Adherence to the Mediterranean Diet Association with Serum Levels of Nitric Oxide, Prostacyclin, and Thromboxane B2 among Prinzmetal Angina Patients and Healthy Persons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Activity
2.2. Nitric Oxide Measurement
2.3. Prostacyclin Measurement
2.4. Measurement of Thromboxane B2
2.5. Mediterranean Dietary Pattern Evaluation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirjalili, H.; Dastgheib, S.A.; Shaker, S.H.; Bahrami, R.; Mazaheri, M.; Sadr-Bafghi, S.M.H.; Sadeghizadeh-Yazdi, J.; Neamatzadeh, H. Proportion and mortality of Iranian diabetes mellitus, chronic kidney disease, hypertension, and cardiovascular disease patients with COVID-19: A meta-analysis. J. Diabetes Metab. Disord. 2021, 20, 905–917. [Google Scholar] [CrossRef]
- Hamzeh, B.; Pasdar, Y.; Mirzaei, N.; Faramani, R.S.; Najafi, F.; Shakiba, E.; Darbandi, M. Visceral adiposity index and atherogenic index of plasma as useful predictors of risk of cardiovascular diseases: Evidence from a cohort study in Iran. Lipids Health Dis. 2021, 20, 82. [Google Scholar] [CrossRef]
- Amini, M.; Zayeri, F.; Salehi, M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from the global burden of disease study 2017. BMC Public Health 2021, 21, 401. [Google Scholar] [CrossRef]
- Control CfD, Prevention. In Chronic Kidney Disease in the United States; US Department of Health and Human Services: Atlanta, GA, USA, 2019; Volume 3.
- Towbar, A.N.; Gitto, M.; Howard, J.P.; Francis, D.P.; Al-Lamee, R. Mortality from ischemic heart disease: Analysis of data from the World Health Organization and coronary artery disease risk factors from NCD Risk Factor Collaboration. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005375. [Google Scholar]
- Khorrami, Z.; Rezapour, M.; Etemad, K.; Yarahmadi, S.; Khodakarim, S.; Hezaveh, A.M.; Kameli, M.; Khanjani, N. The patterns of Non-communicable disease Multimorbidity in Iran: A Multilevel Analysis. Sci. Rep. 2020, 10, 3034. [Google Scholar] [CrossRef]
- Peate, I. Angina–management of chest pain. BJHCA 2022, 16, 110–115. [Google Scholar] [CrossRef]
- Kristensen, A.M.D.; Pareek, M.; Kragholm, K.H.; Sehested, T.S.G.; Olsen, M.H.; Prescott, E.B. Unstable angina as a component of primary composite endpoints in clinical cardiovascular trials: Pros and cons. Cardiology 2022, 147, 235–247. [Google Scholar] [CrossRef]
- Wiśniewski, O.W.; Dydowicz, F.; Salamaga, S.; Skulik, P.; Migaj, J.; Kałużna-Oleksy, M. Risk Factors Predisposing to Angina in Patients with Non-Obstructive Coronary Arteries: A Retrospective Analysis. J. Pers. Med. 2022, 12, 1049. [Google Scholar] [CrossRef]
- Joshi, P.H.; De Lemos, J.A. Diagnosis and management of stable angina: A review. JAMA 2021, 325, 1765–1778. [Google Scholar] [CrossRef]
- Latha, C.B.C.; Jeeva, S.C. Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Inform. Med. Unlocked 2019, 16, 100203. [Google Scholar] [CrossRef]
