Association between Different Types of Exercise and Intake of Nutrients including Carbohydrate, Fat, Protein, and B Vitamins in Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Physical Activity and Exercise Participation
2.4. Measurement of Nutrient Intakes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaziano, T.A. Lifestyle and Cardiovascular Disease: More Work to Do. J. Am. Coll. Cardiol. 2017, 69, 1126–1128. [Google Scholar] [CrossRef] [PubMed]
- Loewen, O.K.; Maximova, K.; Ekwaru, J.P.; Faught, E.L.; Asbridge, M.; Ohinmaa, A.; Veugelers, P.J. Lifestyle Behavior and Mental Health in Early Adolescence. Pediatrics 2019, 143, e20183307. [Google Scholar] [CrossRef] [PubMed]
- Menichetti, J.; Villa, S.; Magnani, T.; Avuzzi, B.; Bosetti, D.; Marenghi, C.; Morlino, S.; Rancati, T.; Van Poppel, H.; Salvioni, R.; et al. Lifestyle interventions to improve the quality of life of men with prostate cancer: A systematic review of randomized controlled trials. Crit. Rev. Oncol. Hematol. 2016, 108, 13–22. [Google Scholar] [CrossRef] [PubMed]
- LaRocca, T.J.; Martens, C.R.; Seals, D.R. Nutrition and other lifestyle influences on arterial aging. Ageing Res. Rev. 2017, 39, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Fratiglioni, L.; Marseglia, A.; Dekhtyar, S. Ageing without dementia: Can stimulating psychosocial and lifestyle experiences make a difference? Lancet Neurol. 2020, 19, 533–543. [Google Scholar] [CrossRef]
- Longland, T.M.; Oikawa, S.Y.; Mitchell, C.J.; Devries, M.C.; Phillips, S.M. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: A randomized trial. Am. J. Clin. Nutr. 2016, 103, 738–746. [Google Scholar] [CrossRef]
- Cheng, C.C.; Hsu, C.Y.; Liu, J.F. Effects of dietary and exercise intervention on weight loss and body composition in obese postmenopausal women: A systematic review and meta-analysis. Menopause 2018, 25, 772–782. [Google Scholar] [CrossRef]
- Liao, C.D.; Chen, H.C.; Huang, S.W.; Liou, T.H. The Role of Muscle Mass Gain Following Protein Supplementation Plus Exercise Therapy in Older Adults with Sarcopenia and Frailty Risks: A Systematic Review and Meta-Regression Analysis of Randomized Trials. Nutrients 2019, 11, 1713. [Google Scholar] [CrossRef]
- Antoniak, A.E.; Greig, C.A. The effect of combined resistance exercise training and vitamin D3 supplementation on musculoskeletal health and function in older adults: A systematic review and meta-analysis. BMJ Open 2017, 7, e14619. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- Andrieu, S.; Guyonnet, S.; Coley, N.; Cantet, C.; Bonnefoy, M.; Bordes, S.; Bories, L.; Cufi, M.N.; Dantoine, T.; Dartigues, J.F.; et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. Lancet Neurol. 2017, 16, 377–389. [Google Scholar] [CrossRef]
- Joseph, R.J.; Alonso-Alonso, M.; Bond, D.S.; Pascual-Leone, A.; Blackburn, G.L. The neurocognitive connection between physical activity and eating behaviour. Obes. Rev. 2011, 12, 800–812. [Google Scholar] [CrossRef]
- Annesi, J.J.; Porter, K.J. Behavioural support of a proposed neurocognitive connection between physical activity and improved eating behaviour in obese women. Obes. Res. Clin. Pract. 2014, 8, e325–e330. [Google Scholar] [CrossRef]
