Nutrients, Phytochemicals and In Vitro Disease Prevention of Nephelium hypoleucum Kurz Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection, Preparation and Extraction
2.2. Determination of Nutrients
2.3. Determination of Organic Acids
2.4. Determination of Phenolic Profile
2.5. Determination of Antioxidant Activities
2.6. Determination of Enzyme Inhibitory Activities
2.7. Statistical Analysis
3. Results
3.1. Nutrional Compositions
3.2. Organic Acid and Phenolic Profiles
3.3. Antioxidant Potentials
3.4. Enzyme Inhibitory Properties
3.5. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Limpawattana, M. Determination of Antioxidant Activity and Total Phenolics of Selected Thai Honeys. In Proceedings of the 39th Proceedings of Congress on Science and Technology of Thailand, Bangkok, Thailand, 21–23 October 2013; pp. 1–4. [Google Scholar]
- Maisuthisakul, P.; Suttajit, M.; Pongsawatmanit, R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 2007, 100, 1409–1418. [Google Scholar] [CrossRef]
- Huang, G.-J.; Wang, B.-S.; Lin, W.-C.; Huang, S.-S.; Lee, C.-Y.; Yen, M.-T.; Huang, M.-H. Antioxidant and Anti-Inflammatory Properties of Longan (Dimocarpus longan Lour.) Pericarp. Evid.-Based Complement. Altern. Med. 2012, 2012, 709483. [Google Scholar] [CrossRef]
- Jiang, G.; Jiang, Y.; Yang, B.; Yu, C.; Tsao, R.; Zhang, H.; Chen, F. Structural Characteristics and Antioxidant Activities of Oligosaccharides from Longan Fruit Pericarp. J. Agric. Food Chem. 2009, 57, 9293–9298. [Google Scholar] [CrossRef]
- Prasad, K.N.; Yang, B.; Shi, J.; Yu, C.; Zhao, M.; Xue, S.; Jiang, Y. Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction. J. Pharm. Biomed. Anal. 2010, 51, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Thitilertdecha, N.; Teerawutgulrag, A.; Rakariyatham, N. Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts. LWT Food Sci. Technol. 2008, 41, 2029–2035. [Google Scholar] [CrossRef]
- Xu, X.; Xie, H.; Hao, J.; Jiang, Y.; Wei, X. Flavonoid Glycosides from the Seeds of Litchi chinensis. J. Agric. Food Chem. 2011, 59, 1205–1209. [Google Scholar] [CrossRef]
- Prasad, K.N.; Yang, B.; Yang, S.; Chen, Y.; Zhao, M.; Ashraf, M.; Jiang, Y. Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem. 2009, 116, 1–7. [Google Scholar] [CrossRef]
- Welzen, V. Sapindaceae. In Flora of Thailand; Santisuk, T., Larsen, K., Eds.; The Forest Herbarium, Royal Forest Department: Bangkok, Thailand, 1999; Volume 7. [Google Scholar]
- Horwitz, W. Official Methods of Analysis of AOAC International, 13th ed.; AOAC International: Washington, DC, USA, 1980; pp. 763–764. [Google Scholar]
- Horwitz, W. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Rockville, ML, USA, 2019. [Google Scholar]
