The Fruit Intake–Adiposity Paradox: Findings from a Peruvian Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Population and Sample
2.3. Definition of Variables
2.4. Statistical Analysis
2.5. Ethical Aspect
3. Results
4. Discussion
4.1. Main Findings
4.2. Comparison with Other Studies
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, V.S.; Willet, W.C.; Hu, F.B. Nearly a decade on—Trends, risk factors and policy implications in global obesity. Nat. Rev. Endocrinol. 2020, 16, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Healthy Diet [Internet]. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 3 January 2023).
- Wilunda, C.; Sawada, N.; Goto, A.; Yamaji, T.; Takachi, R.; Ishihara, J.; Mori, N.; Kotemori, A.; Iwasaki, M.; Tsugane, S. Associations between changes in fruit and vegetable consumption and weight change in Japanese adults. Eur. J. Nutr. 2021, 60, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Nour, M.; Lutze, S.A.; Grech, A.; Allman-Farinelli, M. The Relationship between Vegetable Intake and Weight Outcomes: A Systematic Review of Cohort Studies. Nutrients 2018, 10, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [Green Version]
- Wolniczak, I.; Cáceres-DelAguila, J.A.; Maguiña, J.L.; Bernabe-Ortiz, A. Fruits and vegetables consumption and depressive symptoms: A population-based study in Peru. PLoS ONE 2017, 12, e0186379. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, D.; Jiang, X.; Jiang, W. Fruit and vegetable consumption and risk of type 2 diabetes mellitus: A dose-response meta-analysis of prospective cohort studies. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 140–147. [Google Scholar] [CrossRef]
- Kovalskys, I.; Rigotti, A.; Koletzko, B.; Fisberg, M.; Gómez, G.; Herrera-Cuenca, M.; Sanabria, L.Y.C.; García, M.C.Y.; Pareja, R.G.; Zimberg, I.Z.; et al. Latin American consumption of major food groups: Results from the ELANS study. PLoS ONE 2019, 14, e0225101. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, O.I.; Tucker, K.L. Trends in dietary patterns of Latin American populations. Cad. Saúde Pública 2003, 19, S87–S99. [Google Scholar] [CrossRef]
- Kaiser, K.A.; Brown, A.W.; Brown, M.M.B.; Shikany, J.M.; Mattes, R.D.; Allison, D.B. Increased fruit and vegetable intake has no discernible effect on weight loss: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Kalle-Uhlmann, T.; Arregui, M.; Buijsse, B.; Boeing, H. Fruit and Vegetable Consumption and Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. PLoS ONE 2015, 10, e0140846. [Google Scholar] [CrossRef]
- Ledoux, T.A.; Hingle, M.D.; Baranowski, T. Relationship of fruit and vegetable intake with adiposity: A systematic review. Obes. Rev. 2011, 12, e143–e150. [Google Scholar] [CrossRef]
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22, s176–s185. [Google Scholar]
- Wong, M.C.S.; Huang, J.; Wang, J.; Chan, P.S.F.; Lok, V.; Chen, X.; Leung, C.; Wang, H.H.X.; Lao, X.Q.; Zheng, Z.-J. Global, regional and time-trend prevalence of central obesity: A systematic review and meta-analysis of 13.2 million subjects. Eur. J. Epidemiol. 2020, 35, 673–683. [Google Scholar] [CrossRef]
