Factors Associated with Interruptions of Enteral Nutrition and the Impact on Macro- and Micronutrient Deficits in ICU Patients
Highlights
- Gastric residual volume monitoring, a highly controversial practice, was the most common cause of Interruption of Enteral Nutrition (ENI).
- Overall, 60.5% of patients met less than 65% of their total energy needs, while daily protein intake did not exceed 0.43 ± 0.3 g/kg/day of the actual body weight (ESPEN recommends 1.3 g/kg/day for adjusted body weight).
- The main finding highlighted the significant disparity between the energy and protein requirements and the actual needs of ICU patients.
- The main finding demonstrated the importance of dietitians to participate and be part of a multidisciplinary team, promoting regular daily assessment of the nutritional status of patients in the ICU.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Sample Size
2.3. Data Collection
2.4. Dietary Intake
2.5. Data Analysis
2.6. Ethical Principles
3. Results
4. Discussion
4.1. Causes, Frequency, and Duration of ENIs
4.2. Protein and Caloric Deficits
4.3. GRV Management
4.4. Micronutrient and Antioxidant Intake
4.5. The role of Dietitians
4.6. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APACHE | Acute Physiology Age Chronic Health Evaluation |
ARDS | Acute Respiratory Distress Syndrome |
BMI | Body Mass Index |
DHA | Docosahexaenoic acid |
DRI | Dietary Reference Intake |
EN | Enteral Nutrition |
ENI | Enteral Nutrition Interruption |
EPA | Eicosapentaenoic acid |
ESPEN | European Society for Clinical Nutrition and Metabolism |
FA | Fatty acids |
GRV | Gastric Residual Volume |
HDL | High-Density Lipoprotein |
ICU | Intensive Care Unit |
IQR | Interquartile Range |
LDL | Low-Density Lipoprotein |
MDI | Median Daily Intake |
mNUTRIC | Modified Nutrition Risk in Critically ill |
PEG | Percutaneous Endoscopic Gastrostomy |
PN | Parenteral Nutrition |
PUFA | Polyunsaturated Fatty Acids |
SOFA | Sequential Organ Failure Assessment |
References
- Zhang, Z.; Li, Q.; Jiang, L.; Xie, B.; Ji, X.; Lu, J.; Jiang, R.; Lei, S.; Mao, S.; Ying, L.; et al. Effectiveness of enteral feeding protocol on clinical outcomes in critically ill patients: A study protocol for before-and-after design. Ann. Transl. Med. 2016, 4, 308. [Google Scholar] [CrossRef]
- Salciute-Simene, E.; Stasiunaitis, R.; Ambrasas, E.; Tutkus, J.; Milkevicius, I.; Sostakaite, G.; Klimasauskas, A.; Kekstas, G. Impact of enteral nutrition interruptions on underfeeding in intensive care unit. Clin. Nutr. 2021, 40, 1310–1317. [Google Scholar] [CrossRef]
- Ndahimana, D.; Kim, E.-K. Energy Requirements in Critically Ill Patients. Clin. Nutr. Res. 2018, 7, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.; Samaan, K. Malnutrition in the ICU patient population. Crit. Care Nurs. Clin. N. Am. 2014, 26, 227–242. [Google Scholar] [CrossRef]
- Javid, Z.; Shadnoush, M.; Khadem-Rezaiyan, M.; Mohammad Zadeh Honarvar, N.; Sedaghat, A.; Hashemian, S.M.; Ardehali, S.H.; Nematy, M.; Pournik, O.; Beigmohammadi, M.T.; et al. Nutritional adequacy in critically ill patients: Result of PNSI study. Clin. Nutr. 2021, 40, 511–517. [Google Scholar] [CrossRef]
- Osooli, F.; Abbas, S.; Farsaei, S.; Adibi, P. Identifying Critically Ill Patients at Risk of Malnutrition and Underfeeding: A Prospective Study at an Academic Hospital. Adv. Pharm. Bull. 2019, 9, 314–320. [Google Scholar] [CrossRef]