- Devries, J.W.; Keagy, P.M.; Hudson, C.A.; Rader, J.I. AACC collaborative study of a method for determining total folate in cereal products-microbiological assay using trienzyme extraction (AACC method 86-47). Cereal Foods World 2001, 46, 216–219. [Google Scholar]
- Wimalasiri, P.; Wills, R.B.H. Simultaneous analysis of thiamin and riboflavin in foods by high-performance liquid chromatography. J. Chromatogr. A 1985, 318, 412–416. [Google Scholar] [CrossRef]
- Odriozola-Serrano, I.; Hernández-Jover, T.; Martín-Belloso, O. Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chem. 2007, 105, 1151–1158. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. HPLC organic acid analysis in different citrus juices under reversed phase conditions. Not. Bot. Horti Agrobot. Cluj Napoca 2010, 38, 44–48. [Google Scholar]
- Sirichai, P.; Kittibunchakul, S.; Thangsiri, S.; On-Nom, N.; Chupeerach, C.; Temviriyanukul, P.; Inthachat, W.; Nuchuchua, O.; Aursalung, A.; Sahasakul, Y.; et al. Impact of Drying Processes on Phenolics and In Vitro Health-Related Activities of Indigenous Plants in Thailand. Plants 2022, 11, 294. [Google Scholar] [CrossRef]
- Chupeerach, C.; Temviriyanukul, P.; Thangsiri, S.; Inthachat, W.; Sahasakul, Y.; Aursalung, A.; Wongchang, P.; Sangkasa-Ad, P.; Wongpia, A.; Polpanit, A.; et al. Phenolic Profiles and Bioactivities of Ten Original Lineage Beans in Thailand. Foods 2022, 11, 3905. [Google Scholar] [CrossRef]
- Sripum, C.; Kukreja, R.K.; Charoenkiatkul, S.; Kriengsinyos, W.; Suttisansanee, U. The effect of extraction conditions on an-tioxidant activities and total phenolic contents of different processed Thai Jasmine rice. Int. Food Res. J. 2017, 24, 1644–1650. [Google Scholar]
- Elkady, W.M.; Ayoub, I.M.; Abdel-Mottaleb, Y.; ElShafie, M.F.; Wink, M. Euryops pectinatus L. Flower Extract Inhibits P-glycoprotein and Reverses Multi-Drug Resistance in Cancer Cells: A Mechanistic Study. Molecules 2020, 25, 647. [Google Scholar] [CrossRef]
- Temviriyanukul, P.; Kittibunchakul, S.; Trisonthi, P.; Inthachat, W.; Siriwan, D.; Suttisansanee, U. Analysis of Phytonutrients, Anti-Mutagenic and Chemopreventive Effects of Tropical Fruit Extracts. Foods 2021, 10, 2600. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.Y.M.; Mansour, S.M.; Elkady, W.M. Phytochemical profile and protective effect of Ocimum basilicum aqueous extract in doxorubicin/irradiation-induced testicular injury. J. Pharm. Pharmacol. 2019, 72, 101–110. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Pongkunakorn, T.; Watcharachaisoponsiri, T.; Chupeerach, C.; On-Nom, N.; Suttisansanee, U. Inhibitions of key enzymes relevant to obesity and diabetes of thai local mushroom extracts. Curr. Appl. Sci. Technol. 2017, 17, 181–190. [Google Scholar]
- Promyos, N.; Temviriyanukul, P.; Suttisansanee, U. Evaluation of α-glucosidase inhibitory assay using different sub-classes of flavonoids. Curr. Appl. Sci. Technol. 2017, 17, 172–180. [Google Scholar]