- Wang, Y.; Beydoun, M.A.; Min, J.; Xue, H.; Kaminsky, L.A.; Cheskin, L.J. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int. J. Epidemiol. 2020, 49, 810–823. [Google Scholar] [CrossRef]
- Arribas-Harten, C.; Battistini-Urteaga, T.; Rodriguez-Teves, M.G.; Bernabe-Ortiz, A. Asociación entre obesidad y consumo de frutas y verduras: Un estudio de base poblacional en Perú. Rev. Chil. Nutr. 2015, 42, 241–247. [Google Scholar] [CrossRef]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.-Y.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [Green Version]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; en nombre de la Iniciativa STROBE. Declaración de la Iniciativa STROBE (Strengthening the Reporting of Observational studies in Epidemiology): Directrices para la comunicación de estudios observacionales. The Strengthening the Reporting of Observational Studies in Epidemiology [STROBE] statement: Guidelines for reporting observational studies. Gac. Sanit. 2008, 22, 144–150. [Google Scholar]
- Instituto Nacional de Estadística e Informática. Manual de la Antropometrista. Encuesta Demográfica y de Salud Familiar; Instituto Nacional de Estadística e Informática: Lima, Peru, 2019. [Google Scholar]
- PRISMA (Ed.) Medidas Caseras Laminario; PRISMA: Lima, Peru, 1997; 108p. [Google Scholar]
- Instituto Nacional de Estadística e Informática. Manual de la Entrevistadora. Encuesta Demográfica y de Salud Familiar; Dirección Nacional de Censos y Encuestas: Lima, Peru, 2021. [Google Scholar]
- Yu, Z.M.; DeClercq, V.; Cui, Y.; Forbes, C.; Grandy, S.; Keats, M.; Parker, L.; Sweeney, E.; Dummer, T.J.B. Fruit and vegetable intake and body adiposity among populations in Eastern Canada: The Atlantic Partnership for Tomorrow’s Health Study. BMJ Open 2018, 8, e018060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becerra-Tomás, N.; Paz-Graniel, I.; Tresserra-Rimbau, A.; Martínez-González, M.; Barrubés, L.; Corella, D.; Muñoz-Martínez, J.; Romaguera, D.; Vioque, J.; Alonso-Gómez, M.; et al. Fruit consumption and cardiometabolic risk in the PREDIMED-plus study: A cross-sectional analysis. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1702–1713. [Google Scholar] [CrossRef] [PubMed]
- Drapeau, V.; Harvey, A.-A.; Jacob, R.; Provencher, V.; Panahi, S. The impact of a family web-based nutrition intervention to increase fruit, vegetable, and dairy intakes: A single-blinded randomized family clustered intervention. Nutr. J. 2022, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, S.; Wang, L.; Lee, I.-M.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Higher Intake of Fruit, but Not Vegetables or Fiber, at Baseline Is Associated with Lower Risk of Becoming Overweight or Obese in Middle-Aged and Older Women of Normal BMI at Baseline. J. Nutr. 2015, 145, 960–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romaguera, D.; Ängquist, L.; Du, H.; Jakobsen, M.U.; Forouhi, N.; Halkjær, J.; Feskens, E.; Van Der, A.D.L.; Masala, G.; Steffen, A.; et al. Food Composition of the Diet in Relation to Changes in Waist Circumference Adjusted for Body Mass Index. PLoS ONE 2011, 6, e23384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Koning, L.; Merchant, A.T.; Pogue, J.; Anand, S.S. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: Meta-regression analysis of prospective studies. Eur. Heart J. 2007, 28, 850–856. [Google Scholar] [CrossRef]
