Body Composition of Male Professional Soccer Players Using Different Measurement Methods: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study
2.2. Information Sources and Search Strategy
2.3. Eligibility Criteria
2.4. Article Management Process
2.5. Study Selection
2.6. Data Extraction
- Study: Authors and year of publication
- Country and competition category: Geographical area and competitive category from which the data comes. The latter was included to differentiate between professional league categories within the same country.
- Sample: Number of subjects.
- Time of Season: Included to differentiate values collected between different cycles of a natural season (if specified).
- Method of analysis: It was included to differentiate the values collected between the three methods of evaluation of body composition.
- Measuring instruments: description of the material used in the evaluation.
- Main results: Kinanthropometric characteristics and values of FM, MM, bone mass (BM), and body water
2.7. Study Quality and Data Collection
2.8. Statistical Analysis
3. Results
4. Discussion
4.1. Measurement Instruments
4.2. Body Composition Values
4.3. Limitations
4.4. Future Research and Practical Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- What Is ISAK? Available online: https://www.isak.global/WhatIsIsak/#GoToKina (accessed on 22 May 2022).
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA Expert Group Statement on Nutrition in Elite Football. Current Evidence to Inform Practical Recommendations and Guide Future Research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef] [PubMed]
- Abreu, R.; Figueiredo, P.; Beckert, P.; Marques, J.P.; Amorim, S.; Caetano, C.; Carvalho, P.; Sá, C.; Cotovio, R.; Cruz, J.; et al. Portuguese Football Federation Consensus Statement 2020: Nutrition and Performance in Football. BMJ Open Sport Exerc. Med. 2021, 7, e001082. [Google Scholar] [CrossRef] [PubMed]
- Alvero Cruz, J.R.; Cabañas, M.D.; Herrero de Lucas, A.; Martinez Riaza, L.; Moreno Pascual, C.; Porta Manzañido, J.; Sillero Quintana, M.; Sirvent Belando, J.E. Protocolo de Valoración de La Composición Corporal Para El Reconocimiento Médico-Deportivo. Documento de Consenso Del Grupo Español de Cineantropometría (GREC) de La Federación Española de Medicina Del Deporte (FEMEDE). Versión 2010. Arch. Med. Deporte 2010, 27, 330. [Google Scholar]
- Alvero-Cruz, J.R.; Correas Gómez, L.; Ronconi, M.; Fernández Vázquez, R.; Porta i Manzañido, J. La bioimpedancia eléctrica como método de estimación de la composición corporal, normas prácticas de utilización. Rev. Andal. Med. Deporte 2011, 4, 167–174. [Google Scholar]
- Moreira, O.C.; Aubin, D.A.A.; de Oliveira, C.E.P.; Luján, R.C. Métodos de evaluación de la composición corporal: Una revisión actualizada de descripción, aplicación, ventajas y desventajas. Arch. Med. Deporte Rev. Fed. Esp. Med. Deporte Confed. Iberoam. Med. Deporte 2015, 32, 387–394. [Google Scholar]
- Lewiecki, E.M. Update on Bone Density Testing. Curr. Osteoporos. Rep. 2005, 3, 136–142. [Google Scholar] [CrossRef]
- Kasper, A.M.; Langan-Evans, C.; Hudson, J.F.; Brownlee, T.E.; Harper, L.D.; Naughton, R.J.; Morton, J.P.; Close, G.L. Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients 2021, 13, 1075. [Google Scholar] [CrossRef]
- Carter, J. The Heath-Carter Anthropometric Somatotype—Instruction Manual; Department of Exercise and Nutritional Sciences San Diego State University: San Diego, CA, USA, 2002; pp. 1–26. [Google Scholar]
- Sanz, J.M.M.; Otegui, A.U.; Guerrero, J.; Barrios, V. El somatotipo-morfología en los deportistas. ¿Cómo se calcula? ¿Cuáles son las referencias internacionales para comparar con nuestros deportistas? Lect. Educ. Física Deport. 2011, 159, 4. [Google Scholar]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current Status of Body Composition Assessment in Sport: Review and Position Statement on Behalf of the Ad Hoc Research Working Group on Body Composition Health and Performance, under the Auspices of the I.O.C. Medical Commission. Sports Med. Auckl. NZ 2012, 42, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Cavia, M.; Moreno, A.; Fernández-Trabanco, B.; Carrillo, C.; Alonso-Torre, S. Anthropometric Characteristics and Somatotype of Professional Soccer Players by Position. J. Sports Med. Ther. 2019, 4, 073–080. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.L.; Norton, K.I. Evolution of World Cup Soccer Final Games 1966-2010: Game Structure, Speed and Play Patterns. J. Sci. Med. Sport 2014, 17, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhang, Y.; Kwong, J.S.W.; Zhang, C.; Li, S.; Sun, F.; Niu, Y.; Du, L. The Methodological Quality Assessment Tools for Preclinical and Clinical Studies, Systematic Review and Meta-Analysis, and Clinical Practice Guideline: A Systematic Review. J. Evid.-Based Med. 2015, 8, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for Examining and Interpreting Funnel Plot Asymmetry in Meta-Analyses of Randomised Controlled Trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [Green Version]
- Al-Hazzaa, H.M.; Almuzaini, K.S.; Al-Refaee, S.A.; Sulaiman, M.A.; Dafterdar, M.Y.; Al-Ghamedi, A.; Al-Khuraiji, K.N. Aerobic and Anaerobic Power Characteristics of Saudi Elite Soccer Players. J. Sports Med. Phys. Fit. 2001, 41, 54–61. [Google Scholar]
- Bekris, E.; Mylonis, E.; Gioldasis, A.; Gissis, I.; Natalia, K. Aerobic and Anaerobic Capacity of Professional Soccer Players in Annual Macrocycle. J. Phys. Educ. Sport 2016, 16, 527–533. [Google Scholar] [CrossRef]
- Boone, J.; Vaeyens, R.; Steyaert, A.; Bossche, L.V.; Bourgois, J. Physical Fitness of Elite Belgian Soccer Players by Player Position. J. Strength Cond. Res. 2012, 26, 2051–2057. [Google Scholar] [CrossRef] [Green Version]
- Carling, C.; Orhant, E. Variation in Body Composition in Professional Soccer Players: Interseasonal and Intraseasonal Changes and the Effects of Exposure Time and Player Position. J. Strength Cond. Res. 2010, 24, 1332–1339. [Google Scholar] [CrossRef] [Green Version]
- Casajús, J.A. Seasonal Variation in Fitness Variables in Professional Soccer Players. J. Sports Med. Phys. Fit. 2001, 41, 463–469. [Google Scholar]
- Chaouachi, A.; Manzi, V.; Chaalali, A.; Wong, D.P.; Chamari, K.; Castagna, C. Determinants Analysis of Change-of-Direction Ability in Elite Soccer Players. J. Strength Cond. Res. 2012, 26, 2667–2676. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.K.; Kar, N.; Debray, P. Anthropometric, motor ability and physiological profiles of indian national club footballers: A comparative study. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2010, 32, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Fessi, M.S.; Zarrouk, N.; Filetti, C.; Rebai, H.; Elloumi, M.; Moalla, W. Physical and Anthropometric Changes during Pre- and in-Season in Professional Soccer Players. J. Sports Med. Phys. Fit. 2016, 56, 1163–1170. [Google Scholar]
- Filaire, E.; Lac, G.; Pequignot, J.-M. Biological, Hormonal, and Psychological Parameters in Professional Soccer Players throughout a Competitive Season. Percept. Mot. Skills 2003, 97, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Grazioli, R.; Loturco, I.; Baroni, B.M.; Oliveira, G.S.; Saciura, V.; Vanoni, E.; Dias, R.; Veeck, F.; Pinto, R.S.; Cadore, E.L. Coronavirus Disease-19 Quarantine Is More Detrimental Than Traditional Off-Season on Physical Conditioning of Professional Soccer Players. J. Strength Cond. Res. 2020, 34, 3316–3320. [Google Scholar] [CrossRef]
- Gutiérrez, C.R.; Monroy, S.E. Anthropometric and physiological characteristics in elite soccer players. Arch. Med. Deporte 2005, 22, 33–37. [Google Scholar]
