Diet-Related Inflammation Is Associated with Worse COVID-19 Outcomes in the UK Biobank Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Exposures
2.3. Outcomes
2.4. Covariates
2.5. Patients’ Involvement
2.6. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Association between Dietary Inflammatory Index and Risk of COVID-19
3.3. Mediation Analyses
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Pirlich, M.; Singer, P. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin. Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef]
- Scrimshaw, N.S. INCAP Studies of Nutrition and Infection. Food Nutr. Bull. 2010, 31, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.K. Nutrition, Immunity, and Infection: Present Knowledge and Future Directions. Lancet 1983, 1, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Keusch, G.T. The History of Nutrition: Malnutrition, Infection and Immunity. J. Nutr. 2003, 133, S336–S340. [Google Scholar] [CrossRef] [PubMed]
- Yap, Y.-A.; Mariño, E. An Insight into the Intestinal Web of Mucosal Immunity, Microbiota, and Diet in Inflammation. Front. Immunol. 2018, 9, 2617. [Google Scholar] [CrossRef]
- Zinder, R.; Cooley, R.; Vlad, L.G.; Molnar, J.A. Vitamin A and Wound Healing. Nutr. Clin. Pract. 2019, 34, 839–849. [Google Scholar] [CrossRef]
- Deschasaux-Tanguy, M.; Srour, B.; Bourhis, L.; Arnault, N.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Allègre, J.; Allès, B.; Andreeva, V.A.; et al. Nutritional risk factors for SARS-CoV-2 infection: A prospective study within the NutriNet-Santé cohort. BMC Med. 2021, 19, 290. [Google Scholar] [CrossRef]
- Holt, H.; Talaei, M.; Greenig, M.; Zenner, D.; Symons, J.; Relton, C.; Young, K.S.; Davies, M.R.; Thompson, K.N.; Ashman, J.; et al. Risk factors for developing COVID-19: A population-based longitudinal study (COVIDENCE UK). Thorax 2022, 77, 900–912. [Google Scholar] [CrossRef]
- Zhou, L.; Li, H.; Zhang, S.; Yang, H.; Ma, Y.; Wang, Y. Impact of ultra-processed food intake on the risk of COVID-19: A prospective cohort study. Eur. J. Nutr. 2022, 62, 275–287. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Steck, S.E.; Murphy, E.A. Dietary patterns and cancer risk. Nat. Rev. Cancer 2020, 20, 125–138. [Google Scholar] [CrossRef]
- Morais, A.H.D.A.; Aquino, J.D.S.; da Silva-Maia, J.K.; Vale, S.H.D.L.; Maciel, B.L.L.; Passos, T.S. Nutritional status, diet and viral respiratory infections: Perspectives for severe acute respiratory syndrome coronavirus 2. Br. J. Nutr. 2021, 125, 851–862. [Google Scholar] [CrossRef]
- Yue, Y.; Ma, W.; Accorsi, E.K.; Ding, M.; Hu, F.; Willett, W.C.; Chan, A.T.; Sun, Q.; Edwards, J.R.; Smith-Warner, S.A.; et al. Long-term diet and risk of SARS -CoV-2 infection and Coronavirus Disease 2019 (COVID-19) severity. Am. J. Clin. Nutr. 2022, 116, 1672–1681. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, L.; Wang, H.; Wang, X.; Qu, G.; Cai, J.; Zhang, H. Malnutrition is associated with hyperinflammation and immunosuppression in COVID-19 patients: A prospective observational study. Nutr. Clin. Pract. 2021, 36, 863–871. [Google Scholar] [CrossRef]