- Suttisansanee, U.; Kunkeaw, T.; Thatsanasuwan, N.; Tonglim, J.; Temviriyanukul, P. The Investigation on Cholinesterases and BACE1 Inhibitory Activities in Various Tea Infusions. Walailak J. Sci. Technol. 2019, 16, 165–174. [Google Scholar] [CrossRef]
- Schwager, S.L.; Carmona, A.K.; Sturrock, E.D. A high-throughput fluorimetric assay for angiotensin I-converting enzyme. Nat. Protoc. 2006, 1, 1961–1964. [Google Scholar] [CrossRef]
- Judprasong, K.; Puwastien, P.; Rojroongwasinkul, N.; Nitithamyong, A.; Somjai, A. Thai Food Composition Database, Online Version 2, September 2018; Institute of Nutrition, Mahidol University: Nakhon Pathom, Thailand, 2015. [Google Scholar]
- Liu, T.-T.; Liu, X.-T.; Chen, Q.-X.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef]
- Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 2022, 21, 1049–1079. [Google Scholar] [CrossRef]
- Neumiller, J.J.; Wood, L.; Campbell, R.K. Dipeptidyl Peptidase-4 Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2010, 30, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharmacal Res. 2013, 36, 375–399. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev. 2014, 43, 6765–6813. [Google Scholar] [CrossRef]
- Chakraborty, R.; Roy, S. Angiotensin-converting enzyme inhibitors from plants: A review of their diversity, modes of action, prospects, and concerns in the management of diabetes-centric complications. J. Integr. Med. 2021, 19, 478–492. [Google Scholar] [CrossRef]
- Thai Recommended Daily Intakes (Thai RDIs). Appendix No.3. In MOPH Notification No. 182 B.E. 2541 Re: Nutrition Labelling; Royal Thai Government Gazette: Nonthaburi, Thailand, 1998. [Google Scholar]
- Kong, F.C.; Adzahan, N.M.; Karim, R.; Rukayadi, Y.; Ghazali, H.M. Selected Physicochemical Properties of Registered Clones and Wild Types Rambutan (Nephelium lappaceum L.) Fruits and Their Potentials in Food Products. Sains Malays. 2018, 47, 1483–1490. [Google Scholar] [CrossRef]
- Wang, H.C.; Huang, H.B.; Huang, X.M.; Hu, Z.Q. Sugar and acid compositions in the arils of Litchi chinensis Sonn.: Cultivar differences and evidence for the absence of succinic acid. J. Hortic. Sci. Biotechnol. 2006, 81, 57–62. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Dong, J.; Zhu, L.; Wang, Y.; Hu, G.; Shi, S. Inheritance of Fruit Weight, Size and Organic Acid Content in a Distant Hybrid Population of Longan ‘Huanongzao’ and Lychee ‘Ziniangxi’. Horticulturae 2022, 8, 999. [Google Scholar] [CrossRef]
- Zhang, R.; Zeng, Q.; Deng, Y.; Zhang, M.; Wei, Z.; Zhang, Y.; Tang, X. Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chem. 2013, 136, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Khan, S.A.; Lin, Y.; Guo, D.; Pan, X.; Liu, L.; Wei, Z.; Zhang, Y.; Deng, Y.; Zhang, M. Phenolic profiles and cellular antioxidant activity of longan pulp of 24 representative Chinese cultivars. Int. J. Food Prop. 2018, 21, 746–759. [Google Scholar] [CrossRef]