- DISCHARGE Trial Group. CT or invasive coronary angiography in stable chest pain. N. Engl. J. Med. 2022, 386, 1591–1602. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Ong, G.-J.; Girolamo, O.C.; Caceres’, V.D.M.; Muminovic, A.; Chirkov, Y.Y.; Horowitz, J.D. Angina due to coronary artery spasm (variant angina): Diagnosis and intervention strategies. Expert Rev. Cardiovasc. Ther. 2021, 19, 917–927. [Google Scholar] [CrossRef]
- Picard, F.; Sayah, N.; Spagnoli, V.; Adjedj, J.; Varenne, O. Vasospastic angina: A literature review of current evidence. Arch. Cardiovasc. Dis. 2019, 112, 44–55. [Google Scholar] [CrossRef]
- Mo’minov, I.A. Modern approaches to the diagnosis and treatment of prinzmetal angina (literary review). WBPH 2022, 16, 131–133. [Google Scholar]
- Kang, K.M.; Choi, S.I.; Chun, E.J.; A Kim, J.; Youn, T.-J.; Choi, D.J. Coronary vasospastic angina: Assessment by multidetector CT coronary angiography. Korean J. Radiol. 2012, 13, 27–33. [Google Scholar] [CrossRef]
- Glueck, C.J.; Valdes, A.; Bowe, D.; Munsif, S.; Wang, P. The endothelial nitric oxide synthase T-786c mutation, a treatable etiology of Prinzmetal’s angina. Transl. Res. 2013, 162, 64–66. [Google Scholar] [CrossRef]
- Glueck, C.J.; Munjal, J.; Khan, A.; Umar, M.; Wang, P. Endothelial nitric oxide synthase T-786C mutation, a reversible etiology of Prinzmetal’s angina pectoris. Am. J. Cardiol. 2010, 105, 792–796. [Google Scholar] [CrossRef]
- Boucher, J.L.; Moali, C.; Tenu, J.P. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell. Mol. Life Sci. 1999, 55, 1015–1028. [Google Scholar] [CrossRef]
- Dorner, G.T.; Garhofer, G.; Kiss, B.; Polska, E.; Polak, K.; Riva, C.E.; Schmetterer, L. Nitric oxide regulates retinal vascular tone in humans. Am. J. Physiol. Circ. Physiol. 2003, 285, H631–H636. [Google Scholar] [CrossRef]
- Vigstedt, M.; Søe-Jensen, P.; Bestle, M.H.; Clausen, N.E.; Kristiansen, K.T.; Lange, T.; Stensballe, J.; Perner, A.; Johansson, P.I. The effect of prostacyclin infusion on markers of endothelial activation and damage in mechanically ventilated patients with SARS-CoV-2 infection. J. Crit. Care 2022, 69, 154010. [Google Scholar] [CrossRef]
- Numano, F.; Nomura, S.; Aizawa, T.; Fujii, J.; Yajima, M. Prostacyclin and variant angina. Ann. N. Y. Acad. Sci. 1985, 454, 135–145. [Google Scholar] [CrossRef]
- Eckenstaler, R.; Ripperger, A.; Hauke, M.; Petermann, M.; Hemkemeyer, S.A.; Schwedhelm, E.; Ergün, S.; Frye, M.; Werz, O.; Koeberle, A.; et al. A Thromboxane A2 Receptor-Driven COX-2–Dependent Feedback Loop That Affects Endothelial Homeostasis and Angiogenesis. Arter. Thromb. Vasc. Biol. 2022, 42, 444–461. [Google Scholar] [CrossRef]
- Szczuko, M.; Kozioł, I.; Kotlęga, D.; Brodowski, J.; Drozd, A. The Role of Thromboxane in the Course and Treatment of Ischemic Stroke. Int. J. Mol. Sci. 2021, 22, 11644. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Y.; Yuan, J.; Qin, H.; Dong, S.; Chen, Q. Impact of aspirin use on clinical outcomes in patients with vasospastic angina: A systematic review and meta-analysis. BMJ Open 2021, 11, e048719. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, P.; Gioxari, A.; Daskalou, E.; Vasilopoulou, A.; Skouroliakou, M. Personalized Nutritional Intervention to Improve Mediterranean Diet Adherence in Female Patients with Multiple Sclerosis: A Randomized Controlled Study. Dietetics 2022, 1, 25–38. [Google Scholar] [CrossRef]
