50.7% were female, and 49.2% were male. Morning sun exposure was
practiced by 57.3% of participants. Other baseline percentages and frequencies of analyzed
anthropometric and lifestyle variables are displayed in Table 1.

Table 1. Frequencies and percentages of anthropometric and lifestyle variables at baseline (n = 75).

Variable Category Frequency %

Group
Control 33 44.0

VD3 42 56.0
Total 75 100.0

Gender
Male 37 49.3

Female 38 50.7
Total 75 100.0

Morning sun exposure (20–30 min/day)
Yes 43 57.3
No 32 42.7

Total 75 100.0
Abbreviations: VD3, VD3 supplementation group.

Participants’ average age was (38.37 9.77). When measured at baseline, all other
serum markers had mean values that were within normal limits. Descriptive analysis for
anthropometric parameters, including BMI (27.90 ± 4.76), waist and hip circumferences,
and WHR, are shown in Table 2.
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Table 2. Statistical description of anthropometric parameters at baseline level (n = 75).

Parameter Mean (SD)

Age (year) 38.37 (9.77)
Weight (kg) 78.51 (15.79)
Height (cm) 166.92 (7.42)

BMI (kg.m−2) 27.90 (4.76)
Waist (cm) 94.58 (14.12)
Hip (cm) 106.13 (11.52)

WHR 89.38 (11.39)
Abbreviations: SD, standard deviation; BMI, body mass index; WHR, waist/hip ratio.

3.2. Baseline Clinical Characteristics

The baseline mean value for serum 25OHD was (17.29 ± 6.18) ng/mL (all participants
were VD deficient). None of the participants presented in this trial with a baseline serum
25OHD level equal to or greater than 30 ng/mL. All participants’ baseline values of all
serum parameters, including PTH, Ca, and PO4, were within normal ranges. A descriptive
analysis of the clinical parameters is presented in Table 3. Table 4 shows baseline mean
values for the serum levels of IL-1β, IL6, IL10, and TNF-α and their ratios.

Table 3. Descriptive summary of clinical variables at baseline (n = 75).

Parameter Mean (SD) Normal Range

25OHD (ng/mL) 17.29 (6.18) 30–50
PTH (pg/mL) 37.38 (7.57) 9–90

Ca (mg/dl) 9.30 (1.24) 8.6–10.3
PO4 (mg/dl) 4.05 (0.18) 2.5–4.5

Leptin (ng/mL) 7.86 (6.17) NA
Abbreviations: 25OHD, 25 hydroxy vitamin D; PO4, phosphorus; NA, not applicable; SD, standard deviation.

Table 4. Levels of selected cytokines involved in the cytokine storm of COVID-19 at baseline in the
entire study population with vitamin D deficiency (n = 75).

Parameter Mean (SD) Range *

IL-1β 3.24 (1.16) 0.17–24
TNF-α 32.38 (5.95) 0.93–26.8

IL-6 5.08 (5.16) 0.16–37.7
IL-10 2.09 (0.56) 0.01–19.8

(TNF-α/IL10) 1792.95 (1069.38)
(IL-1β/IL10) 173.84 (97.53)
(IL6/IL10) 243.21 (235.10)

Abbreviations: IL-1β, interleukin-1 beta; IL-6, interleukin 6; IL-10, interleukin 10; TNF-α, tumor necrosis-alpha;
SD, standard deviation. Note: * values are expressed as pg/mL—serum levels of cytokines for healthy people
(age < 45 years) (23).

3.3. Connection between Selected Cytokine Variables and 25OHD Concentrations

In this trial, selected proinflammatory cytokines (IL-1β, TNF-α, and IL-6) and anti-
inflammatory cytokine (IL-10) showed statistically significant intercorrelations (Table 5).
At baseline, serum 25OHD levels showed a significant inverse correlation with serum
IL-1β levels (R= −0.280, p = 0.015). Serum IL-1β levels also showed significant positive
correlations with IL-6 (R = 0.236, p= 0.041) and IL-10 (R = 0.239, p = 0.039). Pearson
correlation analysis showed no correlation between serum IL-6 and IL-10 levels. Other
baseline intercorrelations between studied cytokines ratios are listed in Table 5.