- Khan, E. Heart failure and COVID-19: Synergism of two inflammatory conditions? Br. J. Community Nurs. 2021, 26, 18–25. [Google Scholar] [CrossRef]
- Sukkar, S.G.; Bassetti, M. Induction of ketosis as a potential therapeutic option to limit hyperglycemia and prevent cytokine storm in COVID-19. Nutrition 2020, 79–80, 110967. [Google Scholar] [CrossRef]
- Seclén, S.N.; Nunez-Robles, E.; Yovera-Aldana, M.; Arias-Chumpitaz, A. Incidence of COVID-19 infection and prevalence of diabetes, obesity and hypertension according to altitude in Peruvian population. Diabetes Res. Clin. Pract. 2020, 169, 108463. [Google Scholar] [CrossRef]
- Fisman, D.N.; Tuite, A.R. Evaluation of the relative virulence of novel SARS-CoV-2 variants: A retrospective cohort study in Ontario, Canada. Can. Med. Assoc. J. 2021, 193, E1619–E1625. [Google Scholar] [CrossRef]
- Fernández-Ayala, D.J.M.; Navas, P.; López-Lluch, G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp. Gerontol. 2020, 142, 111147. [Google Scholar] [CrossRef]
- Mittal, J.; Ghosh, A.; Bhatt, S.P.; Anoop, S.; Ansari, I.A.; Misra, A. High prevalence of post COVID-19 fatigue in patients with type 2 diabetes: A case-control study. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102302. [Google Scholar] [CrossRef]
- Allard, L.; Ouedraogo, E.; Molleville, J.; Bihan, H.; Giroux-Leprieur, B.; Sutton, A.; Baudry, C.; Josse, C.; Didier, M.; Deutsch, D.; et al. Malnutrition: Percentage and Association with Prognosis in Patients Hospitalized for Coronavirus Disease 2019. Nutrients 2020, 12, 3679. [Google Scholar] [CrossRef] [PubMed]
- Sawadogo, W.; Tsegaye, M.; Gizaw, A.; Adera, T. Overweight and obesity as risk factors for COVID-19-associated hospitalisations and death: Systematic review and meta-analysis. BMJ Nutr. Prev. Health 2022, 5, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Li, X.; He, Y.; Xia, W.; Shao, J.; Ye, Z.; Song, P. Associations of dietary inflammatory index with metabolic syndrome and its components: A systematic review and meta-analysis. Public Health Nutr. 2021, 24, 5463–5470. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Pei, H.; Shivappa, N.; Hebert, J.R.; Luo, T.; Tian, T.; Alimu, D.; Zhang, Z.; Dai, J. Association between Dietary Inflammatory Index and Type 2 diabetes mellitus in Xinjiang Uyghur autonomous region, China. PeerJ 2021, 9, e11159. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, R.; Odjidja, E.N.; Scott, D.; Shivappa, N.; Hébert, J.R.; Hodge, A.; de Courten, B. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes. Rev. 2022, 23, e13349. [Google Scholar] [CrossRef]