- Tatucu-Babet, O.A.; Ridley, E.J. How much underfeeding can the critically ill adult patient tolerate? J. Intensive Med. 2022, 2, 69–77. [Google Scholar] [CrossRef]
- Singer, P. Preserving the quality of life: Nutrition in the ICU. Crit. Care 2019, 23, 139. [Google Scholar] [CrossRef]
- Calder, P.C.; Adolph, M.; Deutz, N.E.; Grau, T.; Innes, J.K.; Klek, S.; Lev, S.; Mayer, K.; Michael-Titus, A.T.; Pradelli, L.; et al. Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2018, 37, 1–18. [Google Scholar] [CrossRef]
- Barker, G.; Leeuwenburgh, C.; Brusko, T.; Moldawer, L.; Reddy, S.T.; Guirgis, F.W. Lipid and Lipoprotein Dysregulation in Sepsis: Clinical and Mechanistic Insights into Chronic Critical Illness. J. Clin. Med. 2021, 10, 1693. [Google Scholar] [CrossRef] [PubMed]
- Green, P.; Theilla, M.; Singer, P. Lipid metabolism in critical illness. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Catapano, A.L.; Norata, G.D. HDL in infectious diseases and sepsis. Handb. Exp. Pharmacol. 2015, 224, 483–508. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.W.; Gosnell, J.E.; Kumwenda, Z.L. The lipemia of sepsis: Triglyceride-rich lipoproteins as agents of innate immunity. J. Endotoxin Res. 2000, 6, 421–430. [Google Scholar] [PubMed]
- Kruger, P.S. Forget glucose: What about lipids in critical illness? Crit. Care Resusc. 2009, 11, 305–309. [Google Scholar] [PubMed]
- Hsu, C.-C.; Sun, C.-Y.; Tsai, C.-Y.; Chen, M.-Y.; Wang, S.-Y.; Hsu, J.-T.; Yeh, C.-N.; Yeh, T.-S. Metabolism of Proteins and Amino Acids in Critical Illness: From Physiological Alterations to Relevant Clinical Practice. J. Multidiscip. Healthc. 2021, 14, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Chapple, L.-A.S.; van Gassel, R.J.J.; Rooyackers, O. Protein metabolism in critical illness. Curr. Opin. Crit. Care 2022, 28, 367–373. [Google Scholar] [CrossRef]
- Preiser, J.-C.; Arabi, Y.M.; Berger, M.M.; Casaer, M.; McClave, S.; Montejo-González, J.C.; Peake, S.; Reintam Blaser, A.; Van den Berghe, G.; van Zanten, A.; et al. A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice. Crit. Care 2021, 25, 424. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed]
- Roth, E.; Manhart, N.; Wessner, B. Assessing the antioxidative status in critically ill patients. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Zanza, C.; Thangathurai, J.; Audo, A.; Muir, H.A.; Candelli, M.; Pignataro, G.; Thangathurai, D.; Cicchinelli, S.; Racca, F.; Longhitano, Y.; et al. Oxidative stress in critical care and vitamins supplement therapy: “a beneficial care enhancing”. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7703–7712. [Google Scholar] [CrossRef]
- Hoffmann, M.; Schwarz, C.M.; Fürst, S.; Starchl, C.; Lobmeyr, E.; Sendlhofer, G.; Jeitziner, M.-M. Risks in Management of Enteral Nutrition in Intensive Care Units: A Literature Review and Narrative Synthesis. Nutrients 2020, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Cirino Ruocco, M.A.; Pacheco Cechinatti, E.D.; Barbosa, F.; Navarro, A.M. Zinc and selenium status in critically ill patients according to severity stratification. Nutrition 2018, 45, 85–89. [Google Scholar] [CrossRef]