- Saghafian, F.; Malmir, H.; Saneei, P.; Milajerdi, A.; Larijani, B.; Esmaillzadeh, A. Fruit and vegetable consumption and risk of depression: Accumulative evidence from an updated systematic review and meta-analysis of epidemiological studies. Br. J. Nutr. 2018, 119, 1087–1101. [Google Scholar] [CrossRef] [Green Version]
- Akhtar-Danesh, N.; Dehghan, M. Association between fruit juice consumption and self-reported body mass index among adult Canadians. J. Hum. Nutr. Diet 2010, 23, 162–168. [Google Scholar] [CrossRef]
- Pereira, M.A.; Fulgoni, V.L. Consumption of 100% Fruit Juice and Risk of Obesity and Metabolic Syndrome: Findings from the National Health and Nutrition Examination Survey 1999–2004. J. Am. Coll. Nutr. 2010, 29, 625–629. [Google Scholar] [CrossRef]
- Xi, B.; Li, S.; Liu, Z.; Tian, H.; Yin, X.; Huai, P.; Tang, W.; Zhou, D.; Steffen, L.M. Intake of Fruit Juice and Incidence of Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e93471. [Google Scholar] [CrossRef] [Green Version]
- Dreher, M.L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, 10, 1833. [Google Scholar] [CrossRef] [Green Version]
- Bueno, D.R.; Marucci, M.D.F.N.; Gouveia, L.A.; Duarte, Y.A.D.O.; Lebrão, M.L. Abdominal obesity and healthcare costs related to hypertension and diabetes in older adults. Rev. Nutr. 2017, 30, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Cai, L.; Cui, W.; Wang, G.; He, J.; Golden, A. Economic burden of obesity and four obesity-related chronic diseases in rural Yunnan Province, China. Public Health 2018, 164, 91–98. [Google Scholar] [CrossRef]
- Cawley, J.; Meyerhoefer, C.; Biener, A.; Hammer, M.; Wintfeld, N. Savings in Medical Expenditures Associated with Reductions in Body Mass Index Among US Adults with Obesity, by Diabetes Status. Pharmacoeconomics 2015, 33, 707–722. [Google Scholar] [CrossRef] [Green Version]
- Fallah-Fini, S.; Adam, A.; Cheskin, L.J.; Bartsch, S.M.; Lee, B.Y. The Additional Costs and Health Effects of a Patient Having Overweight or Obesity: A Computational Model. Obesity 2017, 25, 1809–1815. [Google Scholar] [CrossRef] [Green Version]
- Graziose, M.M.; Koch, P.A.; Wang, Y.C.; Gray, H.L.; Contento, I.R. Cost-effectiveness of a Nutrition Education Curriculum Intervention in Elementary Schools. J. Nutr. Educ. Behav. 2017, 49, 684–691. [Google Scholar] [CrossRef]
- Heo, M.; Kim, R.S.; Wylie-Rosett, J.; Allison, D.; Heymsfield, S.B.; Faith, M.S. Inverse association between fruit and vegetable intake and BMI even after controlling for demographic, socioeconomic and lifestyle factors. Obes. Facts 2011, 4, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Riley, L.; Guthold, R.; Cowan, M.; Savin, S.; Bhatti, L.; Armstrong, T.; Bonita, R. The World Health Organization STEPwise Approach to Noncommunicable Disease Risk-Factor Surveillance: Methods, Challenges, and Opportunities. Am. J. Public Health 2016, 106, 74–78. [Google Scholar] [CrossRef]
Characteristics | n (%Weighted) | ||
---|---|---|---|
