Comparison of Four Dietary Pattern Indices in Australian Baby Boomers: Findings from the Busselton Healthy Ageing Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Data
2.3. DGI-2013
2.4. EAT-Lancet Index
2.5. MedDiet
2.6. Lit-MedDiet
2.7. Covariates
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. DGI-2013
3.3. EAT-Lancet Index
3.4. MedDiet
3.5. Lit-MedDiet
3.6. Concordance between Dietary Indices
3.7. Comparison of Demographic and Lifestyle Factors Associated with the Dietary Indices
3.8. Comparison of Medical Factors Associated with the Dietary Indices
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gill, T.K.; Taylor, A.W.; Dal Grande, E.; Gonzalez-Chica, D.; Melaku, Y.A.; Shi, Z.; Riley, M.; Adams, R.; Kinfu, Y.; Renzaho, A.; et al. Burden and Trend of Diet-Related Non-Communicable Diseases in Australia and Comparison with 34 OECD Countries, 1990–2015: Findings from the Global Burden of Disease Study 2015. Eur. J. Nutr. 2019, 58, 1299–1313. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
- Cespedes, E.M.; Hu, F.B. Dietary Patterns: From Nutritional Epidemiologic Analysis to National Guidelines123. Am. J. Clin. Nutr. 2015, 101, 899–900. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A Review of Statistical Methods for Dietary Pattern Analysis. Nutr. J. 2021, 20, 37. [Google Scholar] [CrossRef]
- Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. A Revised Australian Dietary Guideline Index and Its Association with Key Sociodemographic Factors, Health Behaviors and Body Mass Index in Peri-Retirement Aged Adults. Nutrients 2016, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT– Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights from the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean Diet and Health Status: An Updated Meta-Analysis and a Proposal for a Literature-Based Adherence Score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [Green Version]
- Burggraf, C.; Teuber, R.; Brosig, S.; Meier, T. Review of a Priori Dietary Quality Indices in Relation to Their Construction Criteria. Nutr. Rev. 2018, 76, 747–764. [Google Scholar] [CrossRef]
- Wang, Q.; Hashemian, M.; Sepanlou, S.G.; Sharafkhah, M.; Poustchi, H.; Khoshnia, M.; Gharavi, A.; Pourshams, A.; Malekshah, A.F.; Kamangar, F.; et al. Dietary Quality Using Four Dietary Indices and Lung Cancer Risk: The Golestan Cohort Study (GCS). Cancer Causes Control. 2021, 32, 493–503. [Google Scholar] [CrossRef] [PubMed]
- James, A.; Hunter, M.; Straker, L.; Beilby, J.; Bucks, R.; Davis, T.; Eikelboom, R.H.; Hillman, D.; Hui, J.; Hung, J.; et al. Rationale, Design and Methods for a Community-Based Study of Clustering and Cumulative Effects of Chronic Disease Processes and Their Effects on Ageing: The Busselton Healthy Ageing Study. BMC Public Health 2013, 13, 936. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.; Mitchell, P.; Reay, E.M.; Webb, K.; Harvey, P.W.J. Validity and Reproducibility of a Self-Administered Food Frequency Questionnaire in Older People. Aust. N. Z. J. Public Health 1998, 22, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Stubbendorff, A.; Sonestedt, E.; Ramne, S.; Drake, I.; Hallström, E.; Ericson, U. Development of an EAT-Lancet Index and Its Relation to Mortality in a Swedish Population. Am. J. Clin. Nutr. 2022, 115, 705–716. [Google Scholar] [CrossRef]
- Hodge, A.M.; Bassett, J.K.; Dugué, P.-A.; Shivappa, N.; Hébert, J.R.; Milne, R.L.; English, D.R.; Giles, G.G. Dietary Inflammatory Index or Mediterranean Diet Score as Risk Factors for Total and Cardiovascular Mortality. Nutr. Metab. Cardiovasc. Dis. NMCD 2018, 28, 461–469. [Google Scholar] [CrossRef] [PubMed]
- The Active Australia Survey: A Guide and Manual for Implementation, Analysis and Reporting; Australian Institute of Health and Welfare: Canberra, ACT, Australia, 2003.