- Herrera-Quintana, L.; Vázquez-Lorente, H.; Molina-López, J.; Gamarra-Morales, Y.; Planells, E. Selenium Levels and Antioxidant Activity in Critically Ill Patients with Systemic Inflammatory Response Syndrome. Metabolites 2022, 12, 274. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut off Points; StatPearls Publishing LLC.: Tampa, FL, USA, 2022. [Google Scholar]
- Leoni, M.L.G.; Moschini, E.; Beretta, M.; Zanello, M.; Nolli, M. The modified NUTRIC score (mNUTRIC) is associated with increased 28-day mortality in critically ill COVID-19 patients: Internal validation of a prediction model. Clin. Nutr. ESPEN 2022, 48, 202–209. [Google Scholar] [CrossRef]
- Berger, M.M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H.-K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.-L.; et al. ESPEN micronutrient guideline. Clin. Nutr. 2022, 41, 1357–1424. [Google Scholar] [CrossRef]
- Hill, A.; Elke, G.; Weimann, A. Nutrition in the Intensive Care Unit-A Narrative Review. Nutrients 2021, 13, 2851. [Google Scholar] [CrossRef]
- Buckley, C.T.; Dickerson, R.N. Propofol: A Risk Factor for Caloric Overfeeding and Inadequate Protein Delivery. Hosp. Pharm. 2020, 55, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Bousie, E.; van Blokland, D.; Lammers, H.J.W.; van Zanten, A.R.H. Relevance of non-nutritional calories in mechanically ventilated critically ill patients. Eur. J. Clin. Nutr. 2016, 70, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Elke, G.; Felbinger, T.W.; Heyland, D.K. Gastric Residual Volume in Critically Ill Patients. Nutr. Clin. Pract. 2015, 30, 59–71. [Google Scholar] [CrossRef]
- Onuk, S.; Ozer, N.T.; Savas, N.; Sipahioglu, H.; Temel, S.; Ergul, S.S.; Sahin, G.G.; Sungur, M.; Guven, M.; Gundogan, K. Enteral nutrition interruptions in critically ill patients: A prospective study on reasons, frequency and duration of interruptions of nutritional support during ICU stay. Clin. Nutr. ESPEN 2022, 52, 178–183. [Google Scholar] [CrossRef]
- O’Meara, D.; Mireles-Cabodevila, E.; Frame, F.; Hummell, A.C.; Hammel, J.; Dweik, R.A.; Arroliga, A.C. Evaluation of delivery of enteral nutrition in critically ill patients receiving mechanical ventilation. Am. J. Crit. Care 2008, 17, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Peev, M.P.; Yeh, D.D.; Quraishi, S.A.; Osler, P.; Chang, Y.; Gillis, E.; Albano, C.E.; Darak, S.; Velmahos, G.C. Causes and consequences of interrupted enteral nutrition: A prospective observational study in critically ill surgical patients. JPEN J. Parenter. Enteral Nutr. 2015, 39, 21–27. [Google Scholar] [CrossRef] [PubMed]
- McCall, M.E.; Adamo, A.; Latko, K.; Rieder, A.K.; Durand, N.; Nathanson, T. Maximizing Nutrition Support Practice and Measuring Adherence to Nutrition Support Guidelines in a Canadian Tertiary Care ICU. J. Intensive Care Med. 2018, 33, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Uozumi, M.; Sanui, M.; Komuro, T.; Iizuka, Y.; Kamio, T.; Koyama, H.; Mouri, H.; Masuyama, T.; Ono, K.; Lefor, A.K. Interruption of enteral nutrition in the intensive care unit: A single-center survey. J. Intensive Care 2017, 5, 52. [Google Scholar] [CrossRef]
- Lee, Z.-Y.; Ibrahim, N.A.; Mohd-Yusof, B.-N. Prevalence and duration of reasons for enteral nutrition feeding interruption in a tertiary intensive care unit. Nutrition 2018, 53, 26–33. [Google Scholar] [CrossRef]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J. Parenter. Enteral Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Rooyackers, O.; Sundström Rehal, M.; Liebau, F.; Norberg, Å.; Wernerman, J. High protein intake without concerns? Crit. Care 2017, 21, 106. [Google Scholar] [CrossRef]