- Spendlove, J.; Mitchell, L.; Gifford, J.; Hackett, D.; Slater, G.; Cobley, S.; O’Connor, H. Dietary Intake of Competitive Bodybuilders. Sports Med. 2015, 45, 1041–1063. [Google Scholar] [CrossRef]
- Passos, B.N.; Lima, M.C.; Sierra, A.P.; Oliveira, R.A.; Maciel, J.F.; Manoel, R.; Rogante, J.I.; Pesquero, J.B.; Cury-Boaventura, M.F. Association of Daily Dietary Intake and Inflammation Induced by Marathon Race. Mediat. Inflamm. 2019, 2019, 1537274. [Google Scholar] [CrossRef]
- Knez, W.L.; Peake, J.M. The prevalence of vitamin supplementation in ultraendurance triathletes. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 507–514. [Google Scholar] [CrossRef]
- Tucker, M.; Reicks, M. Exercise as a gateway behavior for healthful eating among older adults: An exploratory study. J. Nutr. Educ. Behav. 2002, 34 (Suppl. S1), S14–S19. [Google Scholar] [CrossRef]
- Panek, L.M.; Jones, K.R.; Temple, J.L. Short term aerobic exercise alters the reinforcing value of food in inactive adults. Appetite 2014, 81, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Donati Zeppa, S.; Sisti, D.; Amatori, S.; Gervasi, M.; Agostini, D.; Piccoli, G.; Bertuccioli, A.; Rocchi, M.B.; Stocchi, V.; Sestili, P. High-intensity Interval Training Promotes the Shift to a Health-Supporting Dietary Pattern in Young Adults. Nutrients 2020, 12, 843. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Williamson, S.A.; Vazquez, A.I.; Fernandez, J.R.; Bray, M.S. The influence of 15-week exercise training on dietary patterns among young adults. Int. J. Obes. 2019, 43, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Amatori, S.; Donati Zeppa, S.; Preti, A.; Gervasi, M.; Gobbi, E.; Ferrini, F.; Rocchi, M.B.; Baldari, C.; Perroni, F.; Piccoli, G.; et al. Dietary Habits and Psychological States during COVID-19 Home Isolation in Italian College Students: The Role of Physical Exercise. Nutrients 2020, 12, 3660. [Google Scholar] [CrossRef] [PubMed]
- Guezennec, C.Y.; Chalabi, H.; Bernard, J.; Fardellone, P.; Krentowski, R.; Zerath, E.; Meunier, P.J. Is there a relationship between physical activity and dietary calcium intake? A survey in 10,373 young French subjects. Med. Sci. Sport. Exerc. 1998, 30, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Barrero, A.; Erola, P.; Bescos, R. Energy balance of triathletes during an ultra-endurance event. Nutrients 2014, 7, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Manore, M.M. Effect of physical activity on thiamine, riboflavin, and vitamin B6 requirements. Am. J. Clin. Nutr. 2000, 72 (Suppl. S2), 598S–606S. [Google Scholar] [CrossRef]
- Paulin, F.V.; Zagatto, A.M.; Chiappa, G.R.; Muller, P.T. Addition of vitamin B12 to exercise training improves cycle ergometer endurance in advanced COPD patients: A randomized and controlled study. Respir. Med. 2017, 122, 23–29. [Google Scholar] [CrossRef]
- Wikiera, A.; Irla, M.; Mika, M. Health-promoting properties of pectin. Postep. Hig. I Med. Dosw. (Online) 2014, 68, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Wanders, A.J.; Feskens, E.J.; Jonathan, M.C.; Schols, H.A.; de Graaf, C.; Mars, M. Pectin is not pectin: A randomized trial on the effect of different physicochemical properties of dietary fiber on appetite and energy intake. Physiol. Behav. 2014, 128, 212–219. [Google Scholar] [CrossRef]