- Lin, L.I.-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Chernov, N. Circular and Linear Regression: Fitting Circles and Lines by Least Squares, 1st ed.; Chapman and Hall/CRC Monographs on Statistics and Applied Probability Ser; Taylor & Francis Group: Baton Rouge, LA, USA, 2010; Volume 117, ISBN 978-1-4398-3591-3. [Google Scholar]
- Kahan, B.C.; Rushton, H.; Morris, T.P.; Daniel, R.M. A Comparison of Methods to Adjust for Continuous Covariates in the Analysis of Randomised Trials. BMC Med. Res. Methodol. 2016, 16, 42. [Google Scholar] [CrossRef] [Green Version]
- Crainiceanu, C.M.; Ruppert, D. Likelihood Ratio Tests for Goodness-of-Fit of a Nonlinear Regression Model. J. Multivar. Anal. 2004, 91, 35–52. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2022. Available online: https://www.R-project.org/ (accessed on 1 December 2021).
- McNaughton, S.A.; Dunstan, D.W.; Ball, K.; Shaw, J.; Crawford, D. Dietary Quality Is Associated with Diabetes and Cardio-Metabolic Risk Factors. J. Nutr. 2009, 139, 734–742. [Google Scholar] [CrossRef] [Green Version]
- McNaughton, S.A.; Ball, K.; Crawford, D.; Mishra, G.D. An Index of Diet and Eating Patterns Is a Valid Measure of Diet Quality in an Australian Population. J. Nutr. 2008, 138, 86–93. [Google Scholar] [CrossRef]
- Tong, T.Y.N.; Wareham, N.J.; Khaw, K.-T.; Imamura, F.; Forouhi, N.G. Prospective Association of the Mediterranean Diet with Cardiovascular Disease Incidence and Mortality and Its Population Impact in a Non-Mediterranean Population: The EPIC-Norfolk Study. BMC Med. 2016, 14, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milte, C.M.; Thorpe, M.G.; Crawford, D.; Ball, K.; McNaughton, S.A. Associations of Diet Quality with Health-Related Quality of Life in Older Australian Men and Women. Exp. Gerontol. 2015, 64, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milte, C.M.; Russell, A.P.; Ball, K.; Crawford, D.; Salmon, J.; McNaughton, S.A. Diet Quality and Telomere Length in Older Australian Men and Women. Eur. J. Nutr. 2018, 57, 363–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Lorgeril, M.; Salen, P.; Martin, J.-L.; Monjaud, I.; Delaye, J.; Mamelle, N. Mediterranean Diet, Traditional Risk Factors, and the Rate of Cardiovascular Complications After Myocardial Infarction. Circulation 1999, 99, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lista, J.; Alcala-Diaz, J.F.; Torres-Peña, J.D.; Quintana-Navarro, G.M.; Fuentes, F.; Garcia-Rios, A.; Ortiz-Morales, A.M.; Gonzalez-Requero, A.I.; Perez-Caballero, A.I.; Yubero-Serrano, E.M.; et al. Long-Term Secondary Prevention of Cardiovascular Disease with a Mediterranean Diet and a Low-Fat Diet (CORDIOPREV): A Randomised Controlled Trial. Lancet 2022, 399, 1876–1885. [Google Scholar] [CrossRef]
- Martínez-González, M.Á.; Hershey, M.S.; Zazpe, I.; Trichopoulou, A. Transferability of the Mediterranean Diet to Non-Mediterranean Countries. What Is and What Is Not the Mediterranean Diet. Nutrients 2017, 9, 1226. [Google Scholar] [CrossRef] [Green Version]
- Mantzioris, E.; Villani, A. Translation of a Mediterranean-Style Diet into the Australian Dietary Guidelines: A Nutritional, Ecological and Environmental Perspective. Nutrients 2019, 11, 2507. [Google Scholar] [CrossRef] [Green Version]
- Hendrie, G.A.; Rebuli, M.A.; James-Martin, G.; Baird, D.L.; Bogard, J.R.; Lawrence, A.S.; Ridoutt, B. Towards Healthier and More Sustainable Diets in the Australian Context: Comparison of Current Diets with the Australian Dietary Guidelines and the Eat-Lancet Planetary Health Diet. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583557/ (accessed on 27 November 2022).