- Harvey, S.E.; Parrott, F.; Harrison, D.A.; Bear, D.E.; Segaran, E.; Beale, R.; Bellingan, G.; Leonard, R.; Mythen, M.G.; Rowan, K.M.; et al. Trial of the route of early nutritional support in critically ill adults. N. Engl. J. Med. 2014, 371, 1673–1684. [Google Scholar] [CrossRef]
- Weijs, P.J.M.; Cynober, L.; DeLegge, M.; Kreymann, G.; Wernerman, J.; Wolfe, R.R. Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients. Crit. Care 2014, 18, 591. [Google Scholar] [CrossRef] [Green Version]
- Alberda, C.; Gramlich, L.; Jones, N.; Jeejeebhoy, K.; Day, A.G.; Dhaliwal, R.; Heyland, D.K. The relationship between nutritional intake and clinical outcomes in critically ill patients: Results of an international multicenter observational study. Intensive Care Med. 2009, 35, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
- Weijs, P.J.M.; Mogensen, K.M.; Rawn, J.D.; Christopher, K.B. Protein Intake, Nutritional Status and Outcomes in ICU Survivors: A Single Center Cohort Study. J. Clin. Med. 2019, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Yeh, D.D.; Fuentes, E.; Quraishi, S.A.; Cropano, C.; Kaafarani, H.; Lee, J.; King, D.R.; DeMoya, M.; Fagenholz, P.; Butler, K.; et al. Adequate Nutrition May Get You Home: Effect of Caloric/Protein Deficits on the Discharge Destination of Critically Ill Surgical Patients. JPEN J. Parenter. Enteral Nutr. 2016, 40, 37–44. [Google Scholar] [CrossRef]
- Mitchell, A.; Clemente, R.; Downer, C.; Greer, F.; Allan, K.; Collinson, A.; Taylor, S. Protein Provision in Critically Ill Adults Requiring Enteral Nutrition: Are Guidelines Being Met? Nutr. Clin. Pract. 2019, 34, 123–130. [Google Scholar] [CrossRef]
- De Waele, E.; Jakubowski, J.R.; Stocker, R.; Wischmeyer, P.E. Review of evolution and current status of protein requirements and provision in acute illness and critical care. Clin. Nutr. 2021, 40, 2958–2973. [Google Scholar] [CrossRef] [PubMed]
- Preiser, J.-C. High protein intake during the early phase of critical illness: Yes or no? Crit. Care 2018, 22, 261. [Google Scholar] [CrossRef]
- Kiter, S.; Atalay, H.; Ozates, D.; Serin, S.; Sungurtekin, H. Evaluation of feeding interruption for enteral nutrition in intensive care unit patients. Clin. Sci. Nutr. 2019, 1, 103–109. [Google Scholar] [CrossRef]
- Owais, A.E.; Bumby, R.F.; MacFie, J. Review article: Permissive underfeeding in short-term nutritional support. Aliment. Pharmacol. Ther. 2010, 32, 628–636. [Google Scholar] [CrossRef]
- Preiser, J.-C.; van Zanten, A.R.; Berger, M.M.; Biolo, G.; Casaer, M.P.; Doig, G.S.; Griffiths, R.D.; Heyland, D.K.; Hiesmayr, M.; Iapichino, G.; et al. Metabolic and nutritional support of critically ill patients: Consensus and controversies. Crit. Care 2015, 19, 35. [Google Scholar] [CrossRef]
- Wiese, A.N.; Rogers, M.J.; Way, M.; Ballard, E. The impact of removing gastric residual volume monitoring and enteral nutrition rate titration in adults receiving mechanical ventilation. Aust. Crit. Care 2020, 33, 155–161. [Google Scholar] [CrossRef]