- Hazir, T. Physical Characteristics and Somatotype of Soccer Players According to Playing Level and Position. J. Hum. Kinet. 2010, 26, 83–95. [Google Scholar] [CrossRef]
- Henriquez-Olguin, C.; Baez, E.; Ramirez-Campillo, R.; Canas, R. Somatotype Profile of Professional Male Soccer Chilean Players. Int. J. Morphol. 2013, 31, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Iga, J.; Scott, M.; George, K.; Drust, B. Seasonal Changes in Multiple Indices of Body Composition in Professional Football Players. Int. J. Sports Med. 2014, 35, 994–998. [Google Scholar] [CrossRef]
- Jorquera Aguilera, C.; Rodriguez Rodriguez, F.; Torrealba Vieira, M.I.; Campos Serrano, J.; Gracia Leiva, N.; Holway, F. Anthropometric Characteristics of Chilean Professional Football Players. Int. J. Morphol. 2013, 31, 609–614. [Google Scholar] [CrossRef] [Green Version]
- Kalapotharakos, V.I.; Ziogas, G.; Tokmakidis, S.P. Seasonal Aerobic Performance Variations in Elite Soccer Players. J. Strength Cond. Res. 2011, 25, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Lago-Penas, C.; Rey, E.; Lago-Ballesteros, J.; Dominguez, E.; Casais, L. Seasonal Variations in Body Composition and Fitness Parameters According to Individual Percentage of Training Completion in Professional Soccer Players. Int. Sport Med. J. 2013, 14, 205–215. [Google Scholar]
- Manuel Vega, J.; Gonzalez-Artetxe, A.; Ander Aguinaco, J.; Los Arcos, A. Assessing the Anthropometric Profile of Spanish Elite Reserve Soccer Players by Playing Position over a Decade. Int. J. Environ. Res. Public Health 2020, 17, 5446. [Google Scholar] [CrossRef] [PubMed]
- Michailidis, Y. Stress Hormonal Analysis in Elite Soccer Players during a Season. J. Sport Health Sci. 2014, 3, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Najafi, A.; Shakerian, S.; Habibi, A.; Shabani, M.; Fatemi, R. The comparison of some anthropometric, body composition indexes and vo2max of ahwaz elite soccer players of different playing positions. Pedagog. Psychol. Med.-Biol. Probl. Phys. Train. Sports 2015, 19, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Orhan, O.; Sagir, M.; Zorba, E. Comparison of Somatotype Values of Football Players in Two Professional League Football Teams According to the Positions. Coll. Antropol. 2013, 37, 401–405. [Google Scholar]
- Ostojic, S.M. Seasonal Alterations in Body Composition and Sprint Performance of Elitesoccer Players. J. Exerc. Physiol. Online 2003, 6, 24–27. [Google Scholar]
- Owen, A.L.; Wong, D.P.; Paul, D.; Dellal, A. Effects of a Periodized Small-Sided Game Training Intervention on Physical Performance in Elite Professional Soccer. J. Strength Cond. Res. 2012, 26, 2748–2754. [Google Scholar] [CrossRef]
- Owen, A.L.; Lago-Peñas, C.; Dunlop, G.; Mehdi, R.; Chtara, M.; Dellal, A. Seasonal Body Composition Variation Amongst Elite European Professional Soccer Players: An Approach of Talent Identification. J. Hum. Kinet. 2018, 62, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Petri, C.; Mascherini, G.; Pengue, L.; Galanti, G. Dietary Habits in Elite Soccer Players. Sport Sci. Health 2016, 12, 113–119. [Google Scholar] [CrossRef]
- Pietraszewska, J.; Struzik, A.; Burdukiewicz, A.; Stachon, A.; Pietraszewski, B. Relationships between Body Build and Knee Joint Flexor and Extensor Torque of Polish First-Division Soccer Players. Appl. Sci. 2020, 10, 783. [Google Scholar] [CrossRef] [Green Version]
- Pireva, A. Anthropometric and Body Composition Differences Among Elite Kosovo Basketball, Handball and Soccer Players. Int. J. Morphol. 2019, 37, 1067–1072. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Rodríguez, F.; López-Fuenzalida, A.; Holway, F.; Jorquera-Aguilera, C. [Anthropometric differences per playing position in Chilean professional footballers]. Nutr. Hosp. 2019, 36, 846–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotiropoulos, A.; Travlos, A.K.; Gissis, I.; Souglis, A.G.; Grezios, A. The Effect of a 4-Week Training Regimen on Body Fat and Aerobic Capacity of Professional Soccer Players during the Transition Period. J. Strength Cond. Res. 2009, 23, 1697–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sporis, G.; Jukic, I.; Ostojic, S.M.; Milanovic, D. Fitness Profiling in Soccer: Physical and Physiologic Characteristics of Elite Players. J. Strength Cond. Res. 2009, 23, 1947–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voutselas, V.; Papanikolaou, Z.; Soulas, D.; Famisis, K. Years of Training and Hamstring-Quadriceps Ratio of Soccer Players. Psychol. Rep. 2007, 101, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Zuniga Galaviz, U.; Osorio Gutierrez, A.; de Toledo Dominguez, I.J.; Herrera Perea, R. Somatotype of Mexican Soccer Players from Different Competition Level. Retos-Nuevas Tend. Educ. Fis. Deporte Recreacion 2018, 34, 100–102. [Google Scholar]
- Andreoli, A.; Melchiorri, G.; Brozzi, M.; Di Marco, A.; Volpe, S.L.; Garofano, P.; Di Daniele, N.; De Lorenzo, A. Effect of Different Sports on Body Cell Mass in Highly Trained Athletes. Acta Diabetol. 2003, 40 (Suppl. 1), S122–S125. [Google Scholar] [CrossRef] [PubMed]
- Matković, B.R.; Misigoj-Duraković, M.; Matković, B.; Janković, S.; Ruzić, L.; Leko, G.; Kondric, M. Morphological Differences of Elite Croatian Soccer Players According to the Team Position. Coll. Antropol. 2003, 27 (Suppl. 1), 167–174. [Google Scholar]
- Dupont, G.; Akakpo, K.; Berthoin, S. The Effect of In-Season, High-Intensity Interval Training in Soccer Players. J. Strength Cond. Res. 2004, 18, 584–589. [Google Scholar] [CrossRef]
- Al-Jaser, T.A.; Hasan, A.A.A. Fluid Loss and Body Composition of Elite Kuwaiti Soccer Players during a Soccer Match. J. Sports Med. Phys. Fit. 2006, 46, 281–285. [Google Scholar]
- Clark, N.A.; Edwards, A.M.; Morton, R.H.; Butterly, R.J. Season-to-Season Variations of Physiological Fitness Within a Squad of Professional Male Soccer Players. J. Sports Sci. Med. 2008, 7, 157–165. [Google Scholar] [PubMed]
- Hoppe, M.W.; Baumgart, C.; Sperlich, B.; Ibrahim, H.; Jansen, C.; Willis, S.J.; Freiwald, J. Comparison between Three Different Endurance Tests in Professional Soccer Players. J. Strength Cond. Res. 2013, 27, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Suda, Y.; Umeda, T.; Watanebe, K.; Kuroiwa, J.; Sasaki, E.; Tsukamoto, T.; Takahashi, I.; Matsuzaka, M.; Iwane, K.; Nakaji, S. Changes in Neutrophil Functions during a 10-Month Soccer Season and Their Effects on the Physical Condition of Professional Japanese Soccer Players. Lumin. J. Biol. Chem. Lumin. 2013, 28, 121–128. [Google Scholar] [CrossRef]
- Micheli, M.L.; Pagani, L.; Marella, M.; Gulisano, M.; Piccoli, A.; Angelini, F.; Burtscher, M.; Gatterer, H. Bioimpedance and Impedance Vector Patterns as Predictors of League Level in Male Soccer Players. Int. J. Sports Physiol. Perform. 2014, 9, 532–539. [Google Scholar] [CrossRef]
- Semjon, M.; Botek, M.; Svozil, Z.; McKune, A.J. Positional Differences in the Cardiorespiratory, Autonomic, and Somatic Profiles of Professional Soccer Players. Acta Gymnica 2016, 46, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Aras, D.; Karakoc, B.; Koz, M.; Bizati, O. The Effects of Active Recovery and Carbohydrate Intake on HRV during 48 Hours in Athletes after a Vigorous-Intensity Physical Activity. Sci. Sports 2017, 32, 295–302. [Google Scholar] [CrossRef]
- Requena, B.; García, I.; Suárez-Arrones, L.; Sáez de Villarreal, E.; Naranjo Orellana, J.; Santalla, A. Off-Season Effects on Functional Performance, Body Composition, and Blood Parameters in Top-Level Professional Soccer Players. J. Strength Cond. Res. 2017, 31, 939–946. [Google Scholar] [CrossRef]