- Kesse-Guyot, E.; Rebouillat, P.; Brunin, J.; Langevin, B.; Allès, B.; Touvier, M.; Hercberg, S.; Fouillet, H.; Huneau, J.-F.; Mariotti, F.; et al. Environmental and Nutritional Analysis of the EAT-Lancet Diet at the Individual Level: Insights from the NutriNet-Santé Study. J. Clean. Prod. 2021, 296, 126555. [Google Scholar] [CrossRef]
- Australian Dietary Guidelines Review. Available online: https://www.nhmrc.gov.au/health-advice/nutrition/australian-dietary-guidelines-review/about-the-review (accessed on 6 November 2022).
- Buttriss, J.L. The Eatwell Guide Refreshed. Nutr. Bull. 2016, 41, 135–141. [Google Scholar] [CrossRef]
- Brink, E.; van Rossum, C.; Postma-Smeets, A.; Stafleu, A.; Wolvers, D.; van Dooren, C.; Toxopeus, I.; Buurma-Rethans, E.; Geurts, M.; Ocké, M. Development of Healthy and Sustainable Food-Based Dietary Guidelines for the Netherlands. Public Health Nutr. 2019, 22, 2419–2435. [Google Scholar] [CrossRef]
- Lassen, A.D.; Christensen, L.M.; Trolle, E. Development of a Danish Adapted Healthy Plant-Based Diet Based on the EAT-Lancet Reference Diet. Nutrients 2020, 12, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucci, M.; Martini, D.; Del Bo’, C.; Marino, M.; Battezzati, A.; Bertoli, S.; Porrini, M.; Riso, P. An Italian-Mediterranean Dietary Pattern Developed Based on the EAT-Lancet Reference Diet (EAT-IT): A Nutritional Evaluation. Foods Basel Switz. 2021, 10, 558. [Google Scholar] [CrossRef] [PubMed]
- Backholer, K.; Spencer, E.; Gearon, E.; Magliano, D.J.; McNaughton, S.A.; Shaw, J.E.; Peeters, A. The Association between Socio-Economic Position and Diet Quality in Australian Adults. Public Health Nutr. 2016, 19, 477–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingstone, K.M.; Olstad, D.L.; Leech, R.M.; Ball, K.; Meertens, B.; Potter, J.; Cleanthous, X.; Reynolds, R.; McNaughton, S.A. Socioeconomic Inequities in Diet Quality and Nutrient Intakes among Australian Adults: Findings from a Nationally Representative Cross-Sectional Study. Nutrients 2017, 9, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulding, T.; Lindberg, R.; Russell, C.G. The Affordability of a Healthy and Sustainable Diet: An Australian Case Study. Nutr. J. 2020, 19, 109. [Google Scholar] [CrossRef] [PubMed]
- Stanaway, F.F.; Ribeiro, R.V.; Khalatbari-Soltani, S.; Cvejic, E.; Blyth, F.M.; Naganathan, V.; Handelsman, D.J.; Le Couteur, D.G.; Simpson, S.J.; Waite, L.M.; et al. Diet Quality in an Ethnically Diverse Population of Older Men in Australia. Eur. J. Clin. Nutr. 2021, 75, 1792–1800. [Google Scholar] [CrossRef]
- Dietary Guidelines for Americans, 2020-2025; U.S. Department of Agriculture and U.S. Department of Health and Human Services: Washington, DC, USA, 2021.
