The Impact of an 8-Week Supplementation with Fermented and Non-Fermented Aronia Berry Pulp on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Products
2.2. Study Design and Participants
2.3. 24 h Ambulatory Blood Pressure Monitoring
2.4. Blood Analyses
2.4.1. Hs-CRP and Adiponectin
2.4.2. Lipids
2.5. Power Calculation
2.6. Statistics
3. Results
3.1. Baseline characteristics
3.2. 24 h Ambulatory Blood Pressure Monitoring
3.3. Blood Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Federation, I.D. IDF Diabetes Atlas, 10th ed. Available online: https://www.diabetesatlas.org (accessed on 10 December 2023).
- WHO. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 10 December 2023).
- Wang, C.C.L.; Hess, C.N.; Hiatt, W.R.; Goldfine, A.B. Clinical Update: Cardiovascular Disease in Diabetes Mellitus. Circulation 2016, 133, 2459–2502. [Google Scholar] [CrossRef] [PubMed]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Medica 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, C.B.; Mellbye, F.B.; Hermansen, K.; Jeppesen, P.B.; Gregersen, S. Effects of Aronia melanocarpa on Cardiometabolic Diseases: A Systematic Review of Quasi-Design Studies and Randomized Controlled Trials. Rev. Diabet. Stud. 2022, 18, 76–92. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J.; Hires, C.; Baker, C.; Keenan, L.; Bush, M. Daily supplementation with aronia melanocarpa (chokeberry) reduces blood pressure and cholesterol: A meta analysis of controlled clinical trials. J. Diet. Suppl. 2021, 18, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, J.; Clark, C.; Kord Varkaneh, H.; Lakiang, T.; Vasanthan, L.T.; Onyeche, V.; Mousavi, S.M.; Zhang, Y. The effect of Aronia consumption on lipid profile, blood pressure, and biomarkers of inflammation: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. PTR 2019, 33, 1981–1990. [Google Scholar] [CrossRef] [PubMed]
- Banjari, I.; Misir, A.; Šavikin, K.; Jokić, S.; Molnar, M.; De Zoysa, H.K.S.; Waisundara, V.Y. Antidiabetic Effects of Aronia melanocarpa and Its Other Therapeutic Properties. Front. Nutr. 2017, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Barter, P.J.; Brandrup-Wognsen, G.; Palmer, M.K.; Nicholls, S.J. Effect of statins on HDL-C: A complex process unrelated to changes in LDL-C: Analysis of the VOYAGER Database. J. Lipid Res. 2010, 51, 1546–1553. [Google Scholar] [CrossRef]
- Bradley, C.K.; Wang, T.Y.; Li, S.; Robinson, J.G.; Roger, V.L.; Goldberg, A.C.; Virani, S.S.; Louie, M.J.; Lee, L.V.; Peterson, E.D. Patient-reported reasons for declining or discontinuing statin therapy: Insights from the PALM registry. J. Am. Heart Assoc. 2019, 8, e011765. [Google Scholar] [CrossRef]
- Ramkumar, S.; Raghunath, A.; Raghunath, S. Statin Therapy: Review of Safety and Potential Side Effects. Acta Cardiol. Sin. 2016, 32, 631–639. [Google Scholar] [CrossRef]
- Zanchetti, A.; Grassi, G.; Mancia, G. When should antihypertensive drug treatment be initiated and to what levels should systolic blood pressure be lowered? A critical reappraisal. J. Hypertens. 2009, 27, 923–934. [Google Scholar] [CrossRef]