The Pearson correlation analysis showed no intercorrelation between serum cytokine
levels in the VD3 group, as shown in Table 5. Serum 25OHD levels showed a weak but
insignificant positive correlation with serum IL-1β levels. However, this trial has shown a
significant reverse correlation between proinflammatory cytokines and anti-inflammatory
cytokines. Table 5 shows the correlation between each cytokine and 25OHD level.
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Table 5. Correlation of selected cytokine with baseline and follow-up 25OHD levels.

Variable
Baseline Follow-Up

R p-Value R p-Value

TNF-α −0.072 0.538 −0.027 0.867
IL1 −0.280 0.015 0.215 0.171
IL6 −0.174 0.136 0.037 0.815
IL10 −0.206 0.076 −0.059 0.712

Note: R, correlation coefficient.

3.4. Changes in the Serum Levels of 25OHD and PTH

Paired sample t-tests showed a significant difference in the follow-up mean 25OHD
and PTH levels among participants of the D3 group (41.39 ± 12.19 vs. 16.41 ± 4.99 and
16.69 ± 8.72 vs. 37.88 ± 6.82, PA < 0.001, respectively). Independent sample t-tests
determined significant differences in 25OHD and PTH levels between the control and D3
groups. There were significant differences in serum 25OHD and PTH between the control
and D3 group at follow-up (17.31± 6.74 vs. 41.39 ± 12.19 and 33.85 ± 10.62 vs. 16.69 ± 8.72,
PC < 0.001, respectively, PC < 0.001), as shown in Table 6.

Table 6. Changes in the serum levels of 25OHD and PTH.

Variable Group Control D3 p-Value

25OHD

Baseline 18.42 ± 7.36 16.41 ± 4.99 PB = 0.163
Follow-up 17.31 ± 6.74 41.39 ± 12.19 PC < 0.001

Change −1.11 24.98
PA 0.062 <0.001

PTH

Baseline 36.75 ± 8.49 37.88 ± 6.82 PB = 0.524
Follow-up 33.85 ± 10.62 16.69 ± 8.72 PC < 0.001

Change −2.90 −21.19
PA 0.052 <0.001

Abbreviations: PA, p-value for paired sample t-test; PB, p-value for two independent sample t-tests at baseline;
PC, p-value for two independent sample t-test at follow-up; CV%, the coefficient of variation; D3, vitamin D3
supplementation group; PTH, para thyroid hormone; 25OHD, 25hydroxy vitamin d.

3.5. Changes in the Serum Levels of Selected Cytokines Associated with Cytokine Storm at Baseline
and 10-Week Follow-Up

At the end of this study, a paired t-test showed a significant difference in mean IL-1β,
IL-6, and IL-10 levels. Mean IL-1β significantly increased with a change to 4.41 ng/mL
(7.63 ± 2.36 vs. 3.22 ± 0.99, PA < 0.001) in the D3 group. The application of the sta-
tistically independent t-test showed a significant difference in mean IL-1β between D3
and the control group (3.59 ± 2.71 vs. 7.63 ± 2.36, PC < 0.001). There was a significant
change between the mean IL-6 at baseline and follow-up among those in the D3 group
(5.5 ± 6.51 vs. 26.99 ± 14.47, PC < 0.001). At the 10-week follow-up, mean IL-10 levels were
significantly increased with a change to 2.45 ng/mL (2.01 ± 0.59 vs. 4.46 ± 4.67, PA = 0.001)
in the D3 group. IL-10 levels were significantly higher in the D3 group compared with
the control group, 4.46 ± 4.67 and 2.39 ± 1.39, respectively, with a p-value of PC = 0.016.
Table 7 presents the baseline results and follow-up changes of the clinical variables studied
in this trial.
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Table 7. Changes in the serum levels of selected cytokines associated with cytokine storm at baseline
and 10-week follow-up.