- Ahn, H.-Y.; Cho, H.-D.; Cho, Y.-S. Comparison of antioxidant effect and phenolic compounds in tropical fruits. SN Appl. Sci. 2020, 2, 1120. [Google Scholar] [CrossRef]
- Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 2011, 44, 391–396. [Google Scholar] [CrossRef]
- Rakariyatham, K.; Liu, X.; Liu, Z.; Wu, S.; Shahidi, F.; Zhou, D.; Zhu, B. Improvement of Phenolic Contents and Antioxidant Activities of Longan (Dimocarpus longan) Peel Extracts by Enzymatic Treatment. Waste Biomass Valorization 2020, 11, 3987–4002. [Google Scholar] [CrossRef]
- Sun, J.; Peng, H.; Su, W.; Yao, J.; Long, X.; Wang, J. Anthocyanins Extracted from Rambutan (Nephelium lappaceum L.) Pericarp Tissues as Potential Natural Antioxidants. J. Food Biochem. 2011, 35, 1461–1467. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, Z.-Q.; Zhang, X.-L.; Wu, Z.-X.; Yin, H.-F.; Pang, X.-Q. Reduction in Activity/Gene Expression of Anthocyanin Degradation Enzymes in Lychee Pericarp is Responsible for the Color Protection of the Fruit by Heat and Acid Treatment. J. Integr. Agric. 2013, 12, 1694–1702. [Google Scholar] [CrossRef]
- Wen, L.; Yang, B.; Cui, C.; You, L.; Zhao, M. Ultrasound-Assisted Extraction of Phenolics from Longan (Dimocarpus longan Lour.) Fruit Seed with Artificial Neural Network and Their Antioxidant Activity. Food Anal. Methods 2012, 5, 1244–1251. [Google Scholar] [CrossRef]
- Suttisansanee, U.; Thiyajai, P.; Chalermchaiwat, P.; Wongwathanarat, K.; Pruesapan, K.; Charoenkiatkul, S.; Temviriyanukul, P. Phytochemicals and In Vitro Bioactivities of Aqueous Ethanolic Extracts from Common Vegetables in Thai Food. Plants 2021, 10, 1563. [Google Scholar] [CrossRef] [PubMed]
- Velderrain-Rodríguez, G.R.; Torres-Moreno, H.; Villegas-Ochoa, M.A.; Ayala-Zavala, J.F.; Robles-Zepeda, R.E.; Wall-Medrano, A.; González-Aguilar, G.A. Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of ‘Ataulfo’ Mango Peel on LS180 Cells. Molecules 2018, 23, 695. [Google Scholar] [CrossRef] [PubMed]
- Limanto, A.; Simamora, A.; Santoso, A.W.; Timotius, K.H. Antioxidant, α-Glucosidase Inhibitory Activity and Molecular Docking Study of Gallic Acid, Quercetin and Rutin: A Comparative Study. Mol. Cell Biomed. Sci. 2019, 3, 67. [Google Scholar] [CrossRef]
- Fan, J.; Johnson, M.H.; Lila, M.A.; Yousef, G.; de Mejia, E.G. Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management. Evid. Based Complement. Altern. Med. 2013, 2013, 479505. [Google Scholar] [CrossRef]
- Okello, E.J.; Leylabi, R.; McDougall, G.J. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food Funct. 2012, 3, 651–661. [Google Scholar] [CrossRef]