- Liao, C.; Gao, W.; Cao, W.; Lv, J.; Yu, C.; Wang, S.; Pang, Z.; Cong, L.; Wang, H.; Wu, X.; et al. Associations of Metabolic/Obesity Phenotypes with Insulin Resistance and C-Reactive Protein: Results from the CNTR Study. Diabetes Metab. Syndr. Obes. 2021, 14, 1141–1151. [Google Scholar] [CrossRef]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)—Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Wirth, M.D.; Robinson, C.; Murphy, E.A.; Shivappa, N.; Hébert, J.R. The dietary inflammatory index is associated with gastrointestinal infection symptoms in the national health and nutrition examination survey. Int. J. Food Sci. Nutr. 2020, 71, 106–115. [Google Scholar] [CrossRef]
- McDiarmid, K.P.; Wood, L.G.; Upham, J.W.; MacDonald-Wicks, L.K.; Shivappa, N.; Hebert, J.R.; Scott, H.A. The Impact of Meal Dietary Inflammatory Index on Exercise-Induced Changes in Airway Inflammation in Adults with Asthma. Nutrients 2022, 14, 4392. [Google Scholar] [CrossRef]
- Vahid, F.; Rahmani, D. Can an anti-inflammatory diet be effective in preventing or treating viral respiratory diseases? A systematic narrative review. Clin. Nutr. ESPEN 2021, 43, 9–15. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Young, H.J.; Guo, W.; Key, T.J. Dietary assessment in UK Biobank: An evaluation of the performance of the touchscreen dietary questionnaire. J. Nutr. Sci. 2018, 7, e6. [Google Scholar] [CrossRef]
- McCance, R.A.; Widdowson, E.M. McCance and Widdowson’s the Composition of Foods; Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Liu, B.; Young, H.; Crowe, F.L.; Benson, V.S.; Spencer, E.A.; Key, T.J.; Appleby, P.N.; Beral, V. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011, 14, 1998–2005. [Google Scholar] [CrossRef]
- Townsend, P.; Phillimore, P. Beattie: A Health and Deprivation: Inequalities and the North; Croom Helm: Kent, UK, 1988. [Google Scholar]
- SAS Institute Inc. The CAUSALMED Procedure. SAS/STAT 14.3 User’s Guide; SAS Institute, Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Merino, J.; Joshi, A.D.; Nguyen, L.H.; Leeming, E.R.; Mazidi, M.; Drew, D.A.; Gibson, R.; Graham, M.S.; Lo, C.-H.; Capdevila, J.; et al. Diet quality and risk and severity of COVID-19: A prospective cohort study. Gut 2021, 70, 2096–2104. [Google Scholar] [CrossRef]
- El Khoury, C.N.; Julien, S.G. Inverse Association between the Mediterranean Diet and COVID-19 Risk in Lebanon: A Case-Control Study. Front. Nutr. 2021, 8, 707359. [Google Scholar] [CrossRef]
- Ponzo, V.; Pellegrini, M.; D’Eusebio, C.; Bioletto, F.; Goitre, I.; Buscemi, S.; Frea, S.; Ghigo, E.; Bo, S. Mediterranean Diet and SARS-COV-2 Infection: Is There Any Association? A Proof-of-Concept Study. Nutrients 2021, 13, 1721. [Google Scholar] [CrossRef]
- Menzel, A.; Samouda, H.; Dohet, F.; Loap, S.; Ellulu, M.S.; Bohn, T. Common and Novel Markers for Measuring Inflammation and Oxidative Stress Ex Vivo in Research and Clinical Practice—Which to Use Regarding Disease Outcomes? Antioxidants 2021, 10, 414. [Google Scholar] [CrossRef]
- Hebert, J.R. Chapter 2. History of nutrition and inflammation. In Diet, Inflammation, and Health; Hebert, J.R., Hofseth, L.J., Eds.; Academic Press Elsevier: London, UK, 2022; pp. 39–84. [Google Scholar]