Total 98,471 (100.0) | Masculine 43,113 (45.6) | Feminine 55,358 (54.4) | |
Categorized Age | |||
15 to 35 years old | 45,636 (38.6) | 18,349 (38.6) | 27,287 (38.7) |
36 to 59 years old | 38,381 (41.1) | 18,004 (41.3) | 20,377 (41.0) |
60 to 69 years old | 8015 (11.3) | 3707 (11.1) | 4308 (11.6) |
70 years old or more | 6439 (8.9) | 3053 (9.0) | 3386 (8.8) |
Natural region | |||
Metropolitan Lima | 39,153 (33.6) | 5108 (34.0) | 6283 (33.3) |
rest of coast | 27,256 (25.2) | 12,044 (25.5) | 15,513 (24.9) |
mountains | 25,950 (27.6) | 15,475 (26.5) | 20,645 (28.5) |
Jungle | 13,152 (13.6) | 10,486 (14.0) | 12,917 (13.2) |
Education Level | |||
No level | 179 (0.2) | 50 (0.1) | 129 (0.3) |
Primary | 22,556 (20.9) | 9269 (18.5) | 13,287 (22.8) |
Secondary | 43,953 (42.7) | 20,651 (46.4) | 23,302 (39.7) |
Higher No specified | 27,716 (32.3) 4067 (3.9) | 12,522 (33.8) 621 (1.2) | 15,194 (31.1) 3446 (6.1) |
Wealth index | |||
The poorest | 31,899 (21.7) | 14,306 (22.1) | 17,593 (21.4) |
Poor | 24,790 (21.2) | 10,830 (21.7) | 13,960 (20.8) |
Medium | 18,011 (20.0) | 7675 (19.6) | 10 336 (20.3) |
Rich | 13,690 (18.7) | 5839 (18.0) | 7851 (19.3) |
Richest | 10,081 (18.4) | 4463 (18.6) | 5618 (18.2) |
Smoke daily | |||
Yes No | 1090 (1.4) 97,381 (98.6) | 882 (2.4) 42,231 (97.6) | 208 (0.5) 55,150 (99.5) |
Alcohol consumption | |||
Yes No | 8071 (10.2) 90,358 (89.8) | 5992 (15.8) 37,121 (84.2) | 2079 (5.5) 53,279 (95.5) |
History of hypertension | |||
Yes No No specified | 8142 (10.9) 90,231 (89.0) 98 (0.1) | 3067 (9.1) 40,011 (90.8) 35 (0.1) | 5075 (12.5) 50,220 (87.4) 63 (0.1) |
History of DM2 | |||
Yes No No specified | 3223 (4.8) 95,140 (95.1) 108 (0.1) | 1329 (4.4) 41,743 (95.5) 35 (0.1) | 1894 (5.1) 53,397 (94.8) 67 (0.1) |
Body Mass Index (kg/m2) * | 27.3 (4.9) | 26.6 (4.5) | 27.7 (5.1) |
Waist circumference (cm) * | 58.7 (8.2) | 56.5 (7.3) | 60.6 (8.4) |
Fruit intake (portion) * | 1.4 (1.3) | 1.5 (1.4) | 1.4 (1.3) |
Fruit intake (juices) * | 1.5 (0.8) | 1.6 (0.8) | 1.5 (0.7) |
Fruit intake (salad) * | 1.2 (0.6) | 1.2 (0.6) | 1.2 (0.5) |
Body Mass Index | p | Waist Circumference | p | |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
Sex * | ||||
Masculine | 26.7 ± 4.5 | <0.001 | 56.5 ± 7.3 | <0.001 |
Feminine | 27.7 ± 5.1 | 60.6 ± 8.4 | ||
Categorized age ** | ||||
15 to 35 years old | 26.0 ± 4.8 | <0.001 | 54.7 (7.5) | <0.001 |
35 to 60 years old | 28.5 ± 4.8 | 60.8 (7.3) | ||
60 to 69 years old | 27.9 ± 4.8 | 62.4 (7.8) | ||
70 years old or more | 26.5 ± 4.6 | 61.8 (7.9) | ||
Natural region ** | ||||
Metropolitan Lima | 27.8 ± 5.1 | <0.001 | 59.1 ± 8.3 | <0.001 |
rest of coast | 28.0 ± 5.0 | 59.7 ± 8.2 | ||
Mountains | 26.2 ± 4.4 | 57.7 ± 7.8 | ||
Jungle | 26,6 ± 4.7 | 57.6 ± 7.8 | ||
Education Level ** | ||||
No level | 26.4 ± 4.3 | <0.001 | 61.4 ± 7.9 | <0.001 |
Primary | 27.3 ± 4.8 | 61.0 ± 8.1 | ||
Secondary | 27.2 ± 5.0 | 57.9 ± 8.4 | ||
Higher | 27.5 ± 4.8 | 58.6 ± 8.1 | ||
Wealth index ** | ||||
the poorest | 25.6 ± 4.3 | <0.001 | 57.1 ± 7.7 | <0.001 |
Poor | 27.2 ± 4.8 | 58.8 ± 8.2 | ||
Medium | 27.9 ± 5.1 | 59.5 ± 8.4 | ||
Rich | 28.0 ± 5.0 | 59.5 ± 8.2 | ||
Richest | 27.7 ± 5.0 | 58.7 ± 8.2 | ||
Smoke daily * | ||||
Yes | 27.3 ± 5.1 | <0.001 | 57.2 ± 7.9 | <0.001 |