- ANDERSSON, O.K.; NELDAM, S. The antihypertensive effect and tolerability of candesartan cilexetil, a new generation angiotensin II antagonist, in comparison with losartan. Blood Press. 1998, 7, 53–59. [Google Scholar]
- Barrios, V.; Escobar, C.; Navarro, A.; Barrios, L.; Navarro-Cid, J.; Calderón, A.; INVESTIGATORS, L. Lercanidipine is an effective and well tolerated antihypertensive drug regardless the cardiovascular risk profile: The LAURA study. Int. J. Clin. Pract. 2006, 60, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Naruszewicz, M.; Laniewska, I.; Millo, B.; Dłuzniewski, M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 2007, 194, e179-84. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Wiloch, M.; Zawada, K.; Cyplik, W.; Kujawski, W. Evaluation of Antioxidant and Anti-Inflammatory Activity of Anthocyanin-Rich Water-Soluble Aronia Dry Extracts. Molecules 2020, 25, 4055. [Google Scholar] [CrossRef]
- Valentina, B.; Minodora, A.; Antal, D.; Florina, A.; Ioana Zinuca, P.; Cristina, D.; Codruta, S.; Roxana, F.; Felicia, A.; Corina, D. Cardioprotective Effects of Cultivated Black Chokeberries (Aronia spp.): Traditional Uses, Phytochemistry and Therapeutic Effects. In Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health; Kavita, S., Kanchan, M., Kula Kamal, S., Corina, D., Eds.; IntechOpen: Rijeka, Croatia, 2020; Chapter 9. [Google Scholar]
- Denev, P.N.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: In vitro and in vivo Evidences and Possible Mechanisms of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Capanoglu, E.; Grootaert, C.; Van Camp, J. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review. Int. J. Mol. Sci. 2015, 16, 21555–21574. [Google Scholar] [CrossRef] [PubMed]
- Wiczkowski, W.; Romaszko, E.; Piskula, M.K. Bioavailability of cyanidin glycosides from natural chokeberry (Aronia melanocarpa) juice with dietary-relevant dose of anthocyanins in humans. J. Agric. Food Chem. 2010, 58, 12130–12136. [Google Scholar] [CrossRef] [PubMed]
- Semaming, Y.; Pannengpetch, P.; Chattipakorn, S.C.; Chattipakorn, N. Pharmacological properties of protocatechuic Acid and its potential roles as complementary medicine. Evid. Based Complement. Altern. Med. 2015, 2015, 593902. [Google Scholar] [CrossRef]
- Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res. 2020, 161, 105109. [Google Scholar] [CrossRef]
- Christiansen, C.B.; Jeppesen, P.B.; Hermansen, K.; Gregersen, S. Aronia in the Type 2 Diabetes Treatment Regimen. Nutrients 2023, 15, 4188. [Google Scholar] [CrossRef]
- Reinhard, M.; Frystyk, J.; Jespersen, B.; Bjerre, M.; Christiansen, J.S.; Flyvbjerg, A.; Ivarsen, P. Effect of hyperinsulinemia during hemodialysis on the insulin-like growth factor system and inflammatory biomarkers: A randomized open-label crossover study. BMC Nephrol. 2013, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- DS/EN ISO 15189:2013; Medical laboratories—Requirements for Quality and Competence. ISO: Geneva, Switzerland, 2013.
- Knopfholz, J.; Disserol, C.C.; Pierin, A.J.; Schirr, F.L.; Streisky, L.; Takito, L.L.; Massucheto Ledesma, P.; Faria-Neto, J.R.; Olandoski, M.; da Cunha, C.L.; et al. Validation of the friedewald formula in patients with metabolic syndrome. Cholesterol 2014, 2014, 261878. [Google Scholar] [CrossRef]