- Furuyashiki, T.; Akiyama, S.; Kitaoka, S. Roles of multiple lipid mediators in stress and depression. Int. Immunol. 2019, 31, 579–587. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Cecconello, C.; Ribas, P.C.; Norling, L.V. Chapter 4. Resolving acute inflammation; what happens when inflammation goes haywire? How can it get back in line? In Diet, Inflammation, and Health; Hebert, J.R., Hofseth, L.J., Eds.; Academic Press Elsevier: London, UK, 2022; pp. 113–162. [Google Scholar]
- Lee, Y.S.; Olefsky, J. Chronic tissue inflammation and metabolic disease. Genes Dev. 2021, 35, 307–328. [Google Scholar] [CrossRef] [PubMed]
- Hofseth, L.J.; Hebert, J.R. Chapter 3. Diet and acute and chronic, systemic, low-grade inflammation. In Diet, Inflammation, and Health; Hebert, J.R., Hofseth, L.J., Eds.; Academic Press Elsevier: London, UK, 2022; pp. 85–112. [Google Scholar]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Moludi, J.; Qaisar, S.A.; Alizadeh, M.; Vayghan, H.J.; Naemi, M.; Rahimi, A.; Mousavi, R. The relationship between Dietary Inflammatory Index and disease severity and inflammatory status: A case–control study of COVID-19 patients. Br. J. Nutr. 2022, 127, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Veronese, N.; Kelly, J.T.; Smith, L.; Hockey, M.; Collins, S.; Trakman, G.L.; Hoare, E.; Teasdale, S.B.; Wade, A.; et al. The Dietary Inflammatory Index and Human Health: An Umbrella Review of Meta-Analyses of Observational Studies. Adv. Nutr. 2021, 12, 1681–1690. [Google Scholar] [CrossRef]
- Phillips, C.M.; Chen, L.-W.; Heude, B.; Bernard, J.Y.; Harvey, N.C.; Duijts, L.; Mensink-Bout, S.M.; Polanska, K.; Mancano, G.; Suderman, M.; et al. Dietary Inflammatory Index and Non-Communicable Disease Risk: A Narrative Review. Nutrients 2019, 11, 1873. [Google Scholar] [CrossRef]
- Malcomson, F.C.; Willis, N.D.; McCallum, I.; Xie, L.; Shivappa, N.; Wirth, M.D.; Hébert, J.R.; Kocaadam-Bozkurt, B.; Özturan-Sirin, A.; Kelly, S.B.; et al. Diet-Associated Inflammation Modulates Inflammation and WNT Signaling in the Rectal Mucosa, and the Response to Supplementation with Dietary Fiber. Cancer Prev. Res. Phila. 2021, 14, 337–346. [Google Scholar] [CrossRef]
- Li, S.X.; Hodge, A.M.; MacInnis, R.J.; Bassett, J.K.; Ueland, P.M.; Midttun, Ø.; Ulvik, A.; Rinaldi, S.; Meyer, K.; Navionis, A.-S.; et al. Inflammation-Related Marker Profiling of Dietary Patterns and All-cause Mortality in the Melbourne Collaborative Cohort Study. J. Nutr. 2021, 151, 2908–2916. [Google Scholar] [CrossRef]
- Holmes, B.; Dick, K.; Nelson, M. A comparison of four dietary assessment methods in materially deprived households in England. Public Health Nutr. 2008, 11, 444–456. [Google Scholar] [CrossRef] [Green Version]
Variable | Quintile of DII | Quintile of Energy-Adjusted DII | ||||||
---|---|---|---|---|---|---|---|---|
Quintile 1 | Quintile 3 | Quintile 5 | p Value | Quintile 1 | Quintile 3 | Quintile 5 | p Value | |