Variable Group Control D3 p-Value

IL-1β
(pg/mL)

Baseline 3.27 ± 1.37 3.22 ± 0.99 PB = 0.852
Follow-up 3.59 ± 2.71 7.63 ± 2.36 PC < 0.001

Change 0.32 4.41
PA 0.574 <0.001

IL-6
(pg/mL)

Baseline 4.55 ± 2.62 5.5 ± 6.51 PB = 0.431
Follow-up 4.85 ± 4.84 26.99 ± 14.47 PC < 0.001

Change 0.30 21.49
PA 0.750 <0.001

TNF-α
(pg/mL)

Baseline 31.16 ± 5.22 33.34 ± 6.36 PB = 0.116
Follow-up 33.65 ± 5.15 33.50 ± 6.18 PC = 0.910

Change 2.49 0.16
PA 0.100 0.899

IL-10
(pg/mL)

Baseline 2.20 ± 0.52 2.01 ± 0.59 PB = 0.159
Follow-up 2.39 ± 1.39 4.46 ± 4.67 PC = 0.016

Change 0.20 2.45
PA 0.433 0.001

Abbreviations: PA, p-value for paired sample t-test; PB, p-value for two independent sample t-test at baseline;
PC, p-value for two independent sample t-test at follow-up of trial.

3.6. Stepwise Regression Analysis

The multivariate stepwise regression analysis revealed significant mediating factors
(IDVs) on the circulatory levels of selected cytokines associated with CS at the 10-week
follow-up supplementation of VD3 50,000 IU once a week. TNF levels were only mediated
by age factor (R = 0.413, R2 = 0.170, p = 0.007). Changes in IL-1 level values observed
in the VD3 interventional group were significantly mediated by body weight (R = 0.311,
R2 = 0.097, p = 0.045).

Regarding the TNF/IL-10 ratio, WHR only was selected by the stepwise regression
model among all IVDs to be involved in the positive relationship between elevated 25OHD
levels and the TNF/IL-10 ratio (R = 0.348, R2 = 0.121, p = 0.024), as observed in Table 8.

Table 8. Significant correlations of cytokine and ratio levels with trial variables at follow-up.

Dependent
Variable

Univariate Effect
Estimate

Coefficient
B F R R2 p-Value

TNF-α Age 0.257 8.220 0.413 0.170 0.007
IL-1β Weight 0.053 4.294 0.311 0.097 0.045

TNF-α /IL10 WHR 0.348 5.200 0.348 0.121 0.024
Abbreviations: WHR, waist/hip ratio.

4. Discussion

At the end of the trial, high doses of VD3 supplementation (50,000 IU/week) signifi-
cantly increased serum IL-6, IL-1β, and IL-10 levels. These findings may refer to potential
adverse effects during CS. High doses of VD3 significantly raised IL-6 levels, an important
marker since an increase in its concentration is associated with an increase in the levels of
CS. These findings confirmed that high or/and extensive doses of VD3 may potentially
affect proinflammatory immune responses [21]. It has been demonstrated that 25OHD
levels are lower in patients with many inflammatory diseases [22,23]. Further, inconclusive
findings on the effects of VD3 supplementation for inflammatory conditions, including
cytokines changes, were noted.

Results of the current trial were consistent with a prior RCT [24], showing that daily
supplementation with 2000 IU of VD3 from baseline to 1 year had an 8% increase in IL-6
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concentration in the intervention group compared with the placebo. Elevated IL-6 was
also detected in children with multiple sclerosis who received VD3 [25]. Remarkably, the
IL-10 findings of this trial were also consistent with other research reporting an elevation
in IL-10 with no changes in IFN-γ levels in VD3-supplemented individuals [26]. Another
study [27] also reported that after 6 months of VD3 supplementation, the levels of IL-6
were significantly elevated compared with baseline.

Previous clinical trials have typically been conducted under a treatment protocol close
to or similar to our protocol, but they have been scarce. After extensive review, some clinical
research studies were conducted under a protocol similar to this trial: four trials. In a trial
conducted for 12 weeks on early chronic kidney disease [28], there were no changes in IL-6
levels. Conversely, dialysis patients, also studied for 12 weeks [29], showed a significant
decrease in IL-6.