- Hidalgo-Mora, J.J.; García-Vigara, A.; Sánchez-Sánchez, M.L.; García-Pérez, M.Á.; Tarín, J.; Cano, A. The Mediterranean diet: A historical perspective on food for health. Maturitas 2020, 132, 65–69. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Ho, F.K.; Foster, H.; Boopor, J.; Parra-Soto, S.; Gray, S.R.; Mathers, J.C.; Celis-Morales, C.; Pell, J.P. (Eds.) Nonlinear associations between cumulative dietary risk factors and cardiovascular diseases, cancer, and all-cause mortality: A prospective cohort study from UK Biobank. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- AlAufi, N.S.; Chan, Y.M.; Waly, M.I.; Chin, Y.S.; Yusof, B.-N.M.; Ahmad, N. Application of mediterranean diet in cardiovascular diseases and type 2 diabetes mellitus: Motivations and challenges. Nutrients 2022, 14, 2777. [Google Scholar] [CrossRef]
- Sotos-Prieto, M.; Del Rio, D.; Drescher, G.; Estruch, R.; Hanson, C.; Harlan, T.; Hu, F.B.; Loi, M.; McClung, J.P.; Mojica, A.; et al. Mediterranean diet–promotion and dissemination of healthy eating: Proceedings of an exploratory seminar at the Radcliffe institute for advanced study. Int. J. Food Sci. Nutr. 2022, 73, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean diet as a tool to combat inflammation and chronic diseases. An overview. Biomedicines 2020, 8, 201. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Shikany, J.M.; Safford, M.M.; Soroka, O.; Brown, T.M.; Newby, P.K.; Durant, R.W.; Judd, S.E. Mediterranean Diet Score, Dietary Patterns, and Risk of Sudden Cardiac Death in the REGARDS Study. J. Am. Heart Assoc. 2021, 10, e019158. [Google Scholar] [CrossRef]
- Crous-Bou, M.; Fung, T.T.; Prescott, J.; Julin, B.; Du, M.; Sun, Q.; Rexrode, K.; Hu, F.B.; De Vivo, I. Mediterranean diet and telomere length in Nurses’ Health Study: Population based cohort study. BMJ 2014, 349, g6674. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.-C.; Neelakantan, N.; Martín-Calvo, N.; Koh, W.-P.; Yuan, J.-M.; Bonaccio, M.; Iacoviello, L.; Martínez-González, M.A.; Qin, L.-Q.; van Dam, R.M. Adherence to the Mediterranean Diet and Risk of Stroke and Stroke Subtypes; Springer: Berlin/Heidelberg, Germany, 2019; pp. 337–349. [Google Scholar]
- Becerra-Tomás, N.; Blanco Mejía, S.; Viguiliouk, E.; Khan, T.; Kendall, C.W.C.; Kahleova, H.; Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Mediterranean diet, cardiovascular disease and mortality in diabetes: A systematic review and meta-analysis of prospective cohort studies and randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 1207–1227. [Google Scholar] [CrossRef] [PubMed]
- Flack, J.M.; Adekola, B. Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc. Med. 2020, 30, 160–164. [Google Scholar] [CrossRef]
- Roberts-Lewis, S.F.; White, C.M.; Ashworth, M.; Rose, M.R. The validity of the International Physical Activity Questionnaire (IPAQ) for adults with progressive muscle diseases. Disabil. Rehabil. 2021, 44, 7312–7320. [Google Scholar] [CrossRef]
