Severity of Liver Fibrosis Is Associated with the Japanese Diet Pattern and Skeletal Muscle Mass in Patients with Nonalcoholic Fatty Liver Disease
(This article belongs to the Section Nutrition and Metabolism)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Patient Characteristics
2.3. Alcohol Intake Screening
2.4. Assessment of Liver Fibrosis Risk
2.5. Food and Nutrient Intake Survey and Calculation of mJDI12
2.6. Assessment of Body Weight and Body Composition
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics and Laboratory Data Related to Liver Status
3.2. Patient Characteristics Grouped by the Agile 3+ Score Risk
3.3. Comparison of mJDI12 and its Component Intake in Patients, Grouped by the Agile 3+ Score Risk
3.4. Relationship between mJDI12 and Nutrient Intake
3.5. Association between Intermediate–High-Risk Agile 3+ Scores, and mJDI12 and mJDI12 Components
3.6. Relationship between Intermediate–High-Risk Agile 3+ scores and Skeletal Muscle Mass
3.7. Relationship between Skeletal Muscle Mass, and mJDI12 and its Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powell, E.E.; Wong, V.W.S.; Rinella, M. Non-Alcoholic Fatty Liver Disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Dulai, P.S.; Singh, S.; Patel, J.; Soni, M.; Prokop, L.J.; Younossi, Z.; Sebastiani, G.; Ekstedt, M.; Hagstrom, H.; Nasr, P.; et al. Increased Risk of Mortality by Fibrosis Stage in Nonalcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. Hepatology 2017, 65, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-Term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Younossi, Z.M.; Henry, L. Epidemiology of Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma. JHEP Rep. 2021, 3, 100305. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Fujii, H.; Iwaki, M.; Hayashi, H.; Toyoda, H.; Oeda, S.; Hyogo, H.; Kawanaka, M.; Morishita, A.; Munekage, K.; Kawata, K.; et al. Clinical Outcomes in Biopsy-Proven Nonalcoholic Fatty Liver Disease Patients: A Multicenter Registry-Based Cohort Study. Clin. Gastroenterol. Hepatol. 2023, 21, 370–379. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Barbui, C. Non-Alcoholic Fatty Liver Disease and Risk of Incident Cardiovascular Disease: A Meta-Analysis. J. Hepatol. 2016, 65, 589–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, T.G.; Roelstraete, B.; Hagström, H.; Sundström, J.; Ludvigsson, J.F. Non-Alcoholic Fatty Liver Disease and Incident Major Adverse Cardiovascular Events: Results from a Nationwide Histology Cohort. Gut 2022, 71, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Koutoukidis, D.A.; Astbury, N.M.; Tudor, K.E.; Morris, E.; Henry, J.A.; Noreik, M.; Jebb, S.A.; Aveyard, P. Association of Weight Loss Interventions With Changes in Biomarkers of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2019, 179, 1262–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Corey, K.E.; Lim, J.K. AGA Clinical Practice Update on Lifestyle Modification Using Diet and Exercise to Achieve Weight Loss in the Management of Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2021, 160, 912–918. [Google Scholar] [CrossRef]