- Kafedžić, E.; Čović, N.; Jelešković, E.; Alić, H.; Ibrahimović, M.; Talović, M. Preseason aerobic physiological characteristics in bosnia and herzegovina professional football players. Homo Sport 2018, 4, 5–9. [Google Scholar]
- Marcos, M.A.; Koulla, P.M.; Anthos, Z.I. Preseason Maximal Aerobic Power in Professional Soccer Players Among Different Divisions. J. Strength Cond. Res. 2018, 32, 356–363. [Google Scholar] [CrossRef]
- Clemente, F.M.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Dose-Response Relationship Between External Load Variables, Body Composition, and Fitness Variables in Professional Soccer Players. Front. Physiol. 2019, 10, 443. [Google Scholar] [CrossRef] [PubMed]
- Gardasevic, J.; Bjelica, D.; Vasiljevic, I. Morphological Characteristics and Body Composition of Elite Soccer Players in Montenegro. Int. J. Morphol. 2019, 37, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Pietraszewska, J.; Burdukiewicz, A.; Zagrodna, A.; Stachon, A.; Andrzejewska, J. Anthropometric Profile and Serum 25-Hydroxyvitamin d-3 Levels in Elite Soccer Players. South Afr. J. Res. Sport Phys. Educ. Recreat. 2019, 41, 93–102. [Google Scholar]
- Dagcilar, K.; Ozturk, M. An Evaluation of Nutritional Knowledge Levels, Nutritional Intake, and Anthropometric Features of Northern Cyprus Professional Football Players. Med. Sport 2020, 73, 81–89. [Google Scholar] [CrossRef]
- Gardasevic, J.; Bjelica, D. Body Composition Differences between Football Players of the Three Top Football Clubs. Int. J. Morphol. 2020, 38, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Granero-Gil, P.; Gómez-Carmona, C.D.; Bastida-Castillo, A.; Rojas-Valverde, D.; de la Cruz, E.; Pino-Ortega, J. Influence of Playing Position and Laterality in Centripetal Force and Changes of Direction in Elite Soccer Players. PLoS ONE 2020, 15, e0232123. [Google Scholar] [CrossRef] [Green Version]
- Ksiazek, A.; Zagrodna, A.; Slowinska-Lisowska, M. Assessment of the Dietary Intake of High-Rank Professional Male Football Players during a Preseason Training Week. Int. J. Environ. Res. Public Health 2020, 17, 8567. [Google Scholar] [CrossRef]
- Radzimiński, Ł.; Szwarc, A.; Padrón-Cabo, A.; Jastrzębski, Z. Correlations between Body Composition, Aerobic Capacity, Speed and Distance Covered among Professional Soccer Players during Official Matches. J. Sports Med. Phys. Fit. 2020, 60, 257–262. [Google Scholar] [CrossRef]
- Sutton, L.; Scott, M.; Wallace, J.; Reilly, T. Body Composition of English Premier League Soccer Players: Influence of Playing Position, International Status, and Ethnicity. J. Sports Sci. 2009, 27, 1019–1026. [Google Scholar] [CrossRef]
- Wittich, A.; Oliveri, M.B.; Rotemberg, E.; Mautalen, C. Body Composition of Professional Football (Soccer) Players Determined by Dual X-Ray Absorptiometry. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2001, 4, 51–55. [Google Scholar] [CrossRef]
- Reinke, S.; Karhausen, T.; Doehner, W.; Taylor, W.; Hottenrott, K.; Duda, G.N.; Reinke, P.; Volk, H.-D.; Anker, S.D. The Influence of Recovery and Training Phases on Body Composition, Peripheral Vascular Function and Immune System of Professional Soccer Players. PLoS ONE 2009, 4, e4910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerosa-Neto, J.; Rossi, F.E.; Silva, C.B.; Campos, E.Z.; Fernandes, R.A.; Freitas Júnior, I.F. Body Composition Analysis of Athletes from the Elite of Brazilian Soccer Players. Motricidade 2014, 10, 105–110. [Google Scholar] [CrossRef]
- Milanese, C.; Cavedon, V.; Corradini, G.; De Vita, F.; Zancanaro, C. Seasonal DXA-Measured Body Composition Changes in Professional Male Soccer Players. J. Sports Sci. 2015, 33, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Milsom, J.; Naughton, R.; O’Boyle, A.; Iqbal, Z.; Morgans, R.; Drust, B.; Morton, J.P. Body Composition Assessment of English Premier League Soccer Players: A Comparative DXA Analysis of First Team, U21 and U18 Squads. J. Sports Sci. 2015, 33, 1799–1806. [Google Scholar] [CrossRef]
- Sanchez-Urena, B.; Araya-Ramirez, F.; Blanco-Romero, L.; Crespo-Coco, C. Comparison of Two Methods to Measure Body Composition in Costa Rican Professional Soccer Players. Mhsalud-Rev. En Cienc. Mov. Hum. Salud 2016, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Devlin, B.L.; Leveritt, M.D.; Kingsley, M.; Belski, R. Dietary Intake, Body Composition, and Nutrition Knowledge of Australian Football and Soccer Players: Implications for Sports Nutrition Professionals in Practice. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 130–138. [Google Scholar] [CrossRef]
- Devlin, B.L.; Kingsley, M.; Leveritt, M.D.; Belski, R. Seasonal Changes in Soccer Players’ Body Composition and Dietary Intake Practices. J. Strength Cond. Res. 2017, 31, 3319–3326. [Google Scholar] [CrossRef]
- Khalladi, K.; Farooq, A.; Souissi, S.; Herrera, C.P.; Chamari, K.; Taylor, L.; El Massioui, F. Inter-Relationship between Sleep Quality, Insomnia and Sleep Disorders in Professional Soccer Players. BMJ Open Sport Exerc. Med. 2019, 5, e000498. [Google Scholar] [CrossRef] [Green Version]
- Randell, R.K.; Carter, J.M.; Jeukendrup, A.E.; Lizarraga, M.A.; Yanguas, J.I.; Rollo, I. Fat Oxidation Rates in Professional Soccer Players. Med. Sci. Sports Exerc. 2019, 51, 1677–1683. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; Lara-Lopez, P.; Maldonado, R.; Torreno, N.; De Hoyo, M.; Nakamura, F.Y.; Di Salvo, V.; Mendez-Villanueva, A. The Effects of Detraining and Retraining Periods on Fat-Mass and Fat-Free Mass in Elite Male Soccer Players. PeerJ 2019, 7, e7466. [Google Scholar] [CrossRef] [Green Version]
- McEwan, G.P.; Drobnic, F.; Lizarraga, A.; Gómez Díaz, A.; Pons, E.; Dello Iacon, A.; Unnithan, V. Changes in Markers of Body Composition of Professional Male Soccer Players during Pre-Season. Sports Med. Health Sci. 2020, 2, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Mascherini, G.; Petri, C.; Galanti, G. Integrated Total Body Composition and Localized Fat-Free Mass Assessment. Sport Sci. Health 2015, 11, 217–225. [Google Scholar] [CrossRef]
- Campa, F.; Bongiovanni, T.; Matias, C.N.; Genovesi, F.; Trecroci, A.; Rossi, A.; Iaia, F.M.; Alberti, G.; Pasta, G.; Toselli, S. A New Strategy to Integrate Heath-Carter Somatotype Assessment with Bioelectrical Impedance Analysis in Elite Soccer Player. Sports 2020, 8, 142. [Google Scholar] [CrossRef] [PubMed]
- Castro Jimenez, L.E.; Arguello Gutierrez, Y.P.; Sanchez Rojas, I.A.; Jazmin Galvez, A.; Melo Buitrago, P.J. Relationship between Dermatoglyphic Markers and Morphofunctional Profile in Professional Soccer Players from Bogota, Colombia. Retos-Nuevas Tend. Educ. Fis. Deporte Recreacion 2021, 182–190. [Google Scholar]
- Novack, L.F.; Ferreira, G.A.; Coelho, R.L.; Osiecki, R. Novel Equations to Predict Body Fat Percentage of Brazilian Professional Soccer Players: A Case Study. Mot. Rev. Educ. Física 2014, 20, 402–407. [Google Scholar] [CrossRef]
- López-Taylor, J.R.; González-Mendoza, R.G.; Gaytán-González, A.; Jiménez-Alvarado, J.A.; Villegas-Balcázar, M.; Jáuregui-Ulloa, E.E.; Torres-Naranjo, F. Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA. J. Sports Med. Hindawi Publ. Corp. 2018, 2018, 6843792. [Google Scholar] [CrossRef] [Green Version]
- Kammerer López, M.; Ceballos Feria, N.D.C.; Mayor Rengifo, M.C.; Hoyos García, H.H.; Gómez Velásquez, S. [Evaluation of the accuracy of different body composition prediction formulas, compared to Dual Energy X-ray Absorptiometry, in soccer players of Colombian professional teams]. Nutr. Hosp. 2021, 38, 290–297. [Google Scholar] [CrossRef]