Characteristics 1 | All (n = 3458) | Males (n = 1546) | Females (n = 1912) |
---|---|---|---|
Demographics | |||
Age (years) | 64 (60–69) | 64 (60–69) | 64 (59–68) |
Marital Status | |||
No partner | 18.59 (643) | 14.17 (219) | 22.18 (424) |
Partner | 81.41 (2815) | 85.83 (1327) | 77.82 (1488) |
Ethnicity | |||
Caucasian | 99.16 (3429) | 99.42 (1537) | 98.95 (1892) |
Other | 0.84 (29) | 0.58 (9) | 1.05 (20) |
Highest level of Education attained | |||
School (Primary or Secondary) | 48.44 (1675) | 49.74 (769) | 47.38 (906) |
Other educational institution (e.g., TAFE 3) college) | 31.15 (1077) | 30.66 (474) | 31.54 (603) |
University | 19.60 (303) | 21.08 (403) | 20.44 (706) |
Income (average per annum, before tax) | |||
≤$40,000 | 22.09 (764) | 18.24 (282) | 25.21 (482) |
$40,001 to $80,000 | 27.82 (962) | 29.37 (454) | 26.57 (508) |
>$80,001 | 30.88 (1068) | 36.35 (562) | 26.46 (506) |
Prefer not to say | 19.20 (664) | 16.04 (248) | 21.76 (416) |
Lifestyle | |||
Vigorous to moderate physical exercise (hours per week) | 8.0 (1.5–18.0) | 10.5 (3.0–24.0) | 6.0 (0.5–14.0) |
Smoking status | |||
Never | 49.05 (1696) | 44.05 (681) | 53.09 (1015) |
Previous (ex) | 46.24 (1599) | 50.91 (787) | 42.47 (812) |
Current | 4.71 (163) | 5.05 (78) | 4.45 (85) |
Self-Reported Medical Conditions | |||
Cancer | 7.89 (273) | 8.80 (136) | 7.17 (137) |
High blood pressure (ever) | 31.90 (1103) | 34.67 (536) | 29.65 (567) |
High blood pressure (current) | 25.94 (897) | 27.75 (429) | 24.48 (468) |
High cholesterol (ever) | 31.69 (1096) | 32.92 (509) | 30.7 (587) |
High cholesterol (current) | 24.26 (839) | 23.74 (367) | 24.69 (472) |
Diabetes | 7.72 (267) | 9.18 (142) | 6.54 (125) |
Kidney Disease | 1.85 (64) | 1.62 (25) | 2.04 (39) |
COPD 4 | 1.27 (44) | 1.16 (18) | 1.36 (26) |
Cardiovascular Disease 2 | 7.1 (245) | 9.4 (146) | 5.2 (99) |
Food Group 3 | DGI 2013 2 | EAT-Lancet Index 2 | Mediterranean Diet Index | Literature-Based Mediterranean Diet Index 2 |
---|---|---|---|---|
% (n) 1 | % (n) 1 | % (n) 1 | % (n) 1 | |
Fruit 4 | 66.9 (2312) | 55.1 (1907) | 50.1 (1733) | 34.0 (1173) |
Vegetables 4 | 49.8 (1723) | 64.0 (2214) | 49.8 (1723) | 85.7 (2963) |
Potato | NA 6 | 27.3 (881) | NA 6 | NA 6 |
Cereals | 4.7 (162) | NA 5 | 50.1 (1732) | 16.5 (570) |
Wholegrains 4 | 60.7 (2098) | 1.8 (64) | NA 6 | NA 6 |
Legumes | NA 6 | 5.1 (175) | 51.4 (1779) | 27.3 (943) |
Nuts | NA 6 | 1.4 (47) | NA 6 | NA 6 |
Meat 4 | 87.6 (3030) | 4.7 (162) | 49.4 (1710) | 17.6 (609) |
Lean Meat Ratio | 3.4 (118) | NA 6 | NA 6 | NA 6 |
Poultry | NA 5 | 85.9 (2969) | NA 5 | NA 5 |
Fish | NA 5 | 50.6 (1751) | 49.5 (1712) | 38.8 (1342) |
Egg | NA 5 | 32.1 (1109) | NA 6 | NA 6 |
Dairy4 | 32.3 (1043) | 36.4 (1257) | 49.2 (1702) | 29.4 (1018) |
Low Fat Dairy Ratio | 44.2 (1530) | NA 6 | NA 6 | NA 6 |