Patients with chronic renal impairment, such as hemodialysis patients, have elevated
plasma IL-6 levels due to chronic inflammation and fluid overload. Reduced IL-6 clearance
is noted with compromised kidney function, contributing to its retention. Therapeutic
hemodialysis triggers inflammatory responses and increases IL-6 production [30,31].

The same dose of VD3 (50,000 IU per week) for 12 weeks lowered IL-6 levels in another
RCT that aimed to examine the effect of VD3 and omega-3 fatty acid cosupplementation as
an adjuvant chemotherapy [32].

It is important to note here that the observations of Al-Haidari and Khalighi were
from trials conducted on patients under the influence of the treatment protocol for chronic
diseases. In the Khalighi trial, all IBS patients received antispasmodic medication (Mebev-
erine, 135 mg twice daily) besides VD3 supplementation. Previous research has shown
that the level of IL-6 in patients with diarrhea-predominant IBS was much greater than in
healthy controls [33]. Therefore, the independent effect of VD3 supplementation on IL-6
has not been accurately evaluated.

Some studies have linked changes in the serum levels of IFN-γ and IL-10 observed after
VD3 supplementation to the severity of VDD [34], suggesting that VD3 supplementation
exerts the most influence on human immunity in the context of severe VDD. This is in
contrast to many observational studies that support a potential inhibitory effect of VD3
supplementation on proinflammatory cytokines such as IL-6, IL-1β or/and TNF levels [35].
The effects of VD3 supplementation on human immunology have now been evaluated
by large-scale RCTs that reported an absence of any effect of VD3 supplementation on
IL-6 [36,37]. Notably, the majority of data are from Western countries. Ours is the first study
to examine the effects of VD3 supplementation on the levels of CS-associated cytokines in
the bloodstream of Jordanians with VDD. Similarly, VDD has been associated with elevated
IL-6 levels [38], and VD3 downregulated IL-6 in some studies [39,40]. Contradictory results
regarding IL-6 may be attributable to assessing the effects of VD3 supplementation on
these cytokines in specific populations, multiple confounders, and discrepancies between
research. These confounders include the duration and amount of VD3 supplementation,
genetic background of patients, underlying clinical problems, impact of clinical therapy,
and degree of VDD and insufficiency at baseline.

RCTs conducted on diabetic hemodialysis (HD) patients [41] or postmenopausal
women without VDD [42] have revealed inconsistent results. Remarkably, results were
quite different when smaller doses of VD3 over longer durations were used.

Considering the impact of a given dose in the different protocols, past clinical trials
utilized different doses and durations of VD3 supplementation. Studies have shown that
the effects of VD3 on reducing systemic inflammation may be greater in people who
are overweight and have chronic inflammation and with more prolonged use [43,44].
Circulating IL-6 increases with age, BMI, and percentage of body fat mass. These factors
such as being overweight with a slight elevation in serum leptin (approximately 8 ng/mL)
and a mean age of around 40 years were detected in this trial. Nevertheless, stepwise
regression did not show significant effects for these factors to be potential mediators in the
association between 25OHD and IL-6 levels.
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On the other hand, age and body weight factors are separately involved in the associ-
ation between 25OHD and other proinflammatory cytokines (IL-1β and TNF). Elevated
IL-6 and other cytokines observed in this trial contradict our previous hypothesis and
are challenging to explain biologically. Considering whether the study sample is healthy
people or patients, the effect of VD3 on those cytokines seems to be influenced by several
factors, including baseline 25OHD levels and the dose, duration, and treatment protocol
of VD3 [4,45]. The National Academy of Medicine of the U.S. deems a 600–800 IU VD
daily intake adequate for most of the population. However, the U.S. Endocrine Society
suggests daily 1500–2000 IU [46]. A total of 400 IU VD3 per day was suggested to treat
individuals aged between 18 and 28 years [47]. This dose is approximately one-tenth the
dose used in this trial, which is the most common treatment protocol in Jordan for patients
with VDD. In the same context, 4000 IU VD3/day is the dose at which the risk of toxicity
increases [48]. Therefore, a U-shaped association between serum 25OHD level and CVD
risk has been proposed [49,50].