- Hand, G.A.; Shook, R.P.; Paluch, A.E.; Baruth, M.; Crowley, E.P.; Jaggers, J.R.; Prasad, V.K.; Hurley, T.G.; Hebert, J.R.; O′Connor, D.P.; et al. The energy balance study: The design and baseline results for a longitudinal study of energy balance. Res. Q. Exerc. Sport 2013, 84, 275–286. [Google Scholar] [CrossRef]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014, 311, 806–814. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, D.L.; Calabro, M.A.; Stewart, J.; Franke, W.; Rood, J.C.; Welk, G.J. Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med. Sci. Sport. Exerc. 2010, 42, 2134–2140. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, P.P.; Roebothan, B.; Ryan, A.; Tucker, C.S.; Colbourne, J.; Baker, N.; Cotterchio, M.; Yi, Y.; Sun, G. Assessing the validity of a self-administered food-frequency questionnaire (FFQ) in the adult population of Newfoundland and Labrador, Canada. Nutr. J. 2013, 12, 49. [Google Scholar] [CrossRef]
- Food and Nutrition Board IOM. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press: Washington, DC, USA, 1998. [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Food and Nutrition Board IOM. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Jang, L.G.; Choi, G.; Kim, S.W.; Kim, B.Y.; Lee, S.; Park, H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: An observational study. J. Int. Soc. Sport. Nutr. 2019, 16, 21. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; Di Marco, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med. Sci. Sport. Exerc. 2009, 41, 709–731. [Google Scholar] [CrossRef]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef]
- Witard, O.C.; Cocke, T.L.; Ferrando, A.A.; Wolfe, R.R.; Tipton, K.D. Increased net muscle protein balance in response to simultaneous and separate ingestion of carbohydrate and essential amino acids following resistance exercise. Appl. Physiol. Nutr. Metab. 2014, 39, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Meinert, L.T.; Harper, A. Atkins and other low-carbohydrate diets: Hoax or an effective tool for weight loss? Lancet 2004, 364, 897–899. [Google Scholar] [CrossRef]
- Hearris, M.A.; Hammond, K.M.; Fell, J.M.; Morton, J.P. Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations. Nutrients 2018, 10, 298. [Google Scholar] [CrossRef] [Green Version]
- Haff, G.G.; Lehmkuhl, M.J.; McCoy, L.B.; Stone, M.H. Carbohydrate supplementation and resistance training. J. Strength Cond. Res. 2003, 17, 187–196. [Google Scholar] [CrossRef]
- Rahman, S.; Baumgartner, M. B Vitamins: Small molecules, big effects. J. Inherit. Metab. Dis. 2019, 42, 579–580. [Google Scholar] [CrossRef] [PubMed]
- Zaoui, A.; Abdelghani, A.; Ben Salem, H.; Quanta, W.; Hayoum, A.; Khachnaoui, N.; Rejeb, N.; Benzartr, M. Early-onset severe isoniazid-induced motor-dominant neuropathy: A case report. East. Mediterr. Health J. 2012, 18, 298–299. [Google Scholar] [CrossRef] [PubMed]