- Kamada, Y.; Takahashi, H.; Shimizu, M.; Kawaguchi, T.; Sumida, Y.; Fujii, H.; Seko, Y.; Fukunishi, S.; Tokushige, K.; Nakajima, A.; et al. Clinical Practice Advice on Lifestyle Modification in the Management of Nonalcoholic Fatty Liver Disease in Japan: An Expert Review. J. Gastroenterol. 2021, 56, 1045–1061. [Google Scholar] [CrossRef]
- Ma, J.; Hennein, R.; Liu, C.; Long, M.T.; Hoffmann, U.; Jacques, P.F.; Lichtenstein, A.H.; Hu, F.B.; Levy, D. Improved Diet Quality Associates With Reduction in Liver Fat, Particularly in Individuals With High Genetic Risk Scores for Nonalcoholic Fatty Liver Disease. Gastroenterology 2018, 155, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean Diet Improves Hepatic Steatosis and Insulin Sensitivity in Individuals with Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef]
- Suzuki, N.; Goto, Y.; Ota, H.; Kito, K.; Mano, F.; Joo, E.; Ikeda, K.; Inagaki, N.; Nakayama, T. Characteristics of the Japanese Diet Described in Epidemiologic Publications: A Qualitative Systematic Review. J. Nutr. Sci. Vitaminol. 2018, 64, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, S.; Kushida, M.; Iwagaki, Y.; Asano, M.; Yamamoto, K.; Tomata, Y.; Tsuji, I.; Tsuduki, T. The 1975 Type Japanese Diet Improves Lipid Metabolic Parameters in Younger Adults: A Randomized Controlled Trial. J. Oleo Sci. 2018, 67, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.S. Low Skeletal Muscle Mass Is Associated with Insulin Resistance, Diabetes, and Metabolic Syndrome in the Korean Population: The Korea National Health and Nutrition Examination Survey (KNHANES) 2009–2010. Endocr. J. 2014, 61, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Zelber-Sagi, S.; Lotan, R.; Shlomai, A.; Webb, M.; Harrari, G.; Buch, A.; Nitzan Kaluski, D.; Halpern, Z.; Oren, R. Predictors for Incidence and Remission of NAFLD in the General Population during a Seven-Year Prospective Follow-Up. J. Hepatol. 2012, 56, 1145–1151. [Google Scholar] [CrossRef]
- Lee, Y.H.; Jung, K.S.; Kim, S.U.; Yoon, H.J.; Yun, Y.J.; Lee, B.W.; Kang, E.S.; Han, K.H.; Lee, H.C.; Cha, B.S. Sarcopaenia Is Associated with NAFLD Independently of Obesity and Insulin Resistance: Nationwide Surveys (KNHANES 2008-2011). J. Hepatol. 2015, 63, 486–493. [Google Scholar] [CrossRef]
- Marchesini, G.; Day, C.P.; Dufour, J.F.; Canbay, A.; Nobili, V.; Ratziu, V.; Tilg, H.; Roden, M.; Gastaldelli, A.; Yki-Jarvinen, H.; et al. EASL–EASD–EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [Green Version]
- Fujii, H.; Nishimoto, N.; Yamaguchi, S.; Kurai, O.; Miyano, M.; Ueda, W.; Oba, H.; Aoki, T.; Kawada, N.; Okawa, K. The Alcohol Use Disorders Identification Test for Consumption (AUDIT-C) Is More Useful than Pre-Existing Laboratory Tests for Predicting Hazardous Drinking: A Cross-Sectional Study. BMC Public Health 2016, 16, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasso, M.; Audière, S.; Kemgang, A.; Gaouar, F.; Corpechot, C.; Chazouillères, O.; Fournier, C.; Golsztejn, O.; Prince, S.; Menu, Y.; et al. Liver Steatosis Assessed by Controlled Attenuation Parameter (CAP) Measured with the XL Probe of the FibroScan: A Pilot Study Assessing Diagnostic Accuracy. Ultrasound Med. Biol. 2016, 42, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Foucquier, J.; Younossi, Z.M.; Harrison, S.A.; Newsome, P.N.; Chan, W.