Further, the presence or absence of typical risk factors did not obscure the U-shape
association [50]. Therefore, a U-shape association with extreme fluctuations in serum
25OHD levels may influence cytokine levels via its effects on the expression of their re-
ceptors. In this manner, we can explain the unexpected findings shown in this trial and
previously [24]. Converse to previous studies and RCTs that reported the presence of a
hypercytokiemia-reducing effect in VD3 therapy, Costenbader showed that an extensive
VD3 dosage (2000 IU/day over 1 year) elevated 8% of IL-6 levels. According to these
findings, high or/and extensive doses of these supplements, which are widespread in the
community and a part of COVID-19 protocol treatment, require reconsideration, particu-
larly during CS. Hence, it is improbable that these data can answer crucial issues about
the possible effects of these supplements on the inflammatory pathway, even though they
are frequently consumed by the general population [24]. Instead, it may induce a hyper-
sensitive reaction accompanied by acute harmful consequences in people at risk of acute
respiratory distress syndrome (ARDS), as observed in COVID-19 patients [51].

Although it has been established that VD3 supplementation reduces the incidence
of influenza A [52], large amounts of IL-6 and IL-1β have been observed during CS [53].
There is new evidence that VDD is connected with higher levels of IL-6 in HIV patients [54].
There is currently no explanation for the variance in CS severity across COVID-19 patients.
Accordingly, the results of this trial may point to a potential role for the sudden onset of
25OHD levels caused by high doses of VD3 supplements for this severity.

Another piece of evidence that came from a recent study showed that VD3 and
IL-6 blockade (Tocilizumab) synergistically regulate rheumatoid arthritis by suppressing
IL-17 [55]. Intriguingly, in the absence of serum VD3, the expression of IL-17A exhibited a
positive feedback impact on the expression of IL-6. In contrast, under adequate conditions,
IL-10 expression negatively impacted IL-17A and IL-6 expression; it raised the level of
IL-10 mRNA expression in all groups. However, these effects were more pronounced in
people with multiple sclerosis (MS). Eight weeks of treatment with 50,000 IU VD3 led to the
downregulation of IL-6 and overexpression of IL-10 in 80% of MS patients [44]. Before this
evidence, VD3 acted in synergy with Toll-like receptor (TLR) agonists and peptidoglycan
(PGN) in inducing IL-6 and IL-10, whereas VD3 completely inhibited lipopolysaccharide
(LPS) [55,56]. IL-6 and TGF-b may both have a role in developing Th17 cells that may
play a vital function in antimicrobial immunity at mucosal barriers [57]. In response to
the TLR activation of dendritic cells (DCs), it is well known that IL-6 blocks the inhibitory
action of CD4, CD25, and regulatory T cells. It may interact with innate and adaptive
immune responses [58].

Nevertheless, IL-6 decreases DC maturation and chemokine-receptor 7 expressions
and may sometimes operate as an anti-inflammatory modulator [59]. Instead of exerting
a general inhibitory impact on DCs, it has been suggested that VD3 promotes a delicate
immunomodulation that inhibits adaptive immune responses while increasing innate
immunological processes [60,61]. It is difficult to draw firm conclusions from this study
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due to its small sample size. Confirming these results, validating the reported cytokines
as biomarkers of VD-mediated immune responses, and establishing the linkages between
crucial immunological pathways and clinical outcomes all call for a larger clinical trial.

Contraindicating results might contribute to the varying doses and durations of VD3
supplements used in past trials. Therefore, based on the U-shaped curve, we hypothesize
that high or extensive doses of VD3 may worsen serum cytokines associated with CS.

5. Conclusions

High doses of VD3 significantly raised IL-6 levels, which is an essential marker since
elevated levels are linked to an increase in the severity of cytokine storms. Although
the observations of this trial may refer to a potential negative effect of high-dose VD3
supplementation during a cytokine storm, careful implications are recommended, as
this study did not investigate all cytokines involved in the cytokine storm. Accordingly,
further trials are required to clarify the potential benefits of VD3 supplementation during a
cytokine storm.
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