Total numbers | 39,230 | 39,231 | 39,231 | 39,230 | 39,231 | 39,231 | ||
Age, years | 58 (12) | 57 (12) | 55 (14) | <0.001 | 58 (12) | 57 (12) | 55 (14) | <0.001 |
Body mass index, kg/m2 | 25.8 (5.3) | 26.2 (5.4) | 26.7 (5.9) | <0.001 | 25.8 (5.4) | 26.1 (5.4) | 26.9 (5.8) | <0.001 |
DII | −2 (0.6) | −0.4 (0.3) | 1.1 (0.6) | <0.001 | −1.9 (1.2) | −0.4 (0.9) | 0.9 (1.0) | <0.001 |
E-DII | −2.1 (1.2) | −0.5 (1.1) | 1 (1.1) | <0.001 | −2.4 (0.8) | −0.5 (0.4) | 1.2 (0.7) | <0.001 |
Sex (female) | 17,043 (43.4) | 17,544 (44.7) | 17,211 (43.9) | <0.001 | 12,185 (31.1) | 17,760 (45.3) | 21,743 (55.4) | <0.001 |
White (yes) | 37,820 (96.4) | 37,865 (96.5) | 36,783 (93.8) | <0.001 | 37,485 (95.6) | 37,719 (96.1) | 37,359 (95.2) | <0.001 |
Townsend Deprivation Index | <0.001 | <0.001 | ||||||
Lower | 14,636 (37.3) | 14,300 (36.5) | 12,517 (31.9) | 14,604 (37.2) | 14,219 (36.2) | 12,859 (32.8) | ||
Middle | 13,677 (34.9) | 13,820 (35.2) | 13,193 (33.6) | 13,543 (34.5) | 13,734 (35.0) | 13,225 (33.7) | ||
Higher | 10,917 (27.8) | 11,111 (28.3) | 13,521 (34.5) | 11,083 (28.3) | 11,278 (28.7) | 13,147 (33.5) | ||
Central obesity (yes) | 10,278 (26.2) | 11,500 (29.3) | 13,228 (33.7) | <0.001 | 10,509 (26.8) | 11,270 (28.7) | 13,426 (34.2) | <0.001 |
Smoking status | <0.001 | <0.001 | ||||||
Never smoker | 22,707 (57.9) | 22,630 (57.7) | 21,594 (55.0) | 23,172 (59.1) | 22,764 (58.0) | 21,182 (54.0) | ||
Previous smoker | 14,458 (36.9) | 13,920 (35.5) | 13,050 (33.3) | 14,134 (36.0) | 13,826 (35.2) | 13,350 (34.0) | ||
Current smoker | 2065 (5.3) | 2681 (6.8) | 4587 (11.7) | 1924 (4.9) | 2641 (6.7) | 4699 (12.0) | ||
Cancer diagnosis (yes) | 3023 (7.7) | 2827 (7.2) | 2637 (6.7) | <0.001 | 3114 (7.9) | 2905 (7.4) | 2571 (6.6) | <0.001 |
Heart disease (yes) | 1604 (4.1) | 1445 (3.7) | 1630 (4.2) | 0.007 | 1598 (4.1) | 1510 (3.8) | 1627 (4.1) | 0.05 |
Diabetes (yes) | 1402 (3.6) | 1374 (3.5) | 1539 (3.9) | 0.004 | 1425 (3.6) | 1404 (3.6) | 1523 (3.9) | 0.10 |
Physical activity | <0.001 | <0.001 | ||||||
Inactive | 4385 (11.2) | 6236 (15.9) | 7607 (19.4) | 4561 (11.6) | 6165 (15.7) | 7578 (19.3) | ||
Moderate | 13,822 (35.2) | 14,368 (36.6) | 13,928 (35.5) | 13,832 (35.3) | 14,385 (36.7) | 13,944 (35.5) | ||
Active | 15,783 (40.2) | 12,878 (32.8) | 11,243 (28.7) | 15,145 (38.6) | 12,878 (32.8) | 11,600 (29.6) | ||
Missing | 5240 (13.4) | 5749 (14.7) | 6453 (16.4) | 5692 (14.5) | 5803 (14.8) | 6109 (15.6) | ||
Sleep duration | <0.001 | <0.001 | ||||||
<7 h | 8791 (22.4) | 8434 (21.5) | 9801 (25) | 8892 (22.7) | 8606 (21.9) | 9699 (24.7) | ||
7 to <9 h | 30,017 (76.5) | 30,401 (77.5) | 28,834 (73.5) | 29,896 (76.2) | 30,184 (76.9) | 28,979 (73.9) | ||
≥9 h | 422 (1.1) | 396 (1.0) | 596 (1.5) | 442 (1.1) | 441 (1.1) | 553 (1.4) |
Quintile of DII or E-DII, RR (95% CI) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | P for Trend | Per SD Increase | PNonlinearity | ||