- Vieira, L.M.; Gottschall, C.B.; Vinholes, D.B.; Martinez-Gonzalez, M.A.; Marcadenti, A. Translation and cross-cultural adaptation of 14-item Mediterranean Diet Adherence Screener and low-fat diet adherence questionnaire. Clin. Nutr. ESPEN 2020, 39, 180–189. [Google Scholar] [CrossRef]
- LeBouef, T.; Yaker, Z.; Whited, L. Physiology. Clin. Nutr. ESPEN 2020, 20, 120–128. [Google Scholar]
- Zuccolo, E.; Laforenza, U.; Negri, S.; Botta, L.; Berra-Romani, R.; Faris, P.; Scarpellino, G.; Forcaia, G.; Pellavio, G.; Sancini, G.; et al. Muscarinic M5 receptors trigger acetylcholine-induced Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells. J. Cell. Physiol. 2019, 234, 4540–4562. [Google Scholar] [CrossRef]
- Bhandari, B.; Kanderi, T.; Yarlagadda, K.; Qureshi, M.; Komanduri, S. Coronary vasospasm as an etiology of recurrent ventricular fibrillation in the absence of coronary artery disease: A case report. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 510–515. [Google Scholar] [CrossRef]
- Shannon, O.M.; Stephan, B.C.M.; Minihane, A.-M.; Mathers, J.C.; Siervo, M. Nitric oxide boosting effects of the Mediterranean diet: A potential mechanism of action. J. Gerontol. 2018, 73, 902–904. [Google Scholar] [CrossRef]
- Stuehr, D.J. Enzymes of the L-arginine to nitric oxide pathway. J. Nutr. 2004, 134, 2748S–2751S. [Google Scholar] [CrossRef]
- Li, H.; Liu, Q.; Zou, Z.; Chen, Q.; Wang, W.; Baccarelli, A.A.; Deng, F.; Guo, X.; Wu, S. L-arginine supplementation to mitigate cardiovascular effects of walking outside in the context of traffic-related air pollution in participants with elevated blood pressure: A randomized, double-blind, placebo-controlled trial. Int. J. Environ. 2021, 156, 106631. [Google Scholar] [CrossRef]
- Holguin, F.; Grasemann, H.; Sharma, S.; Winnica, D.; Wasil, K.; Smith, V.; Cruse, M.H.; Perez, N.; Coleman, E.; Scialla, T.J.; et al. L-Citrulline increases nitric oxide and improves control in obese asthmatics. J. Clin. Investig. 2019, 4, e131733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.-Y.; Schutzler, S.E.; Schrader, A.; Spencer, H.J.; Azhar, G.; Deutz, N.E.P.; Wolfe, R.R. Acute ingestion of citrulline stimulates nitric oxide synthesis but does not increase blood flow in healthy young and older adults with heart failure. Am. J. Physiol. Metab. 2015, 309, E915–E924. [Google Scholar] [CrossRef] [PubMed]
- Medina-Remón, A.; Tresserra-Rimbau, A.; Pons, A.; Tur, J.; Martorell, M.; Ros, E.; Buil-Cosiales, P.; Sacanella, E.; Covas, M.; Corella, D.; et al. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Le Sayec, M.; Serreli, G.; Diotallevi, C.; Teissier, A.; Deiana, M.; Corona, G. Olive oil phenols and their metabolites modulate nitric oxide balance in Human Aortic Endothelial Cells. Proc. Nutr. Soc. 2021, 80, E34. [Google Scholar] [CrossRef]
- Krittanawong, C.; Isath, A.; Hahn, J.; Wang, Z.; Narasimhan, B.; Kaplin, S.L.; Jneid, H.; Virani, S.S.; Tang, W.W. Fish consumption and cardiovascular health: A systematic review. Am. J. Med. 2021, 134, 713–720. [Google Scholar] [CrossRef]