- Poulard, F.; Dimet, J.; Martin-Lefevre, L.; Bontemps, F.; Fiancette, M.; Clementi, E.; Lebert, C.; Renard, B.; Reignier, J. Impact of Not Measuring Residual Gastric Volume in Mechanically Ventilated Patients Receiving Early Enteral Feeding. J. Parenter. Enter. Nutr. 2010, 34, 125–130. [Google Scholar] [CrossRef]
- Pham, C.H.; Collier, Z.J.; Garner, W.L.; Kuza, C.M.; Gillenwater, T.J. Measuring gastric residual volumes in critically ill burn patients—A systematic review. Burns 2019, 45, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.J.; Miller, K.R.; Rosenthal, C.; Rosenthal, M.D. When Is It Appropriate to Use Arginine in Critical Illness? Nutr. Clin. Pract. 2016, 31, 438–444. [Google Scholar] [CrossRef]
- Wang, C.; Han, D.; Feng, X.; Wu, J. Omega-3 fatty acid supplementation is associated with favorable outcomes in patients with sepsis: An updated meta-analysis. J. Int. Med. Res. 2020, 48, 300060520953684. [Google Scholar] [CrossRef]
- Braga, J.M.; Hunt, A.; Pope, J.; Molaison, E. Implementation of dietitian recommendations for enteral nutrition results in improved outcomes. J. Am. Diet. Assoc. 2006, 106, 281–284. [Google Scholar] [CrossRef]
- Doig, G.S.; Simpson, F.; Finfer, S.; Delaney, A.; Davies, A.R.; Mitchell, I.; Dobb, G. Nutrition Guidelines Investigators of the ANZICS Clinical Trials Group Effect of evidence-based feeding guidelines on mortality of critically ill adults: A cluster randomized controlled trial. JAMA 2008, 300, 2731–2741. [Google Scholar] [CrossRef]
Baseline Characteristics of the Cohort | n (%) | Median Hours (IQR) | |||
---|---|---|---|---|---|
Diagnostic Procedures | Patient-Related Factors | Interventional Procedures | Total | ||
Age | |||||
<65 years old | 42 (51.9) | 3 (2.8–3.2) | 0 (0–0) | 1.3 (0–3.2) | 5.7 (3.6–7.4) |
≥65 years old | 39 (48.1) | 3 (2.6–3.4) | 0 (0–0.6) | 0 (0–3) | 5 (3–8) |
Sex | |||||
Males | 56 (69.1) | 3 (2.8–3.2) | 0 (0–0) | 0.2 (0–3.1) | 4.9 (3.2–7.5) |
Females | 25 (30.9) | 3 (2.8–3.6) | 0 (0–0.8) | 1 (0–3.2) | 5.8 (3.6–7.4) |
BMI | |||||
Normal | 41 (51.2) | 3 (2.6–3.2) * | 0 (0–0) | 0.4 (0–3.2) | 5.2 (3.4–7.4) |
Overweight/Obese | 39 (48.8) | 3 (3–3.6) * | 0 (0–0.4) | 0 (0–3.2) | 5.6 (3.6–8.4) |
Septic patients | |||||
Yes | 15 (14.8) | 3 (2.8–3.4) | 0 (0–2.2) | 0 (0–2.2) | 5.6 (3.2–7.4) |
No | 66 (85.2) | 3 (2.8–3.2) | 0 (0–0) | 0.4 (0–4) | 5 (3.4–8.4) |
Mechanically Ventilated Patients | |||||
Yes | 73 (90.1) | 3 (2.8–3.4) * | 0 (0–0.4) | 0.4 (0–3.2) | 5.4 (3.4–7.4) |
No | 8 (9.9) | 2.6 (1.7–2.9) * | 0 (0–0) | 0 (0–2.4) | 3.9 (3.3–8.2) |
With comorbidities | |||||
Yes | 38 (46.9) | 3 (3–3.2) | 0 (0–0) | 0.1 (0–2.4) | 4.9 (3–7) |
No | 43 (53.1) | 3 (2.6–3.4) | 0 (0–0.4) | 1 (0–4.2) | 6 (3.6–8.4) |
Energy intake | |||||
<65% of MEE | 49 (60.5) | 3 (2.6–3.4) | 0 (0–0.6) | 1 (0–4.6) | 6 (3.8–8.4) * |
≥65% of MEE | 32 (39.5) | 3 (3–3.2) | 0 (0–0) | 0 (0–2.2) | 4.4 (3–5.8) * |
Nutrient | Median Daily Intake | DRIs | p-Value | Patients with Intake <DRIs, n (%) |
---|---|---|---|---|
Carbohydrates (g/day) | 100 (79–117) | 130 | <0.001 | 68 (84.0) |
Protein (g/kg) | 0.43 (0.32–0.59) | 1.2 g/kg | <0.001 | 81 (100) |
Fat (g/day) | 26.5 (20.6–35.9) | ND | - | - |
Vitamin A (μg RE/day) | 588 (480.8–885.6) | 900 males 700 females | <0.001 | 55 (67.9) |
Vitamin C (mg/day) | 65.3 (50.7–99.2) | 90 males 75 females | 0.010 | 53 (65.4) |
Vitamin E (mg α-TE/day) | 10.3 (8.6–13.7) | 15 | <0.001 | 64 (79.0) |