- Hin, H.; Clarke, R.; Sherliker, P.; Atoyebi, W.; Emmens, K.; Birks, J.; Schneede, J.; Ueland, P.M.; Nexo, E.; Scott, J.; et al. Clinical relevance of low serum vitamin B12 concentrations in older people: The Banbury B12 study. Age Ageing 2006, 35, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Wee, A.K. Serum folate predicts muscle strength: A pilot cross-sectional study of the association between serum vitamin levels and muscle strength and gait measures in patients >65 years old with diabetes mellitus in a primary care setting. Nutr. J. 2016, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Aytekin, N.; Mileva, K.N.; Cunliffe, A.D. Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: Relevance of UK dietary recommendations. Nutr. Res. Rev. 2018, 31, 204–224. [Google Scholar] [CrossRef] [PubMed]
- Dolopikou, C.F.; Kourtzidis, I.A.; Margaritelis, N.V.; Vrabas, I.S.; Koidou, I.; Kyparos, A.; Theodorou, A.A.; Paschalis, V.; Nikolaidis, M.G. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: A double-blind cross-over study. Eur. J. Nutr. 2020, 59, 505–515. [Google Scholar] [CrossRef]
- Thakur, B.R.; Singh, R.K.; Handa, A.K. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef]
- Pelkman, C.L.; Navia, J.L.; Miller, A.E.; Pohle, R.J. Novel calcium-gelled, alginate-pectin beverage reduced energy intake in nondieting overweight and obese women: Interactions with dietary restraint status. Am. J. Clin. Nutr. 2007, 86, 1595–1602. [Google Scholar] [CrossRef]
- Okamoto, T.; Morino, K.; Ugi, S.; Nakagawa, F.; Lemecha, M.; Ida, S.; Ohashi, N.; Sato, D.; Fujita, Y.; Maegawa, H. Microbiome potentiates endurance exercise through intestinal acetate production. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E956–E966. [Google Scholar] [CrossRef]
- Liu, S.; Willett, W.C.; Manson, J.E.; Hu, F.B.; Rosner, B.; Colditz, G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am. J. Clin. Nutr. 2003, 78, 920–927. [Google Scholar] [CrossRef]
- Chomentowski, P.; Dubé, J.J.; Amati, F.; Stefanovic-Racic, M.; Zhu, S.; Toledo, F.G.; Goodpaster, B.H. Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction-induced weight loss in older, overweight to obese adults. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Brouns, F. Overweight and diabetes prevention: Is a low-carbohydrate-high-fat diet recommendable? Eur. J. Nutr. 2018, 57, 1301–1312. [Google Scholar] [CrossRef]
- Brown-Borg, H.M. Disentangling High Fat, Low Carb, and Healthy Aging. Cell Metab. 2017, 26, 458–459. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, M.; Grandl, G.; Ristow, M. Dietary Carbohydrates Impair Healthspan and Promote Mortality. Cell Metab. 2017, 26, 585–587. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [PubMed]
- Feinman, R.D.; Lechner, K.; Fine, E.J.; Elliott, J.; Thompson-Starkey, M.; O’Hearn, L.A.; Worm, N. Re-evaluating low-carbohydrate diets and mortality. Lancet Public Health 2022, 7, e581. [Google Scholar] [CrossRef]
All Participants (n = 427) | Women (n = 217) | Men (n = 210) | |
---|---|---|---|
Age (years) | 27.65 ± 3.78 | 27.81 ± 3.70 | 27.47 ± 3.87 |
% European | 284 (66.5%) | 141 (65.0%) | 143(68.1%) |
% Employed for Wages | 224 (52.5%) | 121 (55.8%) | 103 (49.0%) |
% Married | 139 (32.6%) | 64 (29.5%) | 75 (49.0%) |
Height (cm) | 171.10 ± 9.45 | 164.57 ± 6.49 | 177.84 ± 6.98 |
Weight (kg) | 75.30 ± 14.01 | 69.35 ± 12.71 | 81.44 ± 12.58 |