- Svantesson, U.; Zander, M.; Klingberg, S.; Slinde, F. Body Composition in Male Elite Athletes, Comparison of Bioelectrical Impedance Spectroscopy with Dual Energy X-Ray Absorptiometry. J. Negat. Results Biomed. 2008, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Arrones, L.; Petri, C.; Maldonado, R.A.; Torreno, N.; Munguia-Izquierdo, D.; Di Salvo, V.; Mendez-Villanueva, A. Body Fat Assessment in Elite Soccer Players: Cross-Validation of Different Field Methods. Sci. Med. Footb. 2018, 2, 203–208. [Google Scholar] [CrossRef]
- Olds, T.; Norton, K.I.; Australian Sports Commission (Eds.) Anthropometrica: A Textbook of Body Measurement for Sports and Health Courses; UNSW Press: Sydney, Australia, 1996; ISBN 978-0-86840-223-9. [Google Scholar]
- Lohman, T.G.; Pollock, M.L. Skinfold Measurement: Which Caliper? How Much Training? J. Phys. Educ. Recreat. 1981, 52, 27–29. [Google Scholar] [CrossRef]
- Orphanidou, C.; McCargar, L.; Birmingham, C.L.; Mathieson, J.; Goldner, E. Accuracy of Subcutaneous Fat Measurement: Comparison of Skinfold Calipers, Ultrasound, and Computed Tomography. J. Am. Diet. Assoc. 1994, 94, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Ros, F.; Moreira, A.C.; Vaquero-Cristóbal, R.; Barrigas, C.; Albaladejo-Saura, M.; Vieira, F. Differences between Four Skinfold Calipers in the Assessment of Adipose Tissue in Young Adult Healthy Population. Nutrients 2022, 14, 2085. [Google Scholar] [CrossRef] [PubMed]
- Ros, F.E.; Vaquero-Cristóbal, R.; Marfell-Jones, M. Protocolo Internacional Para la Valoración Antropométrica; UCAM Universidad Católica de Murcia, Ed.; Sociedad Internacional para el Avance de la Cineantropometría (ISAK): Murcia, Spain, 2019; ISBN 978-84-92986-17-0. [Google Scholar]
- Vaquero-Cristóbal, R.; Albaladejo-Saura, M.; Luna-Badachi, A.E.; Esparza-Ros, F. Differences in Fat Mass Estimation Formulas in Physically Active Adult Population and Relationship with Sums of Skinfolds. Int. J. Environ. Res. Public Health 2020, 17, E7777. [Google Scholar] [CrossRef] [PubMed]
- Cabañas, M.D.; Esparza, F. Compendio de Cineantropometría; CTO Editorial: Madrid, Spain, 2009. [Google Scholar]
- Martinez-Ferran, M.; Rafei, E.; Romero-Morales, C.; Pérez-Ruiz, M.; Lam-Meléndez, A.; Munguia-Izquierdo, D.; Pareja-Galeano, H. Optimizing Field Body Fat Percentage Assessment in Professional Soccer Players. Appl. Sci. 2022, 12, 727. [Google Scholar] [CrossRef]
- Reilly, T.; George, K.; Marfell-Jones, M.; Scott, M.; Sutton, L.; Wallace, J.A. How Well Do Skinfold Equations Predict Percent Body Fat in Elite Soccer Players? Int. J. Sports Med. 2009, 30, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, J.A. Physiology of Swimming. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1966, 37, 41–54. [Google Scholar] [CrossRef]
- Eston, R.G.; Rowlands, A.V.; Charlesworth, S.; Davies, A.; Hoppitt, T. Prediction of DXA-Determined Whole Body Fat from Skinfolds: Importance of Including Skinfolds from the Thigh and Calf in Young, Healthy Men and Women. Eur. J. Clin. Nutr. 2005, 59, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Withers, R.T.; Craig, N.P.; Bourdon, P.C.; Norton, K.I. Relative Body Fat and Anthropometric Prediction of Body Density of Male Athletes. Eur. J. Appl. Physiol. 1987, 56, 191–200. [Google Scholar] [CrossRef]
- Durnin, J.V.; Womersley, J. Body Fat Assessed from Total Body Density and Its Estimation from Skinfold Thickness: Measurements on 481 Men and Women Aged from 16 to 72 Years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sanz, J.M.; Fernández Nuñez, A.; Sospedra, I.; Martínez-Rodríguez, A.; Domínguez, R.; González-Jurado, J.A.; Sánchez-Oliver, A.J. Nutrition-Related Adverse Outcomes in Endurance Sports Competitions: A Review of Incidence and Practical Recommendations. Int. J. Environ. Res. Public Health 2020, 17, E4082. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuñez, F.J.; Munguia-Izquierdo, D.; Petri, C.; Suarez-Arrones, L. Field Methods to Estimate Fat-Free Mass in International Soccer Players. Int. J. Sports Med. 2019, 40, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Sala, V.P.; Riera, J.; Ballarini, P.-A.G.; Martínez, F.D.; Banquells, M.; Ruiz, O. Características antropométricas, composición corporal y somatotipo por deportes.: Datos de referencia del CAR de San Cugat, 1989-2013. Apunts Med. Esport 2015, 50, 65–72. [Google Scholar]
- Moreno, A.C. Variables Antropométricas de la Población Deportista Española: 60; ISBN 978-84-7949-220-5.
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of Soccer: An Update. Sports Med. Auckl. NZ 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Herrero de Lucas, A.; Cabañas Armesilla, M.D.; Maestre López, I. Morfotipo del futbolista profesional de la Comunidad Autónoma de Madrid. Composición corporal. 2004, 12, 72–77. [Google Scholar] [CrossRef]
- Nassis, G.P.; Massey, A.; Jacobsen, P.; Brito, J.; Randers, M.B.; Castagna, C.; Mohr, M.; Krustrup, P. Elite Football of 2030 Will Not Be the Same as That of 2020: Preparing Players, Coaches, and Support Staff for the Evolution. Scand. J. Med. Sci. Sports 2020, 30, 962–964. [Google Scholar] [CrossRef]
- Silva, J.R. The Soccer Season: Performance Variations and Evolutionary Trends. PeerJ 2022, 10, e14082. [Google Scholar] [CrossRef]
- Sansone, P.; Makivic, B.; Csapo, R.; Hume, P.; Martínez-Rodríguez, A.; Bauer, P. Body Fat of Basketball Players: A Systematic Review and Meta-Analysis. Sports Med.—Open 2022, 8, 26. [Google Scholar] [CrossRef]
- Rodríguez, A.M.; Olcina, M.M.; García, M.H.; Arias, J.Á.R.; Sánchez, J.S.; Sáez, J.A.S. Body Composition Characteristics of Handball Players: Systematic Review. Arch. Med. Deporte Rev. Fed. Esp. Med. Deporte Confed. Iberoam. Med. Deporte 2020, 37, 52–61. [Google Scholar]
- Figueiredo, D.H.; Dourado, A.C.; Stanganelli, L.C.R.; Gonçalves, H.R. Evaluation of Body Composition and Its Relationship with Physical Fitness in Professional Soccer Players at the Beginning of Pre-Season. Retos Nuevas Tend. En Educ. Física Deporte Recreación 2021, 40, 117–125. [Google Scholar]
- Campa, F.; Semprini, G.; Júdice, P.B.; Messina, G.; Toselli, S. Anthropometry, Physical and Movement Features, and Repeated-Sprint Ability in Soccer Players. Int. J. Sports Med. 2019, 40, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P.T.; Ruano, M.A.G.; de Oliveira, N.C.; Portes, L.A.; Freiwald, J.; Leprêtre, P.M.; Knechtle, B. Who Runs the Fastest? Anthropometric and Physiological Correlates of 20 m Sprint Performance in Male Soccer Players. Res. Sports Med. Print 2016, 24, 341–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayotte, B.; Carey, V.; Charron, J.; Ibo, J.; Ferland, P.-M.; Comtois, A.S. Increase In Body Mass Do Not Negatively Affect Aerobic Capacity In Elite Male Soccer Players: 67. Med. Sci. Sports Exerc. 2021, 53, 21. [Google Scholar] [CrossRef]
- Peñailillo, L.; Espíldora, F.; Jannas-Vela, S.; Mujika, I.; Zbinden-Foncea, H. Muscle Strength and Speed Performance in Youth Soccer Players. J. Hum. Kinet. 2016, 50, 203–210. [Google Scholar] [CrossRef]
- Moya-Amaya, H.; Molina-López, A.; Berral-Aguilar, A.J.; Rojano-Ortega, D.; Berral-de-la-Rosa, F.J.; Moya-Amaya, H.; Molina-López, A.; Berral-Aguilar, A.J.; Rojano-Ortega, D.; Berral-de-la-Rosa, F.J. Migración Del Somatotipo En Jugadores de Fútbol Profesional En Las Últimas Décadas. Int. J. Morphol. 2022, 40, 327–333. [Google Scholar] [CrossRef]
- Clasificación Masculina. Available online: https://www.fifa.com/es/fifa-world-ranking/origin1904-p.cxm.fifa.com/fifa-world-ranking/men (accessed on 10 October 2022).