- Mohan, D.; Mente, A.; Dehghan, M.; Rangarajan, S.; O’Donnell, M.; Hu, W.; Dagenais, G.; Wielgosz, A.; Lear, S.; Wei, L.; et al. Associations of fish consumption with risk of cardiovascular disease and mortality among individuals with or without vascular disease from 58 countries. JAMA Intern. Med. 2021, 181, 631–649. [Google Scholar] [CrossRef]
- Mason, R.P.; Jacob, R.F.; Shrivastava, S.; Sherratt, S.C.; Chattopadhyay, A. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. Biochim. Biophys. Acta—Biomembr. 2016, 1858, 3131–3140. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, F.; Tie, R.; Liang, X.; Tian, F.; Xing, W.; Li, J.; Ji, L.; Xing, J.; Sun, X.; et al. Alpha-linolenic acid intake prevents endothelial dysfunction in high-fat diet-fed streptozotocin rats and underlying mechanisms. Vasa 2013, 42, 421–428. [Google Scholar] [CrossRef]
- Ruxton, C.; Myers, M. Fruit juices: Are they helpful or harmful? An evidence review. Nutrients 2021, 13, 1815. [Google Scholar] [CrossRef]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A.R. Lc-esi-qtof/ms characterisation of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef]
- Buscemi, S.; Rosafio, G.; Arcoleo, G.; Mattina, A.; Canino, B.; Montana, M.; Verga, S.; Rini, G. Effects of red orange juice intake on endothelial function and inflammatory markers in adult subjects with increased cardiovascular risk. Am. J. Clin. Nutr. 2012, 95, 1089–1095. [Google Scholar] [CrossRef] [Green Version]
- Macready, A.L.; George, T.W.; Chong, M.F.; Alimbetov, D.S.; Jin, Y.; Vidal, A.; Spencer, J.P.; Kennedy, O.B.; Tuohy, K.M.; Minihane, A.-M.; et al. Flavonoid-rich fruit and vegetables improve microvascular reactivity and inflammatory status in men at risk of cardiovascular disease—FLAVURS: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 479–489. [Google Scholar] [CrossRef]
- McCall, D.; McGartland, C.; McKinley, M.; Sharpe, P.; McCance, D.; Young, I.; Woodside, J. The effect of increased dietary fruit and vegetable consumption on endothelial activation, inflammation and oxidative stress in hypertensive volunteers. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 658–664. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Wang, H.; Jiang, Y.; Bao, L.; Wu, W.; Qi, R. Inhibitory Effect of Fruitflow on Platelet Function: A Randomized Placebo-Controlled Trial in Elderly Subjects. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Violi, F.; Pastori, D.; Pignatelli, P.; Carnevale, R. Nutrition, thrombosis, and cardiovascular disease. Circ. Res. 2020, 126, 1415–1442. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; OKeefe, J. Importance of maintaining a low omega-6/omega-3 ratio for reducing platelet aggregation, coagulation and thrombosis. Arch. Dis. Child 2019, 6, e001011. [Google Scholar] [CrossRef] [Green Version]
Variables | Prinzmetal Angina Patients n = 100 | Healthy Controls n = 100 | p * |
---|---|---|---|
Age (years) | 51.26 ± 0.86 | 51.37 ± 0.97 | 0.651 |
Gender | |||
Male | 50 [50%] | 50 [50%] | 0.79 |
Female | 50 [50%] | 50 [50%] | |
Weight [kg] | 78.17 ± 13.12 | 78.16 ± 8.81 | 0.81 |
Body mass index [kg/m2] | 26.25 ± 1.12 | 26.15 ± 3.28 | 0.62 |
Waist circumference [cm] | 95.35 ± 18.38 | 94.44 ± 12.04 | 0.58 |
Waist circumference to hip circumference | 0.91 ± 0.14 | 0.82 ± 0.10 | 0.02 * |