- Orhan, I.; Kartal, M.; Tosun, F.; Şener, B. Screening of Various Phenolic Acids and Flavonoid Derivatives for their Anticholinesterase Potential. Z. Naturforsch. C. J. Biosci. 2007, 62, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Youn, K.; Jun, M. Inhibitory Effects of Key Compounds Isolated from Corni fructus on BACE1 Activity. Phytother. Res. 2012, 26, 1714–1718. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Chen, X.; Liu, J.; Ma, Q.; Zhuo, Z.; Chen, H.; Zhou, L.; Yang, S.; Zheng, L.; Ning, C.; et al. Gallic acid disruption of Aβ(1–42) aggregation rescues cognitive decline of APP/PS1 double transgenic mouse. Neurobiol. Dis. 2019, 124, 67–80. [Google Scholar] [CrossRef]
- Kang, N.; Lee, J.-H.; Lee, W.; Ko, J.-Y.; Kim, E.-A.; Kim, J.-S.; Heu, M.-S.; Kim, G.H.; Jeon, Y.-J. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ. Toxicol. Pharm. 2015, 39, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-F.; Wang, W.-J.; Yin, Z.-P.; Zheng, G.-D.; Chen, J.-G.; Li, J.-E.; Chen, L.-L.; Zhang, Q.-F. Quercetin is a promising pancreatic lipase inhibitor in reducing fat absorption in vivo. Food Biosci. 2021, 43, 101248. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, A.I.; Alvarez-Parrilla, E.; Díaz-Sánchez, G.; De La Rosa, L.A.; Núñez-Gastélum, J.A.; Vazquez-Flores, A.A.; Gonzalez-Aguilar, G.A. In Vitro Inhibition of Pancreatic Lipase by Polyphenols: A Kinetic, Fluorescence Spectroscopy and Molecular Docking Study. Food Technol. Biotechnol. 2017, 55, 519–530. [Google Scholar] [CrossRef]
- Li, S.; Pan, J.; Hu, X.; Zhang, Y.; Gong, D.; Zhang, G. Kaempferol inhibits the activity of pancreatic lipase and its synergistic effect with orlistat. J. Funct. Foods 2020, 72, 104041. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, G.; De La Rosa, L.A.; Jaimes, I.B.; Vazquez-Flores, A.A.; Alvarez-Parrilla, E. Inhibition of pancreatic lipase by flavonoids: Relevance of the C2=C3 double bond and C-ring planarity. Biotecnia 2020, 22, 50–60. [Google Scholar] [CrossRef]
Assay | Assay Components | ||||
---|---|---|---|---|---|
Enzyme | Substrate | Indicator | Extract | Detection Wavelength | |
Lipase | 100 µL of 20 µg/mL lipase 1 | 50 μL of 0.2 mM DMPTB | 10 µL of 16 mM DTNB | 40 µL | 412 nm |
BChE | 100 μL of 1.5 µg/mL BChE 2 | 50 μL of 0.4 mM BCh | |||
AChE | 100 μL of 0.25 µg/mL AChE 3 | 50 μL of 0.32 mM ACh | |||
DPP-IV | 50 µL of 0.02 U/mL DPP-IV 4 | 25 µL of 12 mM Gly-Pro-pNA + 100 µL Tris-HCl (pH 8) | 25 µL | 405 nm | |
α-Glucosidase | 10 µL of 0.2 U/mL α-glucosidase 5 | 25 µL of 10 mM pNPG + 160 µL KPB (pH 7) | 5 µL | ||
α-Amylase | 100 µL of 50 mg/mL α-amylase 6 | 50 µL of 30 mM pNPM | 50 µL | ||
BACE-1 | BACE-1 FRET assay kit (Sigma-Aldrich, St. Louis, MO, USA) following manufacturer’s recommendations | λex = 320 nm λem = 405 nm |
Nutrients | Nephelium hypoleucum Kurz | Lychees | Rambutans | Longans | ||||
---|---|---|---|---|---|---|---|---|
per 100 g FW | per 100 g DW | per 100 g FW a | per 100 g DW b | per 100 g FW a | per 100 g DW b | per 100 g FW a | per 100 g DW b | |