DII | Median level | −2.03 | −1.12 | −0.43 | 0.23 | 1.07 | |||
Incidence | |||||||||
No. of cases | 2037 | 2064 | 2307 | 2357 | 2523 | ||||
Model 1 | 1 (reference) | 0.99 (0.93–1.05) | 1.09 (1.03–1.15) | 1.09 (1.03–1.16) | 1.12 (1.06–1.18) | <0.001 | 1.04 (1.03–1.06) | 0.03 | |
Model 2 | 1 (reference) | 0.99 (0.93–1.05) | 1.09 (1.03–1.15) | 1.09 (1.03–1.15) | 1.11 (1.04–1.17) | <0.001 | 1.04 (1.02–1.06) | 0.03 | |
Model 3 | 1 (reference) | 0.99 (0.93–1.05) | 1.09 (1.03–1.15) | 1.09 (1.03–1.15) | 1.10 (1.04–1.17) | <0.001 | 1.04 (1.02–1.06) | 0.03 | |
Model 4 | 1 (reference) | 0.99 (0.94–1.05) | 1.09 (1.03–1.15) | 1.09 (1.02–1.15) | 1.10 (1.04–1.17) | <0.001 | 1.04 (1.02–1.06) | 0.03 | |
Severity | |||||||||
No. of cases | 211 | 232 | 241 | 273 | 313 | ||||
Model 1 | 1 (reference) | 1.11 (0.92–1.33) | 1.16 (0.97–1.40) | 1.34 (1.12–1.60) | 1.58 (1.33–1.89) | <0.001 | 1.18 (1.11–1.25) | 0.32 | |
Model 2 | 1 (reference) | 1.12 (0.93–1.35) | 1.17 (0.97–1.40) | 1.33 (1.11–1.59) | 1.52 (1.27–1.81) | <0.001 | 1.16 (1.09–1.22) | 0.64 | |
Model 3 | 1 (reference) | 1.12 (0.93–1.35) | 1.17 (0.97–1.41) | 1.32 (1.10–1.58) | 1.49 (1.25–1.78) | <0.001 | 1.15 (1.09–1.22) | 0.73 | |
Model 4 | 1 (reference) | 1.11 (0.92–1.34) | 1.15 (0.95–1.38) | 1.27 (1.06–1.53) | 1.40 (1.18–1.67) | <0.001 | 1.12 (1.06–1.19) | 0.84 | |
Death | |||||||||
No. of cases | 57 | 56 | 62 | 61 | 79 | ||||
Model 1 | 1 (reference) | 1.01 (0.70–1.45) | 1.14 (0.80–1.64) | 1.16 (0.81–1.67) | 1.63 (1.16–2.29) | 0.005 | 1.19 (1.05–1.34) | 0.15 | |
Model 2 | 1 (reference) | 1.02 (0.70–1.47) | 1.14 (0.80–1.64) | 1.16 (0.81–1.66) | 1.56 (1.11–2.19) | 0.01 | 1.17 (1.04–1.31) | 0.27 | |
Model 3 | 1 (reference) | 1.02 (0.70–1.47) | 1.15 (0.80–1.65) | 1.15 (0.80–1.64) | 1.53 (1.09–2.15) | 0.01 | 1.16 (1.03–1.30) | 0.30 | |
Model 4 | 1 (reference) | 1.01 (0.70–1.46) | 1.13 (0.79–1.61) | 1.10 (0.77–1.58) | 1.43 (1.01–2.01) | 0.04 | 1.13 (1.00–1.27) | 0.37 | |
E-DII | Median level | −2.4 | −1.31 | −0.51 | 0.25 | 1.22 | |||
Incidence | |||||||||
No. of cases | 1968 | 2119 | 2146 | 2444 | 2611 | ||||
Model 1 | 1 (reference) | 1.05 (0.99–1.11) | 1.04 (0.98–1.10) | 1.14 (1.08–1.21) | 1.17 (1.11–1.24) | <0.001 | 1.05 (1.03–1.07) | 0.17 | |
Model 2 | 1 (reference) | 1.05 (0.99–1.11) | 1.04 (0.98–1.10) | 1.14 (1.08–1.21) | 1.17 (1.10–1.23) | <0.001 | 1.05 (1.03–1.06) | 0.20 | |
Model 3 | 1 (reference) | 1.05 (0.99–1.12) | 1.04 (0.98–1.10) | 1.15 (1.08–1.22) | 1.17 (1.10–1.24) | <0.001 | 1.05 (1.03–1.06) | 0.22 | |
Model 4 | 1 (reference) | 1.05 (0.99–1.12) | 1.04 (0.98–1.10) | 1.15 (1.08–1.21) | 1.17 (1.10–1.24) | <0.001 | 1.05 (1.03–1.06) | 0.26 | |
Severity | |||||||||
No. of cases | 204 | 231 | 228 | 283 | 324 | ||||
Model 1 | 1 (reference) | 1.09 (0.90–1.32) | 1.06 (0.87–1.27) | 1.30 (1.08–1.56) | 1.48 (1.24–1.77) | <0.001 | 1.13 (1.08–1.19) | 0.11 | |
Model 2 | 1 (reference) | 1.10 (0.91–1.33) | 1.06 (0.88–1.29) | 1.31 (1.10–1.57) | 1.46 (1.22–1.75) | <0.001 | 1.13 (1.07–1.18) | 0.25 | |