BMI (kg/m2) | 25.65 ± 3.87 | 25.58 ± 4.28 | 25.71 ± 3.40 |
Fat Mass (kg) | 21.50 ± 8.62 | 24.09 ± 8.33 | 18.80 ± 8.09 |
Lean Mass (kg) | 51.36 ± 10.77 | 43.26 ± 5.99 | 59.76 ± 7.78 |
Body Fat (%) | 28.40 ± 8.98 | 33.97 ± 6.66 | 22.61 ± 7.26 |
Light PA (min/day) | 216.18 ± 58.44 | 235.88 ± 58.56 | 195.83 ± 50.98 |
MVPA (min/day) | 135.58 ± 77.15 | 112.42 ± 65.21 | 159.51 ±81.26 |
Exercise Time | Exercise Time < 40 min | Exercise Time > 40 min | |
---|---|---|---|
Median (IQR) | n (%) | n (%) | |
Resist EX (min/week) | 40.00 (120.00) | 219 (51.3%) | 208 (48.7%) |
Aerobic EX (min/week) | 60.00 (135.00) | 190 (44.5%) | 237 (55.5%) |
Sports EX (min/week) | 00.00 (60.00) | 301 (70.5%) | 126 (29.5%) |
Walking (min/week) | 40.00 (90.00) | 219 (51.3%) | 208 (48.7%) |
Other EX (min/week) | 00.00 (120.00) | 233 (54.6%) | 194 (45.4%) |
Median (IQR) | Exercise Time > 240 min | Exercise Time < 240 min | |
---|---|---|---|
Total EX (Min/Week) | 240.00 (350.00) | 216 (50.6%) | 211 (49.4%) |
Nutrient Intake | Achieve DRI | DRI Not Achieved | |
Median (IQR) | n (%) | n (%) | |
Fat (g/day) a | 71.47 (43.41) | — | — |
CHO (g/day) | 231.85 (103.23) | 427 (100.0%) | 0 (0.0%) |
PRO (g/day) | 78.86 (38.83) | 396 (92.7%) | 31 (7.3%) |
Sugar (g/day) a | 88.65 (52.94) | — | — |
Fiber (g/day) | 17.18 (10.51) | 39 (9.1%) | 388 (90.9%) |
Pectin (g/day) a | 2.05 (1.55) | — | — |
Vitamin B1 (mg/day) | 1.64 (0.85) | 365 (85.5%) | 62 (14.5%) |
Vitamin B2 (mg/day) | 1.97 (1.07) | 395 (92.5%) | 32 (7.5%) |
Vitamin B3 (mg/day) | 24.42 (12.97) | 399 (93.4%) | 28 (6.6%) |
Vitamin B5 (mg/day) | 5.06 (3.27) | 221 (51.8%) | 206 (48.2%) |
Vitamin B6 (mg/day) | 1.88 (1.10) | 364 (85.2%) | 63 (14.8%) |
Vitamin B9 (μg/day) | 422.11 (230.79) | 233 (54.6%) | 194 (45.4%) |
Vitamin B12 (μg/day) | 4.15 (3.39) | 348 (81.5%) | 79 (18.5%) |
Exercise (Min/Week) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent | Resist EX 1 | Aerobic EX 1 | Sports 1 | Walking 1 | Other Structured PA 1 | Total EX 2 | ||||||
Variable | β | p | β | p | β | p | β | p | β | p | β | p |
Fat | 0.087 | 0.109 | 0.053 | 0.265 | −0.055 | 0.263 | −0.049 | 0.300 | 0.057 | 0.269 | 0.091 | 0.053 |
CHO | −0.078 | 0.160 | 0.086 | 0.075 | 0.008 | 0.869 | 0.005 | 0.923 | −0.101 | 0.056 | −0.061 | 0.209 |
PRO | 0.157 | 0.003 | −0.037 | 0.409 | −0.043 | 0.359 | −0.045 | 0.323 | 0.012 | 0.810 | 0.064 | 0.155 |
PCT-Fat | 0.093 | 0.099 | 0.013 | 0.786 | −0.017 | 0.737 | −0.018 | 0.722 | 0.100 | 0.064 | 0.116 | 0.018 |
PCT-CHO | −0.166 | 0.002 | 0.013 | 0.789 | 0.024 | 0.630 | 0.043 | 0.371 | −0.093 | 0.077 | −0.142 | 0.003 |
PCT-PRO | 0.191 | 0.001 | −0.130 | 0.008 | 0.015 | 0.770 | −0.017 | 0.724 | 0.096 | 0.072 | 0.126 | 0.012 |
Sugar | −0.043 | 0.457 | 0.073 | 0.148 | 0.040 | 0.449 | 0.039 | 0.442 | −0.064 | 0.246 | 0.006 | 0.911 |
Fiber | 0.020 | 0.727 | 0.129 | 0.009 | −0.140 | 0.007 | −0.061 | 0.218 | 0.084 | 0.120 | 0.076 | 0.127 |
Pectin | 0.032 | 0.567 | 0.115 | 0.020 | −0.194 | 0.000 | −0.047 | 0.349 | 0.131 | 0.016 | 0.078 | 0.120 |
Vitamin B1 | 0.018 | 0.744 | 0.062 | 0.192 | −0.007 | 0.899 | −0.038 | 0.426 | −0.067 | 0.200 | −0.006 | 0.903 |
Vitamin B2 | 0.138 | 0.009 | 0.081 | 0.080 | 0.029 | 0.553 | −0.037 | 0.421 | −0.037 | 0.470 | 0.138 | 0.003 |