- Simeonov, S.B.; Botushanov, N.P.; Karahanian, E.B.; Pavlova, M.B.; Husianitis, H.K.; Troev, D.M. Effects of Aronia melanocarpa juice as part of the dietary regimen in patients with diabetes mellitus. Folia Medica 2002, 44, 20–23. [Google Scholar] [PubMed]
- Milutinović, M.; Radovanović, R.V.; Šavikin, K.; Radenković, S.; Arvandi, M.; Pešić, M.; Kostić, M.; Miladinović, B.; Branković, S.; Kitić, D. Chokeberry juice supplementation in type 2 diabetic patients—Impact on health status. J. Appl. Biomed. 2019, 17, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Cozlea, D.L.; Farcas, D.M.; Nagy, A.; Keresztesi, A.A.; Tifrea, R.; Cozlea, L.; Carașca, E. The impact of C reactive protein on global cardiovascular risk on patients with coronary artery disease. Curr. Health Sci. J. 2013, 39, 225–231. [Google Scholar]
- Boncheva, M.; Turnovska, T. Administration of bioflavonoides improves plasma levels of adipocyte hormones. Acta Medica Bulg. 2014, 41, 5–11. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef]
- Association, A.D. Standards of Medical Care in Diabetes. Diabetes Care 2005, 28, s4–s36. [Google Scholar] [CrossRef]
- Lopez-Alvarenga, J.C.; Ebbesson, S.O.; Ebbesson, L.O.; Tejero, M.E.; Voruganti, V.S.; Comuzzie, A.G. Polyunsaturated fatty acids effect on serum triglycerides concentration in the presence of metabolic syndrome components. The Alaska-Siberia Project. Metabolism 2010, 59, 86–92. [Google Scholar] [CrossRef]
- Esfahani, A.; Lam, J.; Kendall, C.W. Acute effects of raisin consumption on glucose and insulin reponses in healthy individuals. J. Nutr. Sci. 2014, 3, e1. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed]
- Denova-Gutiérrez, E.; Huitrón-Bravo, G.; Talavera, J.O.; Castañón, S.; Gallegos-Carrillo, K.; Flores, Y.; Salmerón, J. Dietary glycemic index, dietary glycemic load, blood lipids, and coronary heart disease. J. Nutr. Metab. 2010, 2010, 170680. [Google Scholar] [CrossRef] [PubMed]
- Neelakantan, N.; Seah, J.Y.H.; Dam, R.M.v. The Effect of Coconut Oil Consumption on Cardiovascular Risk Factors. Circulation 2020, 141, 803–814. [Google Scholar] [CrossRef]
- Jayawardena, R.; Swarnamali, H.; Lanerolle, P.; Ranasinghe, P. Effect of coconut oil on cardio-metabolic risk: A systematic review and meta-analysis of interventional studies. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 2007–2020. [Google Scholar] [CrossRef] [PubMed]
- Fisher, E.; Blum, C.; Zannis, V.; Breslow, J. Independent effects of dietary saturated fat and cholesterol on plasma lipids, lipoproteins, and apolipoprotein E. J. Lipid Res. 1983, 24, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.; Hutchins, A.; Fryda, L. The impact of virgin coconut oil and high-oleic safflower oil on body composition, lipids, and inflammatory markers in postmenopausal women. J. Med. Food 2017, 20, 345–351. [Google Scholar] [CrossRef]
- Heber, D.; Ashley, J.; Solares, M.; Wang, H.; Alfin-Slater, R. The effects of a palm-oil enriched diet on plasma lipids and lipoproteins in healthy young men. Nutr. Res. 1992, 12, S53–S59. [Google Scholar] [CrossRef]