Saturated Fats | 61.6 (2132) | NA 5 | NA 6 | NA 6 |
Lard | NA 5 | 98.4 (3404) | NA 6 | NA 6 |
Unsaturated Fats 4 | 4.6 (158) | 0.2 (6) | NA 5 | NA 5 |
Olive Oil | NA 5 | NA 5 | 21.1 (729) | 1.2 (43) |
Alcohol | 73.5 (2543) | NA 6 | 46.2 (1598) | 22.1 (765) |
Added Sugar 4 | 67.9 (2349) | 55.2 (1909) | NA 6 | NA 6 |
Added Salt | 34.3 (1185) | NA 6 | NA 6 | NA 6 |
Discretionary Foods | 15.1 (521) | NA 6 | NA 6 | NA 6 |
Variety | 0.0 (1) | NA 6 | NA 6 | NA 6 |
Beverages | 49.7 (1720) | NA 6 | NA 6 | NA 6 |
Water Ratio | 41.6 (1439) | NA 6 | NA 6 | NA 6 |
Predictor 5 | DGI 2013 | EAT-Lancet Index | MedDiet | Lit-MedDiet | ||||
---|---|---|---|---|---|---|---|---|
β (95% CI) 1,4 | p Value | β (95% CI) 1,4 | p Value | β (95% CI) 1,4 | p Value | β (95% CI) 1,4 | p Value | |
Demographic | ||||||||
Age (years) 2,4 | 0.01 (0.09, 0.03) | 0.001 | 0.00 (0.06, −0.01) | 0.49 | 0.02 (0.13, 0.05) | 0.001 | 0.02 (0.12, 0.05) | <0.001 |
Sex | <0.001 | <0.001 | 0.50 | <0.001 | ||||
Male (ref) | ref | ref | ref | ref | ||||
Female | 0.73 (0.66, 0.79) | 0.36 (0.29, 0.43) | 0.04 (−0.03, 0.11) | 0.25 (0.18, 0.32) | ||||
Marital Status | 0.005 | 0.54 | 0.01 | 0.29 | ||||
No partner (ref) | ref | ref | ref | ref | ||||
Partner | 0.21 (0.13, 0.30) | −0.01 (−0.09, 0.08) | 0.08 (−0.01, 0.17) | 0.07 (−0.02, 0.16) | ||||
Ethnicity | 0.34 | <0.001 | 0.12 | 0.003 | ||||
Caucasian (ref) | ref | ref | ref | ref | ||||
Other | −0.21 (−0.55, 0.12) | 0.67 (0.32, 1.03) | 0.29 (−0.07, 0.65) | 0.53 (0.17, 0.89) | ||||
Highest level of Education attained | <0.001 | <0.001 | 0.001 | <0.001 | ||||
School (Primary and Secondary) (ref) | ref | ref | ref | ref | ||||
Other educational institution (e.g., TAFE 6) | 0.17 (0.10, 0.24) | 0.12 (0.05, 0.20) | 0.07 (0.00, 0.15) | 0.11 (0.32, 0.18) | ||||
University | 0.26 (0.18, 0.35) | 0.30 (0.21, 0.39) | 0.15 (0.06, 0.24) | 0.17 (0.08, 0.26) | ||||
Income (average per annum, before tax) | 0.11 | 0.04 | 0.02 | 0.19 | ||||
≤$40,000 (ref) | ref | ref | ref | ref | ||||
$40,001 to $80,000 | −0.08 (−0.17, 0.01) | −0.04 (−0.14, −0.06) | 0.03 (−0.07, 0.12) | −0.05 (−0.14, 0.05) | ||||
> $80,001 | −0.09 (−0.20, 0.00) | 0.06 (−0.04, 0.17) | 0.13 (0.03, 0.24) | 0.03 (−0.07, 0.14) | ||||
Prefer not to say | −0.12 (−0.22, −0.03) | −0.07 (−0.17, 0.03) | −0.01 (−0.12, 0.09) | −0.06 (−0.16, 0.05) | ||||
Lifestyle | ||||||||
Vigorous/moderate physical activity (hours per week) 3,4,7 | 0.12 (0.08, 0.27) | 0.03 | 0.09 (0.14, 0.33) | <0.001 | 0.11 (0.20, 0.40) | <0.001 | 0.15 (0.15, 0.34) | <0.001 |
Smoking status | <0.001 | <0.001 | 0.12 | 0.01 | ||||
Never (ref) | ref | ref | ref | ref | ||||
Former | −0.19 (−0.26, −0.13) | −0.05 (−0.12, 0.01) | 0.04 (−0.02, 0.11) | −0.04 (−0.11, 0.03) | ||||