Population | Intervention | Comparison | Outcomes |
---|---|---|---|
Male soccer players who train with the aim of competing or improving their physical performance (excludes physical activity for health or aesthetics). Professional category. Absence of pathologies (healthy subjects). | Anthropometry. Bioimpedance (BIA). Dual X-ray Absorptiometry (DXA). | Measurement methods. Season. Equations. | Anthropometric characteristics: skinfolds, girth, breadth, heights, lengths, body composition, and somatotype. Percentages and values of fat mass, muscle mass, bone mass and body water. |
Authors and Year | Sample Size (n) | Age (Years) | Country Competition Category | Time of the SEA | Measuring Instruments | Protocol |
---|---|---|---|---|---|---|
Al-Hazzaa et al., 2001 [18] | T = 23 | 25.2 ± 3.3 | SA. National team | Preparation for the FR World Cup | BAS Seca, PLI Harpenden | - |
Casajús, 2001 [22] | T = 15 | 25.8 ± 3.1 | ES. 1st División | During competitive SEA | EST Rabonne Chesterman, BAS Rabonne Chesterman, Small sliding caliper Rabonne Chesterman, Measuring tape GPM Siber-Hegner Maschinen, PLI Holtain | ISAK |
Filaire et al., 2003 [26] | T = 20 | 25.1 ± 0.4 | FR. Ligue 1 | Start of pre-SEA, start and end of SEA, start of 2nd pre-SEA | PLI Harpenden | - |
Ostojic. 2003 [39] | T = 30 | 23.5 ± 3.1 | EN. National League | Start pre-SEA, start, middle and end SEA, and start 2nd pre-SEA | BAS Avery 3306 ABV, PLI Harpenden | - |
Gutierrez and Monroy, 2005 [28] | T = 20 | 29.0 ± 3.0 | MX. National team | Preparation for the World Cup South Korea and Japan | BAS Bame, Swiss anthropometer type Martin, PLI Harpenden | ISAK |
Voutselas et al., 2007 [48] | T = 72 | 20.1 ± 5.2 | GR. Super League 1 and 2 | - | PLI Harpenden | - |
Sotiropoulos et al., 2009 [46] | T = 58; CG = 20; EG = 38 | CG = 24.4 ± 2.9; EG = 23.2 ± 2.5 | GR. Super League GR | Beginning and end of the transition period | PLI Harpenden | ACSM |
Sporis et al., 2009 [47] | T = 270 | 28.3 ± 5.9 | HR. Prva HNL | 2 consecutive pre-SEAs | BAS Seca, PLI John Bull Caliper | IBP |
Carling and Orhant, 2010 [21] | T = 26 | 24.4 ± 4.1 | FR. Ligue 1 | 3 consecutive full SEAs (5 moments) | BAS Holtain, PLI Harpenden | - |
Dey et al., 2010 [24] | T = 150 | 23.3 ± 3.5 | IN. IN Super League | - | PLI Harpenden | - |
Hazir, 2010 [29] | T = 305; SL = 161; FL = 144; | SL = 25.7 ± 3.7 FL = 24.1 ± 4.2 | TR. Süper Lig (161) and TFF 1. Lig (144) | 5 beginnings of the transition period for the SEA half | BAS Tanita TBF 401A, EST Holtain, Bicondylar caliper Holtain, PLI Holtain | ASRM |
Kalapotharakos et al., 2011 [33] | T = 12 | 25 ± 5 | GR. Super League GR | Pre-SEA start, start and mid-SEA | PLI Harpenden | - |
Boone et al., 2012 [20] | T = 289 | 25.4 ± 4.9 | BE. Jupiler Pro League | 2–4 weeks prior to start of SEA | BAS Seca, PLI Harpenden | - |
Chaouachi et al., 2012 [23] | T = 23 | 19 ± 1 | TN. Ligue 1 | Last SEA stage | BAS Seca, EST Holtain, PLI Harpenden | - |
Owen et al., 2012 [40] | T = 15 | 24.5 ± 3.4 | SCO. Scottish Premiership | During a 4-week break SEA | PLI Harpenden | - |
Henríquez-Olguín et al., 2013 [30] | T = 100 | 23.0 ± 4.4 | CL. Not specified | 2 SEA starts | BAS Tanita TBF 401A, Kit Health & Performance® | ISAK |
Jorquera et al., 2013 [32] | T = 406; DEF = 124; CEN = 134; DEL = 93; POR = 48 | DEF = 25.3 ± 4; CEN = 25.2 ± 4.7; DEL = 23.5 ± 4.1; POR = 25.1 ± 5.5 | CL. 1st división (326) and 1st B (80) | - | BAS Tanita, Kit Gaucho Pro “Mercosur” | ISAK |
Lago-Peñas et al., 2013 [34] | T = 42 | 25.0 ± 5.2 | ES. 1st División | During 1st half SEA | PLI Holtain 610 | ISAK |
Orhan et al., 2013 [38] | 1st team = 24 2nd team = 24 | 23.29 ± 2.12 25.12 ± 3.60 | TR. Süper Lig | - | PLI Holtain | ASRM |
Iga et al., 2014 [34] | T = 35 | 20 ± 4 | EN. Not specified | Start and end of pre-SEA, 1st and 2nd half and end of SEA | PLI Harpenden | ISAK |
Michailidis, 2014 [36] | T = 15 | - | GR. Super League Greece | Start and end pre-SEA, middle and end SEA | BAS Tanita BC 418, EST Seca 208, PLI Harpenden | - |
Novack et al., 2014 [87] | T = 31 | 21.48 ± 3.38 | BR. Not specified | - | DXA GE Lunar Prodigy software 8.50.093, PLI Harpenden | - |
Mascherini et al., 2015 [84] | T = 59 | 22.47 ± 5.58 | IT. Serie A | Pre-SEA start and 50 days later | BAS Akern BIA 101 Sport Edition, Measuring tape Holtain, PLI Holtain | - |
Najafi et al., 2015 [37] | T = 60 | 24.31 ± 4.20 | IR. Iran Pro League and Azadegan League | - | BAS Seca, PLI Harpenden | - |
Bekris et al., 2016 [19] | T = 24 | 24.3 ± 4.3 | GR. Super League Greece | Start preSEA, start, end 1st half and endSEA | BAS Seca 710, EST Seca, PLI Harpenden | - |
Fessi et al., 2016 [25] | T = 17 | 23.7 ± 3.2 | QA. Qatar Stars League | Start and end pre-SEA, and mid-SEA | BAS ADE Electronic Column Scales, EST Holtain, PLI Harpenden | - |
Petri et al., 2016 [42] | T = 28 | 27.88 ± 4.55 | IT. Serie A | Pre-SEA start, SEA start and end | BIO BIA 101 Sport, PLI Holtain | - |
Lopez-Taylor et al., 2018 [88] | T = 131 | 23.2 (20.5–26.8) | MX. Liga Premier | - | DXA Hologic QDR4500 Explorer software 12.1, BAS Tanita TBF 410, EST Seca 213, Bicondylar calliper Campbell 10, PLI Harpenden | ISAK |
Owen et al., 2018 [41] | T = 22 | 24.0 ± 3.7 | EU. Not specified | Start and end pre-SEA, mid-SEA, end mid-SEA transition period and end SEA | BAS CIRCA, EST CIRCA, Bicondylar calliper Gulick, PLI Harpenden | ISAK |
Zuñiga et al., 2018 [49] | T = 78; 1st DIV = 18; 1st “a” DIV = 19; 2nd DIV = 24; 3rd DIV = 17 | 1st DIV = 25.8 ± 5.2; 1st “a” DIV = 23.4 ± 1.6; 2nd DIV = 18.9 ± 1.6; 3rd DIV = 16.0 ± 0.9 | MX. Liga MX (18), Liga de Expansión MX (19), Liga Premier (24) and Liga TDP (17) | Pre-SEA | BAS Tanita Inner Scan BC 532, EST Holtain, Measuring tape Lufkin, Bicondylar caliper Campbell 10, PLI Slimguide | ISAK |
Pireva, 2019 [44] | T = 118 | - | XK. Superliga | - | BAS Tanita HD-351, EST Seca, PLI John Bull Caliper | - |
Rodríguez-Rodríguez et al., 2019 [45] | T = 339; DEF = 119; CEN = 133; DEL = 94; POR = 44 | DEF = 25.3 ± 4.8; CEN = 25.2 ± 4.8; DEL = 23.5 ± 4.1; POR = 25.1 ± 5.5 | CL. 1st división | - | Kit Gaucho Pro “Mercosur” | ISAK |
Campa et al., 2020 [85] | T = 176 | Development G = 27.4 ± 4.3; Cross-Validation G = 28.0 ± 5.0 | IT. Serie A | - | BAS Seca 877, EST Seca 217, Measuring tape Lufkin, Bicondylar caliper GMP, PLI Holtain | ISAK |