-K.; Yilmaz, Y.; de Ledinghen, V.; Costentin, C.; Zheng, M.-H.; et al. Enhanced Diagnosis of Advanced Fibrosis and Cirrhosis in Individuals with NAFLD Using FibroScan-Based Agile Scores. J. Hepatol. 2023, 78, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, G.; Enea, M.; Pandolfo, A.; Celsa, C.; Antonucci, M.; Ciccioli, C.; Infantino, G.; la Mantia, C.; Parisi, S.; Tulone, A.; et al. AGILE 3+ Score for the Diagnosis of Advanced Fibrosis and for Predicting Liver-Related Events in NAFLD. Clin. Gastroenterol. Hepatol. 2022, 54, S17–S18. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of Relative Validity of Food Group Intakes Estimated by Comprehensive and Brief-Type Self-Administered Diet History Questionnaires against 16 d Dietary Records in Japanese Adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both Comprehensive and Brief Self-Administered Diet History Questionnaires Satisfactorily Rank Nutrient Intakes in Japanese Adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, Y.; Sugioka, Y.; Tada, M.; Okano, T.; Mamoto, K.; Inui, K.; Habu, D.; Koike, T. Monounsaturated Fatty Acids Might Be Key Factors in the Mediterranean Diet That Suppress Rheumatoid Arthritis Disease Activity: The TOMORROW Study. Clin. Nutr. 2018, 37, 675–680. [Google Scholar] [CrossRef]
- Zhang, S.; Otsuka, R.; Tomata, Y.; Shimokata, H.; Tange, C.; Tomida, M.; Nishita, Y.; Matsuyama, S.; Tsuji, I. A Cross-Sectional Study of the Associations between the Traditional Japanese Diet and Nutrient Intakes: The NILS-LSA Project. Nutr. J. 2019, 18, 43. [Google Scholar] [CrossRef] [Green Version]
- Tomata, Y.; Watanabe, T.; Sugawara, Y.; Chou, W.T.; Kakizaki, M.; Tsuji, I. Dietary Patterns and Incident Functional Disability in Elderly Japanese: The Ohsaki Cohort 2006 Study. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Crowder, S.L.; Li, Z.; Sarma, K.P.; Arthur, A.E. Chronic Nutrition Impact Symptoms Are Associated with Decreased Functional Status, Quality of Life, and Diet Quality in a Pilot Study of Long-Term Post-Radiation Head and Neck Cancer Survivors. Nutrients 2021, 13, 2886. [Google Scholar] [CrossRef]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the Rule of Ten Events per Variable in Logistic and Cox Regression. Am J Epidemiol 2007, 165, 710–718. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, R.B. Propensity Score Methods for Bias Reduction in the Comparison of a Treatment to a Non-Randomized Control Group. Stat. Med. 1998, 17, 2265–2281. [Google Scholar] [CrossRef]
- Imai, T.; Miyamoto, K.; Sezaki, A.; Kawase, F.; Shirai, Y.; Abe, C.; Fukaya, A.; Kato, T.; Sanada, M.; Shimokata, H. Traditional Japanese Diet Score—Association with Obesity, Incidence of Ischemic Heart Disease, and Healthy Life Expectancy in a Global Comparative Study. J. Nutr. Health Aging 2019, 23, 717–724. [Google Scholar] [CrossRef]