Energy (kcal) | 74.70 ± 0.68 | 396.61 ± 0.71 | 65.68 c | 388.64 c | 76.82 | 393.95 | 79.07 c | 387.60 c |
Moisture (g) | 81.17 ± 0.21 | 0.00 | 83.1 | 0.00 | 80.5 | 0.00 | 79.6 | 0.00 |
Protein (g) | 0.78 ± 0.01 | 4.14 ± 0.01 | 0.96 | 5.68 | 0.97 | 4.97 | 1.17 | 5.74 |
Fat (g) | 0.32 ± 0.02 | 1.70 ± 0.12 | 0.16 | 0.95 | 0.14 | 0.72 | 0.11 | 0.54 |
Carbohydrate (g) | 17.18 ± 0.21 | 91.19 ± 0.10 | 15.1 d | 89.35 d | 17.92 | 91.90 | 18.35 d | 89.95 d |
TDF (g) | 5.59 ± 0.04 | 29.66 ± 0.56 | 1.20 | 7.10 | NA | NA | 1.00 | 4.90 |
SDF (g) | 0.57 ± 0.03 | 3.00 ± 0.17 | NA | NA | NA | NA | NA | NA |
IDF (g) | 5.02 ± 0.02 | 26.66 ± 0.40 | NA | NA | NA | NA | NA | NA |
Total Sugar (g) | 10.22 ± 0.37 | 54.25 ± 2.58 | 17.95 | 106.21 | NA | NA | NA | NA |
Glucose (g) | 3.76 ± 0.16 | 19.97 ± 1.07 | NA | NA | NA | NA | NA | NA |
Fructose (g) | 4.59 ± 0.15 | 24.38 ± 1.06 | NA | NA | NA | NA | NA | NA |
Sucrose (g) | 1.87 ± 0.06 | 9.91 ± 0.45 | NA | NA | NA | NA | NA | NA |
Ash (g) | 0.56 ± 0.01 | 2.97 ± 0.02 | 0.65 | 3.85 | 0.46 | 2.36 | 0.73 | 3.58 |
Vitamins | ||||||||
B1 (mg) | 0.02 ± 0.00 | 0.11 ± 0.00 | 0.02 | 0.12 | 0.01 | 0.05 | 0.01 | 0.05 |
B2 (mg) | 0.02 ± 0.00 | 0.11 ± 0.00 | 0.10 | 0.59 | 0.08 | 0.41 | 0.06 | 0.29 |
B3 (mg) | 0.28 ± 0.03 | 1.46 ± 0.15 | 1.02 | 6.04 | 0.78 | 4.00 | 0.83 | 4.07 |
B5 (mg) | 0.03 ± 0.01 | 0.13 ± 0.03 | NA | NA | NA | NA | NA | NA |
B6 (mg) | 0.03 ± 0.00 | 0.16 ± 0.00 | NA | NA | NA | NA | NA | NA |
B7 (µg) | 2.00 ± 0.00 | 10.62 ± 0.12 | NA | NA | NA | NA | NA | NA |
B9 (µg DFE) | 7.88 ± 0.63 | 41.79 ± 2.86 | NA | NA | NA | NA | NA | NA |
B12 (mg) | 0.37 ± 0.02 | 1.94 ± 0.06 | NA | NA | NA | NA | NA | NA |
C (mg) | 11.56 ± 1.06 | 61.34 ± 4.96 | 30 | 177.51 | 46 | 235.90 | 68 | 333.33 |
Minerals | ||||||||
K (mg) | 215.82 ± 6.44 | 1146.16 ± 46.70 | 214 | 1266.27 | 146 | 748.72 | 244 | 1196.08 |
Na (mg) | 30.70 ± 1.87 | 162.94 ± 8.16 | 1 | 5.92 | 14 | 71.79 | 6 | 29.41 |
Ca (mg) | 18.88 ± 0.23 | 100.21 ± 0.10 | 6 | 35.50 | 15 | 76.92 | 7 | 34.31 |
P (mg) | 9.81 ± 0.77 | 52.12 ± 4.66 | 31 | 183.43 | 17 | 87.17 | 36 | 176.47 |
Mg (mg) | 5.25 ± 0.17 | 27.88 ± 1.21 | 12 | 71.01 | NA | NA | NA | NA |
Fe (mg) | 0.24 ± 0.02 | 1.25 ± 0.09 | 0.62 | 3.67 | 0.5 | 2.56 | 0.36 | 1.76 |
Zn (mg) | 0.20 ± 0.01 | 1.06 ± 0.06 | 0.78 | 4.62 | 0.13 | 0.67 | 0.15 | 0.74 |
Organic Acids | Content (g) | |
---|---|---|
Per 100 g Fresh Weight | Per 100 g Dry Weight | |
Oxalic acid | 6.64 ± 0.58 | 1.25 ± 0.11 |
Formic acid | 3.90 ± 0.12 | 0.73 ± 0.02 |
Ascorbic acid | 1.13 ± 0.06 | 0.21 ± 0.01 |
Acetic acid | 2.33 ± 0.16 | 0.44 ± 0.03 |
Malic acid | 0.06 ± 0.00 | 0.01 ± 0.00 |
Citric acid | 181.16 ± 5.10 | 34.13 ± 0.96 |
Succinic acid | ND | ND |
Propionic acid | ND | ND |
Bioactive Compounds | Fruit Parts | ||
---|---|---|---|
Aril | Pericarp | Seed | |
Phenolics (µg/g) | |||