No | 27.2 ± 4.9 | 58.7 ± 8.2 | ||
Alcohol consumption * | ||||
Yes | 27.6 ± 4.9 | <0.001 | 57.5 ± 7.5 | <0.001 |
No | 27.2 ± 4.9 | 58.8 ± 8.2 | ||
History of hypertension * | ||||
Yes | 29.3 ± 5.7 | <0.001 | 64.0 ± 8.0 | <0.001 |
No | 27.0 ± 4.8 | 58.1 ± 7.9 | ||
History of DM2 * | ||||
Yes | 29.1 ± 5.1 | <0.001 | 63.6 ± 7.8 | <0.001 |
No | 27.2 ± 4.7 | 58.5 ± 8.1 |
Characteristics | Crude Analysis | Adjusted Analysis * | ||||
---|---|---|---|---|---|---|
Coeff. Beta Crude | CI 95% | p | Coeff. Beta Adjusted | CI 95% | p | |
Body Mass Index | ||||||
Fruit intake (portion) | −0.14 | −0.17 to −0.11 | <0.001 | −0.15 | −0.24 to −0.07 | <0.001 |
Fruit intake (juices) | 0.10 | 0.02 to 0.16 | <0.001 | 0.27 | 0.14 to 0.40 | <0.001 |
Fruit intake (salad) | −0.17 | −0.32 to 0.03 | <0.001 | −0.10 | −0.28 to 0.08 | 0.257 |
Waist circumference | ||||||
Fruit intake (portion) | −0.50 | −0.55 to −0.46 | <0.001 | −0.40 | −0.52 to −0.27 | <0.001 |
Fruit intake (juices) | −0,23 | −0.34 to −0.12 | <0.001 | 0.40 | 0.20 to 0.60 | <0.001 |
Fruit intake (salad) | 0.39 | −0.63 to −0.14 | 0.002 | −0.28 | −0.56 to −0.01 | 0.045 |
Characteristics | Crude Analysis | Adjusted Analysis * | ||||
---|---|---|---|---|---|---|
Coeff. Beta Crude | CI 95% | p | Coeff. Beta Adjusted | CI 95% | p | |
Body Mass Index | ||||||
Fruit intake (≥3 portions) | −0.14 | −0.17 to −0.11 | <0.001 | −0.24 | −0.32 to −0.17 | <0.001 |
Fruit intake (<3 portions) | Ref | |||||
Waist circumference | ||||||
Fruit intake (≥3 portions) | −0.50 | −0.55 to −0.46 | <0.001 | −0.60 | −0.72 to −0.47 | <0.001 |
Fruit intake (<3 portions) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra Valencia, J.; Ramos, W.; Cruz-Ausejo, L.; Torres-Malca, J.R.; Loayza-Castro, J.A.; Zeñas-Trujillo, G.Z.; Guillen Ponce, N.R.; Zuzunaga-Montoya, F.E.; Valladares-Garrido, M.J.; Vera-Ponce, V.J.; et al. The Fruit Intake–Adiposity Paradox: Findings from a Peruvian Cross-Sectional Study. Nutrients 2023, 15, 1183. https://doi.org/10.3390/nu15051183
Guerra Valencia J, Ramos W, Cruz-Ausejo L, Torres-Malca JR, Loayza-Castro JA, Zeñas-Trujillo GZ, Guillen Ponce NR, Zuzunaga-Montoya FE, Valladares-Garrido MJ, Vera-Ponce VJ, et al. The Fruit Intake–Adiposity Paradox: Findings from a Peruvian Cross-Sectional Study. Nutrients. 2023; 15(5):1183. https://doi.org/10.3390/nu15051183
Chicago/Turabian StyleGuerra Valencia, Jamee, Willy Ramos, Liliana Cruz-Ausejo, Jenny Raquel Torres-Malca, Joan A. Loayza-Castro, Gianella Zulema Zeñas-Trujillo, Norka Rocío Guillen Ponce, Fiorella E. Zuzunaga-Montoya, Mario J. Valladares-Garrido, Víctor Juan Vera-Ponce, and et al. 2023. "The Fruit Intake–Adiposity Paradox: Findings from a Peruvian Cross-Sectional Study" Nutrients 15, no. 5: 1183. https://doi.org/10.3390/nu15051183
APA StyleGuerra Valencia, J., Ramos, W., Cruz-Ausejo, L., Torres-Malca, J. R., Loayza-Castro, J. A., Zeñas-Trujillo, G. Z., Guillen Ponce, N. R., Zuzunaga-Montoya, F. E., Valladares-Garrido, M. J., Vera-Ponce, V. J., & De La Cruz-Vargas, J. A. (2023). The Fruit Intake–Adiposity Paradox: Findings from a Peruvian Cross-Sectional Study. Nutrients, 15(5), 1183. https://doi.org/10.3390/nu15051183