- Albano, E.; Mottaran, E.; Vidali, M.; Reale, E.; Saksena, S.; Occhino, G.; Burt, A.D.; Day, C.P. Immune Response towards Lipid Peroxidation Products as a Predictor of Progression of Non-Alcoholic Fatty Liver Disease to Advanced Fibrosis. Gut 2005, 54, 987–993. [Google Scholar] [CrossRef]
- Podszun, M.C.; Frank, J. Impact of Vitamin E on Redox Biomarkers in Non-Alcoholic Fatty Liver Disease. Redox Biol. 2021, 42, 101937. [Google Scholar] [CrossRef]
- de Oca, A.P.M.; Julián, M.T.; Ramos, A.; Puig-Domingo, M.; Alonso, N. Microbiota, Fiber, and NAFLD: Is There Any Connection? Nutrients 2020, 12, 3100. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F.H. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Kolodziejczyk, A.A.; Zheng, D.; Shibolet, O.; Elinav, E. The Role of the Microbiome in NAFLD and NASH. EMBO Mol. Med. 2019, 11, e9302. [Google Scholar] [CrossRef]
- O’Brien, A.; Williams, R. Nutrition in End-Stage Liver Disease: Principles and Practice. Gastroenterology 2008, 134, 1729–1740. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Shi, Q.; Liu, L.; Chen, L. Relationship of Sarcopenia with Steatohepatitis and Advanced Liver Fibrosis in Non-Alcoholic Fatty Liver Disease: A Meta-Analysis. BMC Gastroenterol. 2018, 18, 51. [Google Scholar] [CrossRef]
- Kim, G.; Lee, S.E.; Lee, Y.B.; Jun, J.E.; Ahn, J.; Bae, J.C.; Jin, S.M.; Hur, K.Y.; Jee, J.H.; Lee, M.K.; et al. Relationship Between Relative Skeletal Muscle Mass and Nonalcoholic Fatty Liver Disease: A 7-Year Longitudinal Study. Hepatology 2018, 68, 1755–1768. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, R.; Sakai, A.; Murayama, M.; Ochi, A.; Abe, T.; Hirasaka, K.; Ohno, A.; Teshima-Kondo, S.; Yanagawa, H.; Yasui, N.; et al. Effects of Dietary Soy Protein on Skeletal Muscle Volume and Strength in Humans with Various Physical Activities. J. Med. Invest. 2015, 62, 177–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himoto, T.; Miyatake, K.; Maeba, T.; Masaki, T. Verification of the Nutritional and Dietary Factors Associated with Skeletal Muscle Index in Japanese Patients with Nonalcoholic Fatty Liver Disease. Can. J. Gastroenterol. Hepatol. 2020, 2020, 3576974. [Google Scholar] [CrossRef] [PubMed]
- Amanat, S.; Eftekhari, M.H.; Fararouei, M.; Bagheri Lankarani, K.; Massoumi, S.J. Genistein Supplementation Improves Insulin Resistance and Inflammatory State in Non-Alcoholic Fatty Liver Patients: A Randomized, Controlled Trial. Clin. Nutr. 2018, 37, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ikaga, R.; Yamazaki, T. Soya Protein β-Conglycinin Ameliorates Fatty Liver and Obesity in Diet-Induced Obese Mice through the down-Regulation of PPARγ. Br. J. Nutr. 2018, 119, 1220–1232. [Google Scholar] [CrossRef] [Green Version]
- Davison, B.A.; Harrison, S.A.; Cotter, G.; Alkhouri, N.; Sanyal, A.; Edwards, C.; Colca, J.R.; Iwashita, J.; Koch, G.G.; Dittrich, H.C. Suboptimal Reliability of Liver Biopsy Evaluation Has Implications for Randomized Clinical Trials. J. Hepatol. 2020, 73, 1322–1332. [Google Scholar] [CrossRef]
Number of the Patients | 136 |
---|---|
Female | 67 (49) |
Age (years) | 60 (50, 70) |
BMI (kg/m2) | 26.8 (23.9, 29.8) |
Drinking habits | 62 (46) |