- McKenney, J.M.; Proctor, J.D.; Wright, J.T.; Kolinski, R.J.; Elswick, R.; Coaker, J.S. The effect of supplemental dietary fat on plasma cholesterol levels in lovastatin-treated hypercholesterolemic patients. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1995, 15, 565–572. [Google Scholar] [CrossRef]
- Johansson, A.K.; Korte, H.; Yang, B.; Stanley, J.C.; Kallio, H.P. Sea buckthorn berry oil inhibits platelet aggregation. J. Nutr. Biochem. 2000, 11, 491–495. [Google Scholar] [CrossRef]
- Oliveira-de-Lira, L.; Santos, E.M.C.; De Souza, R.F.; Matos, R.J.B.; Silva, M.C.d.; Oliveira, L.d.S.; Nascimento, T.G.d.; Schemly, P.A.d.L.S.; Souza, S.L.d. Supplementation-dependent effects of vegetable oils with varying fatty acid compositions on anthropometric and biochemical parameters in obese women. Nutrients 2018, 10, 932. [Google Scholar] [CrossRef]
- Jang, H.-H.; Hwang, I.-G.; Lee, Y.-M. Effects of anthocyanin supplementation on blood lipid levels: A systematic review and meta-analysis. Front. Nutr. 2023, 10, 1207751. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, J.; Lu, Y.; Bo, Y. Effects of Anthocyanin on Serum Lipids in Dyslipidemia Patients: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0162089. [Google Scholar] [CrossRef] [PubMed]
- Sangild, J.; Faldborg, A.; Schousboe, C.; Fedder, M.D.K.; Christensen, L.P.; Lausdahl, A.K.; Arnspang, E.C.; Gregersen, S.; Jakobsen, H.B.; Knudsen, U.B.; et al. Effects of Chokeberries (Aronia spp.) on Cytoprotective and Cardiometabolic Markers and Semen Quality in 109 Mildly Hypercholesterolemic Danish Men: A Prospective, Double-Blinded, Randomized, Crossover Trial. J. Clin. Med. 2023, 12, 373. [Google Scholar] [CrossRef] [PubMed]
Nutritional Content per Daily Dose | FAE | AE | Placebo |
---|---|---|---|
Energy [kcal] | 234.6 | 240.1 | 227.3 |
Total fats [g] (%) | 3.7 (14.2) | 4.0 (15.0) | 3.5 (13.9) |
| 2.9 | 3.0 | 2.4 |
| 0.4 | 0.6 | 0.5 |
| 0.2 | 0.2 | 0.5 |
Total carbohydrates [g] (%) | 43.2 (73.7) | 45.1 (75.1) | 41.1 (72.3) |
| 38.6 | 38.6 | 34.7 |
Dietary fibres [g] | 9.2 | 6.6 | 8.1 |
Protein [g] (%) | 2.5 (4.3) | 2.5 (4.2) | 3.7 (6.5) |
Variable (Unit) | Completers (n = 23). Value in Mean ± SD or Median (IQR) | Randomized (n = 36). Value in Mean ± SD or Median (IQR) |
---|---|---|
Gender | 15 (M) 8 (W) | 21 (M) 15 (W) |
Age (years) | 67.6 ± 5.5 | 66.9 ± 6.0 |
Bodyweight (kg) | 82.0 ± 16.2 | 85.9 (72.6–95.5) |
Body mass index (kg/m2) | 26.7 (23.2–29.8) | 28.6 (24.3–32.0) |
Haemoglobin A1c (mmol/mol) | 50.0 (47.5–54) | 50.5 (47.0–55.0) |
Medication/Compound | Completers (n = 23). Received by [Number Participants (%)] | Randomized (n = 36). Received by [Number Participants (%)] |
---|---|---|
Metformin | 21 (91.3) | 33 (91.7) |
Insulin | 1 (4.3) | 3 (8.3) |
GLP-1 receptor agonist | 4 (17.4) | 6 (16.7) |
Dipeptidyl peptidase-4 inhibitor | 2 (8.7) | 2 (5.6) |
Sodium-glucose Cotransporter-2 inhibitor | 8 (34.8) | 9 (25.0) |
Sulfonylurea | 2 (8.7) | 3 (8.3) |
Statins | 15 (65.2) | 25 (69.4) |
ACE inhibitor | 10 (43.5) | 15 (41.7) |