Selenium (μg/day) | 47.6 (39.1–56.3) | 55 | <0.001 | 57 (70.4) |
Manganese (mg/day) | 1.93 (1.54–2.35) | 2.3 males 1.8 females | 0.161 | 52 (64.2) |
Vitamin D (μg/day) | 7.76 (5.99–9.61) | 15 for <70 years old 20 for >70 years old | <0.001 | 80 (98.8) |
Zinc (mg/day) | 8.29 (6.45–10.1) | 11 males 8 females | <0.001 | 55 (67.9) |
Omega-3 fatty acids (mg/day) | 326 (202–451) | 500 | 0.002 | 64 (79.0) |
Arginine (g/day) | 0.37 (0–1.02) | 5–7 | <0.001 | 81 (100) |
Dependent Variable | Model 1—Crude Model | Model 2 a | Model 3 b |
---|---|---|---|
β (95% CI) | β (95% CI) | β (95% CI) | |
Energy (kcal/day) | −60.9 (−79.2, −42.6) ** | −61.2 (−79.6, −42.9) ** | −60.3 (−78.9, −41.7) ** |
Carbohydrates (g/day) | −7.46 (−9.41, −5.48) ** | −7.44 (−9.43, −5.45) ** | −7.5 (−9.53, −5.48) ** |
Protein (g/day) | −2.79 (−3.63, −1.95) ** | −2.78 (−3.63, −1.94) ** | −2.75 (−3.61, −1.89) ** |
Fat (g/day) | −2.37 (−3.37, −1.36) ** | −2.37 (−3.39, −1.35) ** | −2.33 (−3.36, −1.29) ** |
Vitamin A (μg RE/day) | −57.4 (−83.4, −31.4) ** | −57.6 (−84.2, −31.1) ** | −55.5 (−82.3, −28.7) ** |
Vitamin C (mg/day) | −9.6 (−19.3, 0.2) | −9.6 (−19.5, 0.39) | −9.0 (−19.3, 1.1) |
Vitamin E (mg α-TE/day) | −2.03 (−4.54, 0.49) | −2.02 (−4.58, 0.55) | −1.91 (−4.52, 0.69) |
Selenium (μg/day) | −3.62 (−4.61, −2.64) ** | −3.6 (−4.6, −2.6) ** | −3.614 (−4.63, −2.6) ** |
Manganese (mg/day) | −0.129 (−0.183, −0.075) ** | −0.129 (−0.184, −0.074) ** | −0.127 (−0.183, −0.071) ** |
Vitamin D (μg/day) | −0.799 (−1.042, −0.556) ** | −0.8 (−1.041, −0.56) ** | −0.805 (−1.05, −0.561) ** |
Zinc (mg/day) | −0.596 (−0.788, −0.404) ** | −0.588 (−0.783, −0.394) ** | −0.594 (−0.791, −0.396) ** |
Omega-3 FA (mg/day) | −87.3 (−152.5, −22.1) ** | −86.6 (−153, −20.1) * | −83.4 (−150.6, −15.9) * |
Arginine (g/day) | −0.065 (−0.129, −0.001) * | −0.062 (−0.126, 0.003) | −0.068 (−0.133, −0.004) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasti, A.N.; Theodorakopoulou, M.; Katsas, K.; Synodinou, K.D.; Nikolaki, M.D.; Zouridaki, A.E.; Fotiou, S.; Kapetani, A.; Armaganidis, A. Factors Associated with Interruptions of Enteral Nutrition and the Impact on Macro- and Micronutrient Deficits in ICU Patients. Nutrients 2023, 15, 917. https://doi.org/10.3390/nu15040917
Kasti AN, Theodorakopoulou M, Katsas K, Synodinou KD, Nikolaki MD, Zouridaki AE, Fotiou S, Kapetani A, Armaganidis A. Factors Associated with Interruptions of Enteral Nutrition and the Impact on Macro- and Micronutrient Deficits in ICU Patients. Nutrients. 2023; 15(4):917. https://doi.org/10.3390/nu15040917
Chicago/Turabian StyleKasti, Arezina N., Maria Theodorakopoulou, Konstantinos Katsas, Kalliopi D. Synodinou, Maroulla D. Nikolaki, Alice Efstathia Zouridaki, Stylianos Fotiou, Aliki Kapetani, and Apostolos Armaganidis. 2023. "Factors Associated with Interruptions of Enteral Nutrition and the Impact on Macro- and Micronutrient Deficits in ICU Patients" Nutrients 15, no. 4: 917. https://doi.org/10.3390/nu15040917
APA StyleKasti, A. N., Theodorakopoulou, M., Katsas, K., Synodinou, K. D., Nikolaki, M. D., Zouridaki, A. E., Fotiou, S., Kapetani, A., & Armaganidis, A. (2023). Factors Associated with Interruptions of Enteral Nutrition and the Impact on Macro- and Micronutrient Deficits in ICU Patients. Nutrients, 15(4), 917. https://doi.org/10.3390/nu15040917