Vitamin B3 | 0.141 | 0.008 | 0.015 | 0.738 | −0.037 | 0.435 | −0.009 | 0.848 | −0.062 | 0.218 | 0.048 | 0.296 |
Vitamin B5 | 0.161 | 0.003 | 0.076 | 0.107 | 0.005 | 0.916 | −0.069 | 0.145 | −0.010 | 0.851 | 0.155 | 0.001 |
Vitamin B6 | 0.143 | 0.010 | 0.101 | 0.037 | −0.087 | 0.082 | −0.041 | 0.403 | −0.027 | 0.609 | 0.088 | 0.070 |
Vitamin B9 | 0.035 | 0.529 | 0.068 | 0.164 | −0.043 | 0.397 | 0.001 | 0.989 | −0.031 | 0.570 | 0.026 | 0.596 |
Vitamin B12 | 0.149 | 0.006 | −0.024 | 0.609 | 0.094 | 0.057 | −0.016 | 0.741 | −0.021 | 0.690 | 0.130 | 0.006 |
Nutrients | ||||||
---|---|---|---|---|---|---|
Independent | Fiber | Vitamin B1 | Vitamin B5 | Vitamin B6 | Vitamin B9 | Vitamin B12 |
Variable | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) |
Resist EX 1 | ||||||
<40 min/week | — | — | — Ref. — | — | — | |
>40 min/week | 1.842 (0.827, 4.102) | 1.251 (0.668, 2.343) | 1.464 (0.925, 2.317) | 1.707 (0.893, 3.262) | 1.095 (0.699, 1.715) | 1.128 (0.633, 2.011) |
Aerobic EX 1 | ||||||
<40 min/week | — | — | — Ref. — | — | — | |
>40 min/week | 1.458 (0.676, 3.145) | 0.734 (0.399, 1.350) | 1.023 (0.660, 1.585) | 1.068 (0.585, 1.949) | 1.032 (0.672, 1.583) | 0.506 * (0.285, 0.899) |
Sports EX 1 | ||||||
<40 min/week | — | — | — Ref. — | — | — | |
>40 min/week | 0.545 (0.229, 1.297) | 0.735 (0.380, 1.421) | 1.031 (0.643, 1.655) | 1.080 (0.527, 2.217) | 0.760 (0.478, 1.208) | 1.643 (0.840, 3.212) |
Walking 1 | ||||||
<40 min/week | — | — | — Ref. — | — | — | |
>40 min/week | 1.900 (0.901, 4.009) | 0.940 (0.521, 1.693) | 0.976 (0.638, 1.495) | 0.461 * (0.248, 0.856) | 0.739 (0.488, 1.118) | 1.137 (0.658, 1.964) |
Other EX 1 | ||||||
<40 min/week | — | — | — Ref. — | — | — | |
>40 min/week | 1.754 (0.798, 3.854) | 0.995 (0.534, 1.853) | 1.285 (0.812, 2.034) | 1.326 (0.700, 2.513) | 1.249 (0.799, 1.951) | 1.057 (0.594,1.881) |
Total EX 2 | ||||||
<240 min/week | — | — | — Ref. — | — | — | |
>240 min/week | 3.023 * (1.403, 6.514) | 0.878 (0.489, 1.577) | 1.616 * (1.061, 2.462) | 1.441 (0.795, 2.613) | 1.108 (0.734, 1.673) | 1.182 (0.691, 2.023) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chen, J.; Sui, X.; Drenowatz, C.; Wang, Q. Association between Different Types of Exercise and Intake of Nutrients including Carbohydrate, Fat, Protein, and B Vitamins in Young Adults. Nutrients 2023, 15, 806. https://doi.org/10.3390/nu15040806
Zhang J, Chen J, Sui X, Drenowatz C, Wang Q. Association between Different Types of Exercise and Intake of Nutrients including Carbohydrate, Fat, Protein, and B Vitamins in Young Adults. Nutrients. 2023; 15(4):806. https://doi.org/10.3390/nu15040806
Chicago/Turabian StyleZhang, Jing, Jiangang Chen, Xuemei Sui, Clemens Drenowatz, and Qirong Wang. 2023. "Association between Different Types of Exercise and Intake of Nutrients including Carbohydrate, Fat, Protein, and B Vitamins in Young Adults" Nutrients 15, no. 4: 806. https://doi.org/10.3390/nu15040806
APA StyleZhang, J., Chen, J., Sui, X., Drenowatz, C., & Wang, Q. (2023). Association between Different Types of Exercise and Intake of Nutrients including Carbohydrate, Fat, Protein, and B Vitamins in Young Adults. Nutrients, 15(4), 806. https://doi.org/10.3390/nu15040806