Grazioli et al., 2020 [27] | T = 23 | 26.3 ± 5.6 | BR. Brasileirão Serie A | Pre-SEA start and 63 days after quarantine | BAS Urano PP180A, PLI Slimguide | - |
Vega et al., 2020 [35] | T = 41 | - | ES. 1st División and 2nd División | 10 full SEAs | BAS Seca 719, EST Seca 213, PLI Harpenden | ISAK |
Pietraszewska et al., 2020 [43] | T = 37 | 19–30 | PL. Ekstraklasa | During competitive SEA | Anthropological instruments Siber Hegner Machinery Ltd., PLI Holtain | ISAK |
Castro Jiménez et al., 2021 [86] | T = 24 | 21.0 ± 1.9 | CO. 1st B | - | BIO InBody 770, EST Seca, Bicondylar caliper Holtain, PLI Harpenden HSK-BI | ISAK |
Kammerer López et al., 2021 [89] | T = 79 | 23.0 ± 4.4 | CO. 1st A and 1st B | During competitive SEA | DXA GE Lunar Prodigy, BAS Seca 874, EST Seca 213, Measuring tape Lufkin, Bicondylar caliper Slimguide, PLI Harpenden | ISAK |
Authors and Year | Sample Size (n) | Age (Years) | Country. Competition Category | Time of the SEA | Measuring Instruments |
---|---|---|---|---|---|
Andreoli et al., 2003 [50] | T = 48; Serie A = 16; Serie B = 14; Serie C = 18 | Serie A = 25.9 ± 4.2; Serie B = 25.1 ± 2.6; Serie C = 25.1 ± 5.7 | IT. Serie A (16), Serie B (14) and Serie C (18) | - | BAS Invernizzi, EST Invernizzi, Xitron 4000B |
Matković et al., 2003 [51] | T = 57 | 23.2 ± 3.4 | HR. Prva HNL | During competitive SEA | Body analyzer Danninger |
Dupont et al., 2004 [52] | T = 22 | 20.2 ± 0.7 | FR. Ligue 1 | During competitive SEA 1st and 2nd periods | Tanita TBF 543 |
Al-Jaser and Hasan, 2006 [53] | T = 9 | 24 ± 4.7 | KW. Not specified | 5 pre-SEA matches | Biodynamics 310e |
Clark et al., 2008 [54] | T = 42 | 26.0 ± 4.3 | EN. Football League Championship | 3 complete SEAs (pre-SEA start, mid and end SEA) | EST Seca 240, Tanita TBF 551 |
Svantesson et al., 2008 [90] | T = 17 | 24.1 ± 3.8 | SE. Allsvenskan | Spring | DXA GE Lunar Prodigy, EST Hultafors, Xitron Hydra 4200 |
Hoppe et al., 2013 [55] | T = 11 | 23.8 ± 3.0 | DE. Dritte Liga | 1st week pre-SEA | Bodystat QuadScan 4000 |
Suda et al., 2013 [56] | T = 21 | 24.7 ± 5.2 | JP. J2 League | Pre-SEA final, mid-term and SEA final | Tanita MC 190 |
Micheli et al., 2014 [57] | T = 219 | 26.1 ± 4.4 | IT. Serie A and Serie B | 1st half SEA | Akern BIA 101 |
Mascherini et al., 2015 [84] | T = 59 | 22.47 ± 5.58 | IT. Serie A | Pre-SEA start and 50 days later | Measuring tape Holtain, PLI Holtain, Akern BIA 101 Sport Edition |
Semjon et al., 2016 [58] | T = 120; central DEF = 18; full DEF = 15; central CEN = 24; wingers = 18; DEL = 34; POR = 11 | n.r.; 27.3 ± 6.2; 26.7 ± 4.8; 25.8 ± 5.3; 25.3 ± 4.2; 24.0 ± 3.6; 26.6 ± 6.5 | RC. Českou fotbalovou ligu | 6 consecutive pre-SEAs | BAS Leifheit Soehnle 7307, Tanita BC 418 MA |
Aras et al., 2017 [59] | T = 12 | 18.33 ± 0.98 | TR. Not specified | - | BAS Jawon Medical |
Requena et al., 2017 [60] | T = 19 | 26.2 ± 2.8 | ES. 1ª División | Mid SEA, SEA final and start of pre-SEA | Tanita TBF 543 |
Kafedžić et al., 2018 [61] | T = 39 | 23.5 ± 4.6 | BA. Premier League | 2 pre-SEA starts | Holton Anthropometer, Tanita BC 420SMA |
Marcos et al., 2018 [62] | T = 233 | 25.37 ± 5.06 | CY. 1st División | Start pre-SEA | EST Leicester, Tanita BC 418 MA |
Suarez-Arrones et al., 2018 [91] | T = 18 | 27.6 ± 3.0 | IT. Serie A | SEA final | DXA Hologic QDR Series Delphi A software 13.3:3, BAS OHAUS, EST Seca 213, Tanita MC-180 MAIII |
Clemente et al., 2019 [63] | T = 23 | 24.7 ± 2.8 | PT. 2nd Liga | Pre-SEA start and SEA start | EST Seca 242, Seca mBCA 515 |
Gardasevic et al., 2019 [64] | T = 70 | 22.84 ± 4.47 | ME. Prva Crnogorska Liga | SEA final | Tanita BC 418 MA |
Pietraszewska et al., 2019 [65] | T = 29 | 25.6 ± 5.8 | PL. Ekstraklasa | During competitive SEA | Akern BIA 101 Sport Edition |
Campa et al., 2020 [85] | T = 176 | Development G = 27.4 ± 4.3; Cross-Validation G = 28.0 ± 5.0 | IT. Serie A | - | BAS Seca 877, EST Seca 217, Measuring tape Lufkin, Bicondylar calliper GMP, PLI Holtain, Akern BIA 101 |
Dağcilar and Öztürk, 2020 [66] | T = 191 | 24.7 ± 5.5 | CY. 1st División | During competitive SEA | Tanita SC 330 |
Gardasevic and Bjelica, 2020 [67] | T = 53 | 22.75 ± 4.16 | XK. Superliga | SEA final | Tanita BC 418 MA |
Granero-Gil et al., 2020 [68] | T = 30 | 26.57 ± 5.56 | RU. Russian Premier League | During competitive SEA | EST Seca, Tanita SC-240 |
Książek et al., 2020 [69] | T = 26 | 27.0 ± 3.7 | PL. Ekstraklasa | Pre-SEA | Akern |
Radzimiński et al., 2020 [70] | T = 23 | 27.9 ± 4.58 | Europa League participants | 13 weeks during competitive SEA | Tanita MC-780 |
Castro Jiménez et al., 2021 [86] | T = 24 | 21.0 ± 1.9 | CO. 1st B | - | EST Seca, Bicondylar calliper Holtain, PLI Harpenden HSK-BI, Tanita BC 418 MA |
Authors and Year | Sample Size (n) | Age (Years) | Country. Competition Category | Time of the SEA | Measuring Instruments |
---|---|---|---|---|---|
Wittich et al., 2001 [72] | T = 42 | 23.2 ± 3.5 | AR. 1st División | 3 pre-SEAs | GE Lunar DPX-L software 1.33 |
Svantesson et al., 2008 [90] | T = 17 | 24.1 ± 3.8 | SE. Allsvenskan | Spring | BAS The Advanced Weighing System 31, EST Hultafors, GE Lunar Prodigy |
Reinke et al., 2009 [73] | T = 10 | 25.3 ± 5.1 | DE. Bundesliga | SEA final, final of the transitional summer period and final of the pre-SEA | GE Lunar Prodigy software Lunar enCORE 2002 |
Sutton et al., 2009 [71] | T = 64 | 26.2 ± 4.0 | EN. Premier League | - | BAS y EST Seca 702, Hologic QDR Series Discovery A software 12:4:3 |
Gerosa-Neto et al., 2014 [74] | T = 82 | 23.6 ± 4.2 | BR. Brasileirão Serie A | Pre-SEA | BAS Filizola, EST Sanny, GE Lunar DPX-MD software 4.7 |
Novack et al., 2014 [87] | T = 31 | 21.48 ± 3.38 | BR. Not specified | - | PLI Harpenden, GE Lunar Prodigy software 8.50.093 |
Milanese et al., 2015 [75] | T = 29 | 27.5 ± 4.38 | IT. Serie A | 3 full SEAs | BAS Tanita BWB-800MA, EST Harpenden, QDR Explorer W software 12.6.1 |
Milsom et al., 2015 [76] | T = 27 | 24.1 ± 3.9 | EN. Premier League | 3 full SEAs (different periods) | BAS Seca, Hologic QDR Series Discovery A |
Sánchez-Ureña et al., 2016 [77] | T = 106 | 24.53 ± 4.77 | CR. Fútbol de 1st División | - | BAS Tanita HD-313, EST Tanita, GE enCORE 2011 software 13.6 |
Devlin et al., 2017 [78] | T = 18 | 27 ± 5 | AU. A-League | Pre-SEA final | BAS Wedderburn WM203, EST Seca SE206, Hologic Discovery W |
Devlin et al., 2017b [79] | T = 18 | 25 ± 5 | AU. A-League | Pre-SEA start, SEA start, SEA middle and SEA final | BAS Wedderburn WM203, EST Seca SE206, Hologic Discovery W |