Current | −0.48 (−0.63, −0.33) | −0.41 (−0.57, −0.25) | −0.11 (−0.27, 0.05) | −0.24 (−0.40, −0.08) |
Predictor 3 | DGI 2013 | EAT-Lancet Index | MedDiet | Lit-MedDiet | ||||
---|---|---|---|---|---|---|---|---|
β (95% CI) 1 2 | p Value | β (95% CI) 1,2 | p Value | β (95% CI) 1,2 | p Value | β (95% CI) 1,2 | p Value | |
Cancer | −0.08 (−0.19, 0.03) | 0.16 | 0.00 (−0.12, 0.12) | 0.94 | −0.11 (−0.24, 0.01) | 0.12 | −0.07 (−0.19, 0.05) | 0.26 |
High blood pressure (ever) | −0.03 (−0.10, 0.03) | 0.33 | −0.08 (−0.15, −0.01) | 0.02 | −0.08 (−0.15, 0.00) | 0.04 | −0.09 (−0.17, −0.02) | 0.01 |
High blood pressure (current) | −0.04 (−0.11, 0.04) | 0.33 | −0.11 (−0.18, −0.03) | 0.004 | −0.10 (−0.17, −0.02) | 0.01 | −0.10 (−0.17, −0.02) | 0.01 |
High cholesterol (ever) | 0.02 (−0.05, 0.08) | 0.64 | −0.03 (−0.10, 0.05) | 0.48 | 0.01 (−0.06, 0.09) | 0.70 | 0.00 (−0.07, 0.07) | 0.96 |
High cholesterol (current) | −0.01 (−0.08, 0.06) | 0.77 | −0.05 (−0.13, 0.02) | 0.18 | −0.02 (−0.10, 0.04) | 0.56 | −0.03 (−0.11, 0.05) | 0.46 |
Diabetes | 0.16 (0.05, 0.28) | 0.005 | −0.10 (−0.22, −0.02) | 0.10 | −0.24 (−0.36, −0.11) | <0.001 | −0.15 (−0.28, −0.03) | 0.02 |
Kidney Disease | 0.16 (−0.07, 0.39) | 0.16 | 0.17 (−0.07, 0.41) | 0.16 | 0.09 (−0.15, 0.33) | 0.47 | 0.15 (−0.09, 0.40) | 0.22 |
COPD 5 | −0.06 (−0.33, 0.21) | 0.67 | −0.04 (−0.33, 0.24) | 0.76 | 0.00 (−0.30, 0.29) | 0.98 | 0.00 (−0.30, 0.29) | 0.99 |
Cardiovascular Disease 4 | 0.10 (−0.02, 0.22) | 0.09 | −0.10 (−0.23, 0.03) | 0.12 | −0.03 (−0.16, 0.10) | 0.61 | 0.04 (−0.09, 0.16) | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDowell, S.R.; Murray, K.; Hunter, M.; Blekkenhorst, L.C.; Lewis, J.R.; Hodgson, J.M.; Bondonno, N.P. Comparison of Four Dietary Pattern Indices in Australian Baby Boomers: Findings from the Busselton Healthy Ageing Study. Nutrients 2023, 15, 659. https://doi.org/10.3390/nu15030659
McDowell SR, Murray K, Hunter M, Blekkenhorst LC, Lewis JR, Hodgson JM, Bondonno NP. Comparison of Four Dietary Pattern Indices in Australian Baby Boomers: Findings from the Busselton Healthy Ageing Study. Nutrients. 2023; 15(3):659. https://doi.org/10.3390/nu15030659
Chicago/Turabian StyleMcDowell, Sierra R., Kevin Murray, Michael Hunter, Lauren C. Blekkenhorst, Joshua R. Lewis, Jonathan M. Hodgson, and Nicola P. Bondonno. 2023. "Comparison of Four Dietary Pattern Indices in Australian Baby Boomers: Findings from the Busselton Healthy Ageing Study" Nutrients 15, no. 3: 659. https://doi.org/10.3390/nu15030659
APA StyleMcDowell, S. R., Murray, K., Hunter, M., Blekkenhorst, L. C., Lewis, J. R., Hodgson, J. M., & Bondonno, N. P. (2023). Comparison of Four Dietary Pattern Indices in Australian Baby Boomers: Findings from the Busselton Healthy Ageing Study. Nutrients, 15(3), 659. https://doi.org/10.3390/nu15030659