Body composition | |
Skeletal muscle mass (kg) | 24.7 (21.1, 29.9) |
Percent body fat (%) | 33.9 (27.8, 39.0) |
FibroScan data | |
Agile 3+ score | 0.29 (0.09, 0.61) |
Agile 3+ score risk (low/intermediate/high) | 90 (66)/19 (14)/27 (20) |
Liver stiffness measurement (kPa) | 6.35 (4.33, 9.70) |
Controlled attenuation parameter (dB/m) | 281 (248, 317) |
Laboratory data | |
AST (U/L) | 32 (24, 44) |
ALT (U/L) | 37 (23, 64) |
Platelets (104/μL) | 22.4 (18.4, 26.9) |
Comorbidity | |
Diabetes mellitus | 54 (40) |
Hypertension | 55 (40) |
Dyslipidemia | 86 (63) |
Medication status | |
Ursodeoxycholic acid | 29 (21) |
Calcium channel blocker | 30 (22) |
Angiotensin receptor blocker | 32 (24) |
Diuretic agent | 8 (6) |
HMG-CoA reductase inhibitor | 30 (22) |
Tocopherol acetate | 27 (20) |
Dipeptidyl peptidase-4 inhibitor | 35 (26) |
Sodium-glucose cotransporter 2 inhibitor | 29 (21) |
Biguanide | 12 (9) |
Hypouricemic agent | 25 (18) |
Low-Risk Agile 3+ Scores | Intermediate–High-Risk Agile 3+ Scores | p Value | Effect Size | |
---|---|---|---|---|
Number of the patients | 90 | 46 | - | - |
Female | 41 (46) | 26 (57) | 0.28 | 0.10 |
Age (years) | 57 (48, 64) | 72 (63, 75) | <0.001 | 0.43 |
BMI (kg/m2) | 26.3 (23.3, 28.7) | 28.0 (25.0, 31.2) | 0.02 | 0.20 |
Drinking habits | 46 (51) | 16 (35) | 0.10 | 0.16 |
Body composition | ||||
Skeletal muscle mass (kg) | 24.9 (21.3, 30.2) | 23.5 (20.7, 28.8) | 0.30 | 0.09 |
Percent body fat (%) | 32.4 (26.9, 39.1) | 35.9 (31.1, 38.9) | 0.15 | 0.12 |
FibroScan data | ||||
Agile 3+ score | 0.15 (0.06, 0.28) | 0.83 (0.59, 0.96) | <0.001 | 0.82 |
Liver stiffness measurement (kPa) | 5.10 (4.00, 7.10) | 12.3 (7.2, 19.3) | <0.001 | 0.64 |
Controlled attenuation parameter (dB/m) | 285 (247, 318) | 271 (248, 314) | 0.36 | 0.08 |
Laboratory data | ||||
AST (U/L) | 29 (23, 36) | 32 (22, 68) | 0.005 | 0.24 |
ALT (U/L) | 39 (24, 62) | 32 (22, 68) | 0.47 | 0.06 |
Platelets (104/μL) | 25.0 (20.0, 28.8) | 18.0 (14.1, 22.9) | <0.001 | 0.48 |
Comorbidity | ||||
Diabetes mellitus | 24 (27) | 30 (65) | <0.001 | 0.37 |
Hypertension | 24 (27) | 31 (67) | <0.001 | 0.39 |
Dyslipidemia | 60 (67) | 26 (57) | 0.26 | 0.10 |
Medication status | ||||
Ursodeoxycholic acid | 16 (18) | 13 (28) | 0.19 | 0.12 |
Calcium channel blocker | 12 (13) | 18 (39) | 0.001 | 0.29 |
Angiotensin receptor blocker | 15 (17) | 17 (37) | 0.011 | 0.23 |
Diuretic agent | 1 (1) | 7 (15) | 0.002 | 0.28 |
HMG-CoA reductase inhibitor | 20 (22) | 10 (22) | 1.000 | 0.01 |
Tocopherol acetate | 12 (13) | 15 (33) | 0.012 | 0.23 |
Dipeptidyl peptidase-4 inhibitor | 13 (14) | 22 (48) | <0.001 | 0.36 |
Sodium-glucose cotransporter 2 inhibitor | 13 (14) | 16 (35) | 0.008 | 0.24 |
Biguanide | 5 (6) | 7 (15) | 0.11 | 0.16 |
Hypouricemic agent | 16 (18) | 9 (20) | 0.82 | 0.02 |
Low-Risk Agile 3+ Scores | Intermediate–High-Risk Agile 3+ Scores | p Value | Effect Size | |
---|---|---|---|---|
mJDI12 | 6.0 (4.0, 8.0) | 6.0 (4.0, 7.3) | 0.80 | 0.02 |
Soybeans and soybean foods | 25.4 (10.7, 43.5) | 22.3 (9.9, 38.5) | 0.33 | 0.08 |
Green and yellow vegetables | 45.0 (29.1, 75.3) | 61.1 (20.1, 80.8) | 0.45 | 0.07 |