Lopez-Taylor et al., 2018 [88] | T = 131 | 23.2 (20.5–26.8) | MX. Liga Premier | - | Bicondylar caliper Campbell 10, PLI Harpenden, BAS Tanita TBF 410, EST Seca 213, Hologic QDR4500 Explorer software 12.1 |
Suarez-Arrones et al., 2018 [91] | T = 18 | 27.6 ± 3.0 | IT. Serie A | SEA final | BAS OHAUS, EST Seca 213, BIO Tanita MC-180 MAIII, Hologic QDR Series Delphi A software 13.3:3 |
Khalladi et al., 2019 [80] | T = 111 | 23.7 ± 4.8 | QA. Qatar Stars League | During competitive SEA | EST Seca 242, GE Medical SysSEA Lunar software enCORE 12.10 |
Randell et al., 2019 [81] | T = 16 | 25 ± 4 26 ± 4 | ES. 1st División | 2 consecutive pre-SEAs | GE Lunar iDXA |
Suarez-Arrones et al., 2019 [82] | T = 10 | 27.3 ± 2.8 | IT. Serie A | SEA final, start and pre-SEA final | BAS OHAUS, EST Seca 213, Hologic QDR Series Delphi A software 13.3:3 |
McEwan et al., 2020 [83] | T = 20 | 25.1 ± 4.1 | ES. 1st División | Start and end of two pre-SEAs | GE Lunar |
Kammerer López et al., 2021 [89] | T = 79 | 23.0 ± 4.4 | CO. 1st A y 1st B | During competitive SEA | Measuring tape Lufkin, Bicondylar caliper Slimguide, PLI Harpenden, BAS Seca 874, EST Seca 213, GE Lunar Prodigy |
Authors and Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total * |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al-Hazzaa et al., 2001 [18] | 1 | 0 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 0 | 4 |
Al-Jaser and Hasan, 2006 [53] | 1 | 0 | 1 | 1 | 0 | - | 1 | 1 | 0 | 1 | 1 | 7 |
Andreoli et al., 2003 [50] | 1 | 0 | 0 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 4 |
Aras et al., 2017 [59] | 1 | 0 | 0 | 1 | 0 | - | 0 | 0 | 0 | 1 | 0 | 3 |
Bekris et al., 2016 [19] | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 7 |
Boone et al., 2012 [20] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 5 |
Campa et al., 2020 [85] | 1 | 0 | 0 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 4 |
Carling and Orhant, 2010 [21] | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 8 |
Casajús, 2001 [22] | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 7 |
Castro Jiménez et al., 2021 [86] | 1 | 1 | 0 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 5 |
Chaouachi et al., 2012 [23] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 5 |
Clark et al., 2008 [54] | 1 | 1 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 7 |
Clemente et al., 2019 [63] | 1 | 1 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 7 |
Dağcilar and Öztürk, 2020 [66] | 1 | 0 | 1 | 1 | 0 | - | 1 | 0 | 0 | 1 | 0 | 5 |
Devlin et al., 2017 [78] | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 6 |
Devlin et al., 2017b [79] | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 7 |
Dey et al., 2010 [24] | 1 | 1 | 0 | 1 | 0 | - | 0 | 0 | 0 | 1 | 0 | 4 |
Dupont et al., 2004 [52] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 6 |
Fessi et al., 2016 [25] | 1 | 0 | 1 | 1 | 0 | - | 1 | 1 | 0 | 1 | 1 | 7 |
Filaire et al., 2003 [26] | 1 | 1 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 1 | 6 |
Gardasevic and Bjelica, 2020 [67] | 1 | 0 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 0 | 4 |
Gardasevic et al., 2019 [64] | 1 | 0 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 0 | 4 |
Gerosa-Neto et al., 2014 [74] | 1 | 0 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 0 | 4 |
Granero-Gil et al., 2020 [68] | 1 | 1 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 0 | 5 |
Grazioli et al., 2020 [27] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 6 |
Gutierrez and Monroy, 2005 [28] | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 6 |
Hazir, 2010 [29] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | - | 5 |
Henríquez-Olguín et al., 2013 [30] | 1 | 0 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 1 | 5 |
Hoppe et al., 2013 [55] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 5 |
Iga et al., 2014 [34] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 6 |
Jorquera et al., 2013 [32] | 1 | 0 | 0 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 4 |
Kafedžić et al., 2018 [61] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 6 |
Kalapotharakos et al., 2011 [33] | 1 | 0 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 1 | 5 |
Kammerer López et al., 2021 [89] | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 7 |
Khalladi et al., 2019 [80] | 1 | 1 | 1 | 1 | 0 | - | 1 | 0 | 0 | 1 | 0 | 6 |
Książek et al., 2020 [69] | 1 | 1 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 6 |
Lago-Peñas et al., 2013 [34] | 1 | 1 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 6 |
Lopez-Taylor et al., 2018 [88] | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 6 |
Marcos et al., 2018 [62] | 1 | 1 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 6 |
Mascherini et al., 2015 [84] | 1 | 1 | 1 | 1 | 0 | - | 1 | 1 | 0 | 1 | 1 | 8 |
Matković et al., 2003 [51] | 1 | 0 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 0 | 4 |
McEwan et al., 2020 [83] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 6 |
Michailidis, 2014 [36] | 1 | 0 | 1 | 1 | 0 | - | 1 | 1 | 0 | 1 | 1 | 7 |
Micheli et al., 2014 [57] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 5 |
Milanese et al., 2015 [75] | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 8 |
Milsom et al., 2015 [76] | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 7 |
Najafi et al., 2015 [37] | 1 | 0 | 0 | 1 | 0 | - | 0 | 0 | 0 | 1 | 0 | 3 |
Novack et al., 2014 [87] | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 6 |
Orhan et al., 2013 [38] | 1 | 0 | 0 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 4 |
Ostojic. 2003 [39] | 1 | 0 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 1 | 5 |
Owen et al., 2012 [40] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 5 |
Owen et al., 2018 [41] | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 7 |
Petri et al., 2016 [42] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 6 |
Pietraszewska et al., 2019 [65] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 5 |
Pietraszewska et al., 2020 [43] | 1 | 1 | 0 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 5 |
Pireva, 2019 [44] | 1 | 1 | 0 | 1 | 0 | - | 0 | 0 | 0 | 1 | 0 | 4 |
Radzimiński et al., 2020 [70] | 1 | 1 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 7 |