Physical activity [%] | 0.02 * | ||
- Low | 58% | 25% | |
- Moderate | 38.2% | 44% | |
- Vigorous | 2.9% | 21% | |
Smoking habit [%] | 48.5% | 21.3% | 0.01 * |
Variables | Prinzmetal Angina Patients | Healthy Controls | p * |
---|---|---|---|
Nitric oxide mmol/L | 28.9 ±1.15 | 34.8 ± 6.25 | 0.04 |
Prostacyclin pg/mL | 78.42 ± 10.97 | 85.59 ± 12.66 | 0.01 |
ThromboxaneB2 pg/mL | 888.62 ± 43.58 | 553.21 ± 8.25 | 0.05 |
SBP mmHg | 130.01 ± 28 | 118.6 ± 18 | 0.04 |
DBP mmHg | 95.02 ± 9.35 | 70.92 ± 2.82 | 0.02 |
Dependent Variables | Prinzmetal Patients | Overall Healthy Subjects | ||||||
---|---|---|---|---|---|---|---|---|
coeff.f. | 95% | p * | coeff.f. | 95% CI | p * | |||
NO | Model 1 | 0.41 | 0.38, 0.52 | 0.04 | MODEL 1 | 0.31 | 0.28, 0.42 | 0.05 |
Model 2 | 0.28 | 0.21, 0.31 | 0.02 | MODEL 2 | 0.26 | 0.22, 0.34 | 0.01 | |
PGI2 | Model 1 | 0.34 | 0.29, 0.41 | 0.02 | MODEL 1 | 0.51 | 0.48, 0.52 | 0.05 |
Model 2 | 0.25 | 0.22, 0.29 | 0.01 | MODEL 2 | 0.38 | 0.31, 0.41 | 0.04 | |
TBb2 | Model 1 | −0.48 | −0.42, −0.51 | 0.04 | MODEL 1 | −0.28 | −0.21, −0.31 | 0.02 |
Model 2 | −0.23 | −0.19, −0.28 | 0.02 | MODEL 2 | −0.22 | −0.18, −0.25 | 0.04 |
Prinzmetal Angina Patients [n = 60] | Healthy Persons [n = 60] | p | |||
---|---|---|---|---|---|
Olive oil, the main dressing | 8 | [13.13%] | 29 | [48.33%] | 0.05 |
Olive oil, 4 ts/day | 5 | [8.33%] | 28 | [46.66%] | 0.03 * |
Vegetables, 2 s/day | 11 | [18.33%] | 32 | [53.33%] | 0.01 * |
Fruits, 3 s/day | 14 | [23.33%] | 42 | [70%] | 0.04 * |
Red meat, <1 s/day | 5 | [8.33%] | 28 | [46.66%] | 0.04 * |
Butter, <1 s/day | 3 | [5%] | 29 | [48.33%] | 0.05 |
Sweet beverage, <1 s/day | 3 | [5%] | 18 | [30%] | 0.02 * |
Legumes, 3 s/week | 5 | [8.33%] | 39 | [65%] | 0.01 * |
Fish and seafood, 3 s/week | 3 | [5%] | 40 | [66.66%] | 0.04 * |
Sweets, <3 s/week | 7 | [11.66%] | 20 | [33.33%] | 0.01 * |
Nuts, 3/week | 2 | [3%] | 29 | [48.33%] | 0.03 * |
White meat over red | 5 | [8.33%] | 28 | [46.66%] | 0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohajeri, M.; Cicero, A.F.G. Adherence to the Mediterranean Diet Association with Serum Levels of Nitric Oxide, Prostacyclin, and Thromboxane B2 among Prinzmetal Angina Patients and Healthy Persons. Nutrients 2023, 15, 738. https://doi.org/10.3390/nu15030738
Mohajeri M, Cicero AFG. Adherence to the Mediterranean Diet Association with Serum Levels of Nitric Oxide, Prostacyclin, and Thromboxane B2 among Prinzmetal Angina Patients and Healthy Persons. Nutrients. 2023; 15(3):738. https://doi.org/10.3390/nu15030738
Chicago/Turabian StyleMohajeri, Mahsa, and Arrigo F. G. Cicero. 2023. "Adherence to the Mediterranean Diet Association with Serum Levels of Nitric Oxide, Prostacyclin, and Thromboxane B2 among Prinzmetal Angina Patients and Healthy Persons" Nutrients 15, no. 3: 738. https://doi.org/10.3390/nu15030738
APA StyleMohajeri, M., & Cicero, A. F. G. (2023). Adherence to the Mediterranean Diet Association with Serum Levels of Nitric Oxide, Prostacyclin, and Thromboxane B2 among Prinzmetal Angina Patients and Healthy Persons. Nutrients, 15(3), 738. https://doi.org/10.3390/nu15030738