Gallic acid | 100.19 ± 7.76 c | 746.36 ± 52.98 b | 2415.32 ± 54.77 a |
Rutin | 2.78 ± 0.16 b | 4.56 ± 0.44 a | 2.02 ± 0.13 b |
Luteotin | 60.42 ± 0.35 b | 80.36 ± 0.29 a | ND |
Quercetin | 366.04 ± 2.90 a | 241.79 ± 16.97 b | 93.73 ± 4.68 c |
Naringenin | 0.74 ± 0.01 c | 5.52 ± 0.50 b | 22.66 ± 0.85 a |
Kaempferol | 168.19 ± 12.34 a | 32.95 ± 0.60 b | ND |
Isorhamnetin | 4.87 ± 0.31 a | 4.59 ± 0.20 a | ND |
TPCs (mg GAE/g DW) | 8.66 ± 0.56 c | 18.53 ± 0.81 b | 149.45 ± 2.92 a |
TFCs (mg QE/g DW) | 0.56 ± 0.02 b | 0.17 ± 0.01 c | 0.72 ± 0.07 a |
TACs (mg C3GE/g DW) | ND | 0.21 ± 0.01a | ND |
Antioxidant Activities | Fruit Parts | ||
---|---|---|---|
Aril | Pericarp | Seed | |
DPPH radical scavenging assay (µmol TE/100 g DW) | 1.52 ± 0.04 c | 3.35 ± 0.09 b | 33.21 ± 0.78 a |
FRAP assay (µmol TE/g DW) | 75.99 ± 5.89 c | 194.01 ± 9.56 b | 1307.59 ± 68.51 a |
ORAC assay (µmol TE/g DW) | 129.37 ± 10.89 c | 568.75 ± 35.63 b | 741.79 ± 54.30 a |
In Vitro Health Properties (% Inhibition) | Fruit Parts | |||
---|---|---|---|---|
Aril | Pericarp | Seed | ||
Obesity | Lipase 1 | 51.59 ± 4.97 b | 59.48 ± 3.44 a | ND |
Diabetes | α-Amylase 1 | 68.57 ± 6.29 a | 35.05 ± 2.78 b | 36.11 ± 3.58 b |
α-Glucosidase 2 | 81.19 ± 2.98 b | 84.32 ± 5.30 b | 93.20 ± 6.53 a | |
DPP-IV 2 | 17.14 ± 1.17 b | ND | 39.66 ± 2.00 a | |
Alzheimer’s disease | AChE 1 | 51.33 ± 1.25 b | 59.65 ± 1.03 b | 84.56 ± 2.87 a |
BChE 1 | 49.66 ± 0.85 b | 32.57 ± 2.09 c | 90.87 ± 2.63 a | |
BACE-1 1 | ND | ND | 66.33 ± 5.60 a | |
Hypertension | ACE 3 | 70.35 ± 6.48 b | 65.79 ± 4.37 b | 85.18 ± 5.33 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luu, L.K.; Thangsiri, S.; Sahasakul, Y.; Aursalung, A.; Inthachat, W.; Temviriyanukul, P.; On-Nom, N.; Chupeerach, C.; Suttisansanee, U. Nutrients, Phytochemicals and In Vitro Disease Prevention of Nephelium hypoleucum Kurz Fruit. Nutrients 2023, 15, 950. https://doi.org/10.3390/nu15040950
Luu LK, Thangsiri S, Sahasakul Y, Aursalung A, Inthachat W, Temviriyanukul P, On-Nom N, Chupeerach C, Suttisansanee U. Nutrients, Phytochemicals and In Vitro Disease Prevention of Nephelium hypoleucum Kurz Fruit. Nutrients. 2023; 15(4):950. https://doi.org/10.3390/nu15040950
Chicago/Turabian StyleLuu, Linh Khanh, Sirinapa Thangsiri, Yuraporn Sahasakul, Amornrat Aursalung, Woorawee Inthachat, Piya Temviriyanukul, Nattira On-Nom, Chaowanee Chupeerach, and Uthaiwan Suttisansanee. 2023. "Nutrients, Phytochemicals and In Vitro Disease Prevention of Nephelium hypoleucum Kurz Fruit" Nutrients 15, no. 4: 950. https://doi.org/10.3390/nu15040950
APA StyleLuu, L. K., Thangsiri, S., Sahasakul, Y., Aursalung, A., Inthachat, W., Temviriyanukul, P., On-Nom, N., Chupeerach, C., & Suttisansanee, U. (2023). Nutrients, Phytochemicals and In Vitro Disease Prevention of Nephelium hypoleucum Kurz Fruit. Nutrients, 15(4), 950. https://doi.org/10.3390/nu15040950