Randell et al., 2019 [81] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 6 |
Reinke et al., 2009 [73] | 1 | 0 | 1 | 1 | 0 | - | 0 | 0 | 0 | 1 | 1 | 5 |
Requena et al., 2017 [60] | 1 | 0 | 1 | 1 | 0 | - | 1 | 1 | 0 | 1 | 1 | 7 |
Rodríguez-Rodríguez et al., 2019 [45] | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 6 |
Sánchez-Ureña et al., 2016 [77] | 1 | 0 | 0 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 4 |
Semjon et al., 2016 [58] | 1 | 1 | 1 | 1 | 0 | - | 1 | 0 | 0 | 1 | 1 | 8 |
Sotiropoulos et al., 2009 [46] | 1 | 1 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 6 |
Sporis et al., 2009 [47] | 1 | 1 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 7 |
Suarez-Arrones et al., 2018 [91] | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 6 |
Suarez-Arrones et al., 2019 [82] | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 8 |
Suda et al., 2013 [56] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 6 |
Sutton et al., 2009 [71] | 1 | 0 | 0 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 4 |
Svantesson et al., 2008 [90] | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 6 |
Vega et al., 2020 [35] | 1 | 1 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 1 | 7 |
Voutselas et al., 2007 [48] | 1 | 0 | 0 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 4 |
Wittich et al., 2001 [72] | 1 | 0 | 1 | 1 | 0 | - | 1 | 0 | 1 | 1 | 1 | 7 |
Zuñiga et al., 2018 [49] | 1 | 0 | 1 | 1 | 0 | - | 0 | 1 | 0 | 1 | 0 | 5 |
Authors | G | M | CI 95% | Weight (%) | M | CI95% | p | |
---|---|---|---|---|---|---|---|---|
Age | ||||||||
Anthropometry | [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,37,38,39,40,41,42,43,45,46,47,48,49,84,85,86,87,88,89] | 48 | 24.20 | 23.45; 24.95 | 49.3 | 24.50 | 24.04; 24.97 | 0.45 |
BIA | [50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,84,85,86,90,91] | 35 | 24.79 | 24.02; 25.56 | 34.1 | |||
DXA | [71,72,73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91] | 17 | 24.78 | 23.90; 25.67 | 16.7 | |||
Height | ||||||||
Anthropometry | [18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34,35,37,38,39,40,41,42,43,44,45,46,47,48,49,84,85,86,87,88,89] | 120 | 179.01 | 178.32; 179.70 | 58.4 | 179.76 | 179.22; 180.30 | <0.01 |
BIA | [50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,84,85,86,90,91] | 52 | 181.17 | 180.17; 182.16 | 24.1 | |||
DXA | [71,72,73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91] | 38 | 180.37 | 178.91; 181.83 | 17.5 | |||
Weight | ||||||||
Anthropometry | [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,84,85,86,87,88,89] | 70 | 75.60 | 74.57; 76.62 | 56.8 | 76.27 | 75.51; 77.03 | 0.11 |
BIA | [50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,84,85,86,90,91] | 38 | 77.08 | 75.88; 78.27 | 30.5 | |||
DXA | [71,72,73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91] | 16 | 77.41 | 74.41; 80.19 | 12.7 | |||
Fat mass kilograms | ||||||||
Anthropometry | [34,41,44,45,89] | 14 | 14.72 | 12.82; 16.61 | 40.7 | 12.48 | 11.41; 13.55 | <0.01 |
BIA | [50,56,57,65,69,85] | 9 | 12.03 | 10.41; 13.66 | 25.6 | |||
DXA | [72,73,74,75,76,78,79,81,82,83,87,89] | 12 | 10.07 | 9.35; 10.79 | 33.7 | |||
Fat mass percentage | ||||||||
Anthropometry | [18,19,20,21,22,23,24,25,26,27,28,31,33,34,35,36,37,39,44,46,47,48,87,88,89] | 44 | 10.60 | 9.73; 11.47 | 44.8 | 11.85 | 11.28; 12.43 | <0.01 |
BIA | [50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,85,86,90,91] | 40 | 12.60 | 11.76; 13.44 | 38.4 | |||
DXA | [71,72,73,74,75,76,77,78,79,80,81,82,83,87,88,89,90,91] | 17 | 13.46 | 12.20; 14.73 | 16.8 | |||
Fat-Free mass kilograms | ||||||||
Anthropometry | [21,22,36,39,41,42,44] | 9 | 69.44 | 67.56; 71.32 | 22.9 | 66.10 | 64.65; 67.55 | <0.01 |
BIA | [50,51,56,57,65,66,69,84,85,90] | 13 | 66.31 | 64.67; 67.96 | 37.2 | |||
DXA | [72,73,74,75,76,77,80,81,82,83,87,89,90] | 14 | 63.91 | 61.09; 66.74 | 39.9 | |||
Fat-Free mass percentage | ||||||||
BIA | [63,65,69] | 3 | 82.77 | 75.55; 89.98 | 48.9 | 82.36 | 80.30; 84.42 | 0.59 |
DXA | [71,72,89] | 3 | 81.84 | 79.84; 83.81 | 51.1 | |||
Muscle mass kilograms | ||||||||
Anthropometry | [34,44,45,89] | 7 | 38.45 | 36.17; 40.73 | 48.7 | 39.28 | 37.34; 41.23 | 0.37 |
BIA | [64,65,67,69,86] | 8 | 40.05 | 36.46; 43.64 | 51.3 | |||
Muscle mass percentage | ||||||||
Anthropometry | [28,34,44,89] | 4 | 50.21 | 45.45; 54.97 | 57.3 | 52.03 | 46.90; 57.17 | 0.38 |
BIA | [61,65,69] | 3 | 54.49 | 34.67; 74.31 | 42.7 |
Authors | G | M | CI 95% | Weight (%) | M | CI95% | p | |
---|---|---|---|---|---|---|---|---|
Fat mass | ||||||||
Equation (1) | [22,89] | 3 | 8.19 | 7.24; 9.15 | 8.5 | 10.19 | 9.41; 10.97 | <0.01 |
Equation (3) | [19,21,23,24,25,26,31,48,87,89] | 13 | 12.18 | 11.06; 13.30 | 35.9 | |||
Equation (6) | [27,34,37,89] | 4 | 11.16 | 10.42; 11.9 | 11.3 | |||
Equation (9) | [36,39,46,47,87,89] | 6 | 9.54 | 7.45; 11.62 | 16.8 | |||
Equation (11) | [33,87] | 2 | 9.23 | −6.33; 24.78 | 5.3 | |||
Equation (20) | [31,88,89] | 2 | 10.02 | 9.77; 10.27 | 5.7 | |||
Equation (26) | [87,88] | 6 | 7.14 | 6.87; 7.41 | 16.6 | |||
Sum of skinfold | ||||||||
Equation (5) | [22,32,34,45] | 11 | 52.18 | 49.49; 54.87 | 78.4 | 53.95 | 51.19; 56.70 | <0.01 |
Equation (6) | [31,40,41] | 4 | 59. 93 | 55.34; 64.52 | 21.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastiá-Rico, J.; Soriano, J.M.; González-Gálvez, N.; Martínez-Sanz, J.M. Body Composition of Male Professional Soccer Players Using Different Measurement Methods: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 1160. https://doi.org/10.3390/nu15051160
Sebastiá-Rico J, Soriano JM, González-Gálvez N, Martínez-Sanz JM. Body Composition of Male Professional Soccer Players Using Different Measurement Methods: A Systematic Review and Meta-Analysis. Nutrients. 2023; 15(5):1160. https://doi.org/10.3390/nu15051160
Chicago/Turabian StyleSebastiá-Rico, Jaime, Jose M. Soriano, Noelia González-Gálvez, and José Miguel Martínez-Sanz. 2023. "Body Composition of Male Professional Soccer Players Using Different Measurement Methods: A Systematic Review and Meta-Analysis" Nutrients 15, no. 5: 1160. https://doi.org/10.3390/nu15051160
APA StyleSebastiá-Rico, J., Soriano, J. M., González-Gálvez, N., & Martínez-Sanz, J. M. (2023). Body Composition of Male Professional Soccer Players Using Different Measurement Methods: A Systematic Review and Meta-Analysis. Nutrients, 15(5), 1160. https://doi.org/10.3390/nu15051160