Model 3 | 1 (reference) | 1.11 (0.92–1.34) | 1.08 (0.90–1.31) | 1.34 (1.12–1.60) | 1.48 (1.24–1.76) | <0.001 | 1.13 (1.07–1.19) | 0.31 | |
Model 4 | 1 (reference) | 1.11 (0.92–1.33) | 1.06 (0.88–1.28) | 1.29 (1.08–1.55) | 1.39 (1.16–1.66) | <0.001 | 1.11 (1.05–1.16) | 0.42 | |
Death | |||||||||
No. of cases | 53 | 68 | 58 | 59 | 77 | ||||
Model 1 | 1 (reference) | 1.22 (0.85–1.75) | 1.03 (0.71–1.50) | 1.05 (0.73–1.53) | 1.40 (0.98–2.01) | 0.17 | 1.10 (1.00–1.23) | 0.15 | |
Model 2 | 1 (reference) | 1.24 (0.87–1.78) | 1.04 (0.72–1.52) | 1.07 (0.74–1.56) | 1.40 (0.98–1.99) | 0.17 | 1.10 (0.99–1.22) | 0.23 | |
Model 3 | 1 (reference) | 1.26 (0.88–1.80) | 1.06 (0.73–1.54) | 1.10 (0.75–1.59) | 1.41 (0.99–2.02) | 0.14 | 1.11 (1.00–1.22) | 0.26 | |
Model 4 | 1 (reference) | 1.25 (0.87–1.79) | 1.04 (0.72–1.51) | 1.06 (0.73–1.54) | 1.32 (0.92–1.89) | 0.30 | 1.08 (0.98–1.20) | 0.30 |
Effects | Incidence | Severity | Death | |
---|---|---|---|---|
DII | ||||
Total effect | 1.030 (1.014–1.047) | 1.113 (1.061–1.166) | 1.119 (1.013–1.225) | |
Natural Direct effect | 1.023 (1.006–1.039) | 1.089 (1.037–1.140) | 1.095 (0.991–1.199) | |
Natural Indirect effect | 1.008 (1.007–1.009) | 1.022 (1.019–1.026) | 1.021 (1.016–1.027) | |
Proportion mediated (%) | 25.82 (11.86–39.79) | 21.64 (12.16–31.12) | 19.77 (3.05–36.48) | |
E-DII | ||||
Total effect | 1.039 (1.024–1.053) | 1.094 (1.049–1.139) | 1.074 (0.984–1.163) | |
Natural Direct effect | 1.032 (1.017–1.046) | 1.073 (1.028–1.117) | 1.053 (0.966–1.141) | |
Natural Indirect effect | 1.007 (1.006–1.008) | 1.020 (1.017–1.023) | 1.019 (1.014–1.024) | |
Proportion mediated (%) | 18.13 (11.06–25.19) | 22.81 (12.30–33.32) | 27.45 (−4.56 to 59.47) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Wirth, M.D.; Petermann-Rocha, F.; Parra-Soto, S.; Mathers, J.C.; Pell, J.P.; Ho, F.K.; Celis-Morales, C.A.; Hébert, J.R. Diet-Related Inflammation Is Associated with Worse COVID-19 Outcomes in the UK Biobank Cohort. Nutrients 2023, 15, 884. https://doi.org/10.3390/nu15040884
Zhao L, Wirth MD, Petermann-Rocha F, Parra-Soto S, Mathers JC, Pell JP, Ho FK, Celis-Morales CA, Hébert JR. Diet-Related Inflammation Is Associated with Worse COVID-19 Outcomes in the UK Biobank Cohort. Nutrients. 2023; 15(4):884. https://doi.org/10.3390/nu15040884
Chicago/Turabian StyleZhao, Longgang, Michael D. Wirth, Fanny Petermann-Rocha, Solange Parra-Soto, John C. Mathers, Jill P. Pell, Frederick K. Ho, Carlos A. Celis-Morales, and James R. Hébert. 2023. "Diet-Related Inflammation Is Associated with Worse COVID-19 Outcomes in the UK Biobank Cohort" Nutrients 15, no. 4: 884. https://doi.org/10.3390/nu15040884
APA StyleZhao, L., Wirth, M. D., Petermann-Rocha, F., Parra-Soto, S., Mathers, J. C., Pell, J. P., Ho, F. K., Celis-Morales, C. A., & Hébert, J. R. (2023). Diet-Related Inflammation Is Associated with Worse COVID-19 Outcomes in the UK Biobank Cohort. Nutrients, 15(4), 884. https://doi.org/10.3390/nu15040884