Fruit | 46.5 (19.5, 86.3) | 64.0 (31.7, 103.7) | 0.17 | 0.12 |
Fish and shellfish | 36.9 (24.2, 58.8) | 39.5 (23.0, 62.5) | 0.85 | 0.02 |
Pickles | 2.9 (0.7, 9.1) | 5.3 (2.1, 11.2) | 0.021 | 0.2 |
Mushrooms | 6.0 (2.2, 9.5) | 4.8 (2.3, 11.0) | 0.79 | 0.02 |
Seaweeds | 4.1 (1.8, 9.8) | 2.4 (1.5, 6.6) | 0.013 | 0.21 |
Green tea | 91.2 (24.1, 290.0) | 180.2 (76.2, 288.2) | 0.39 | 0.07 |
Rice | 130.8 (93.3, 199.2) | 137.3 (72.1, 167.1) | 0.58 | 0.05 |
Miso soup | 55.8 (34.8, 81.1) | 42.6 (30.2, 77.1) | 0.12 | 0.14 |
Beef and pork | 19.4 (13.4, 29.3) | 21.4 (10.6, 32.8) | 0.61 | 0.04 |
Coffee | 87.9 (20.2, 213.2) | 89.8 (48.1, 194.6) | 0.66 | 0.04 |
OR | 95% CI | p Value | ||
---|---|---|---|---|
model 1 | mJDI12 | 0.77 | 0.61, 0.99 | 0.04 |
model 2 | <25 percentile (reference) | - | - | |
≥25 to <50 percentile | 0.31 | 0.06, 1.56 | 0.16 | |
≥50 to <75 percentile | 0.24 | 0.04, 1.35 | 0.11 | |
≥75 percentile | 0.17 | 0.03, 0.90 | 0.038 |
OR | 95% CI | p Value | ||
---|---|---|---|---|
model 1 | Skeletal muscle mass | 1.01 | 0.94, 1.09 | 0.78 |
model 2 | <25 percentile (reference) | - | - | |
≥25 to <50 percentile | 0.64 | 0.15, 2.67 | 0.54 | |
≥50 to <75 percentile | 0.55 | 0.12, 2.60 | 0.45 | |
≥75 percentile | 0.23 | 0.07, 0.77 | 0.017 |
OR | 95% CI | p Value | ||
---|---|---|---|---|
model 1 | mJDI12 | 1.15 | 0.94, 1.40 | 0.18 |
model 2 | <25 percentile (reference) | - | - | |
≥25 to <50 percentile | 3.86 | 0.69, 21.64 | 0.12 | |
≥50 to <75 percentile | 3.13 | 0.53, 18.33 | 0.21 | |
≥75 percentile | 3.99 | 0.69, 22.99 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, Y.; Fujii, H.; Harima, M.; Okamura, H.; Yukawa-Muto, Y.; Odagiri, N.; Motoyama, H.; Kotani, K.; Kozuka, R.; Kawamura, E.; et al. Severity of Liver Fibrosis Is Associated with the Japanese Diet Pattern and Skeletal Muscle Mass in Patients with Nonalcoholic Fatty Liver Disease. Nutrients 2023, 15, 1175. https://doi.org/10.3390/nu15051175
Matsumoto Y, Fujii H, Harima M, Okamura H, Yukawa-Muto Y, Odagiri N, Motoyama H, Kotani K, Kozuka R, Kawamura E, et al. Severity of Liver Fibrosis Is Associated with the Japanese Diet Pattern and Skeletal Muscle Mass in Patients with Nonalcoholic Fatty Liver Disease. Nutrients. 2023; 15(5):1175. https://doi.org/10.3390/nu15051175
Chicago/Turabian StyleMatsumoto, Yoshinari, Hideki Fujii, Mika Harima, Haruna Okamura, Yoshimi Yukawa-Muto, Naoshi Odagiri, Hiroyuki Motoyama, Kohei Kotani, Ritsuzo Kozuka, Etsushi Kawamura, and et al. 2023. "Severity of Liver Fibrosis Is Associated with the Japanese Diet Pattern and Skeletal Muscle Mass in Patients with Nonalcoholic Fatty Liver Disease" Nutrients 15, no. 5: 1175. https://doi.org/10.3390/nu15051175
APA StyleMatsumoto, Y., Fujii, H., Harima, M., Okamura, H., Yukawa-Muto, Y., Odagiri, N., Motoyama, H., Kotani, K., Kozuka, R., Kawamura, E., Hagihara, A., Uchida-Kobayashi, S., Enomoto, M., Yasui, Y., Habu, D., & Kawada, N. (2023). Severity of Liver Fibrosis Is Associated with the Japanese Diet Pattern and Skeletal Muscle Mass in Patients with Nonalcoholic Fatty Liver Disease. Nutrients, 15(5), 1175. https://doi.org/10.3390/nu15051175