Angiotensin II receptor blocker | 4 (17.4) | 9 (25.0) |
Beta blocker | 8 (34.8) | 11 (30.6) |
Antiplatelet/anticoagulant treatment | 6 (26.1) | 9 (25.0) |
Calcium channel blocker | 6 (26.1) | 10 (27.8) |
Cardiac glycosides | 0 (0.0) | 1 (2.8) |
Diuretics | 5 (21.7) | 8 (22.2) |
Levothyroxine treatment | 2 (8.7) | 2 (5.6) |
Dietary supplement | 12 (52.2) | 20 (55.6) |
Variable (Unit) | Δ-Mean for FAE | Δ-Mean for AE | Δ-Mean for Placebo | p Value | ||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | |||
24 h systolic BP (mmHg) n = 35 | −0.71 ± 1.18 | 0.03 ± 1.07 | −0.30 ± 1.17 | |||||
125 ± 2.14 | 125 ± 2.19 | 124 ± 2.14 | 124 ± 2.14 | 124 ± 2.12 | 124 ± 2.14 | |||
24 h diastolic BP (mmHg) n = 35 | 0.16 ± 0.77 | 0.03 ± 0.70 | −1.40 ± 0.77 | |||||
71 ± 1.47 | 71 ± 1.49 | 71 ± 1.43 | 71 ± 1.46 | 71 ± 1.46 | 71 ± 1.49 | |||
Hs-CRP n = 23 | (ratio) | 1.10 (0.69–1.76) | 0.83 (0.52–1.34) | 1.05 (0.66–1.68) | ||||
(mg/L) | 0.56 ± 0.11 | 0.62 ± 0.12 | 0.69 ± 0.14 | 0.58 ± 0.12 | 0.53 ± 0.10 | 0.55 ± 0.11 | ||
Adiponectin (mg/L) n = 23 | 0.14 ± 0.26 | −0.59 ± 0.26 | 0.06 ± 0.26 | |||||
8.44 ± 0.87 | 8.58 ± 0.87 | 9.14 ± 0.87 | 8.55 ± 0.87 | 8.38 ± 0.87 | 8.43 ± 0.87 | |||
HDL-cholesterol (mmol/L) n = 36 | 0.08 ± 0.03 | −0.01 ± 0.03 | 0.08 ± 0.03 | |||||
1.14 ± 0.05 a | 1.22 ± 0.05 a | 1.2 ± 0.05 | 1.19 ± 0.05 | 1.12 ± 0.05 b | 1.2 ± 0.05 b | a 0.03 b 0.02 | ||
LDL-cholesterol (mmol/L) n = 36 | 0.01 ± 0.08 | −0.09 ± 0.07 * | 0.20 ± 0.08 * | 0.04 | ||||
1.86 ± 0.11 | 1.87 ± 0.12 | 1.89 ± 0.11 | 1.81 ± 0.11 | 1.82 ± 0.11 * | 2.02 ± 0.12 * | 0.01 | ||
Total-cholesterol (mmol/L) n = 36 | 0.08 ± 0.09 | 0.002 ± 0.08 * | 0.36 ± 0.09 * | 0.01 | ||||
3.75 ± 0.14 | 3.83 ± 0.14 | 3.81 ± 0.13 | 3.81 ± 0.13 | 3.67 ± 0.13 * | 4.03 ± 0.14 * | 0.0003 | ||
Triglyceride (mmol/L) n = 36 | −0.01 ± 0.09 | 0.23 ± 0.08 | 0.17 ± 0.09 | |||||
1.63 ± 0.13 | 1.62 ± 0.13 | 1.58 ± 0.13 * | 1.81 ± 0.13 * | 1.66 ± 0.13 | 1.83 ± 0.13 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christiansen, C.B.; Jeppesen, P.B.; Hermansen, K.; Gregersen, S. The Impact of an 8-Week Supplementation with Fermented and Non-Fermented Aronia Berry Pulp on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes. Nutrients 2023, 15, 5094. https://doi.org/10.3390/nu15245094
Christiansen CB, Jeppesen PB, Hermansen K, Gregersen S. The Impact of an 8-Week Supplementation with Fermented and Non-Fermented Aronia Berry Pulp on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes. Nutrients. 2023; 15(24):5094. https://doi.org/10.3390/nu15245094
Chicago/Turabian StyleChristiansen, Christine B., Per B. Jeppesen, Kjeld Hermansen, and Søren Gregersen. 2023. "The Impact of an 8-Week Supplementation with Fermented and Non-Fermented Aronia Berry Pulp on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes" Nutrients 15, no. 24: 5094. https://doi.org/10.3390/nu15245094
APA StyleChristiansen, C. B., Jeppesen, P. B., Hermansen, K., & Gregersen, S. (2023). The Impact of an 8-Week Supplementation with Fermented and Non-Fermented Aronia Berry Pulp on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes. Nutrients, 15(24), 5094. https://doi.org/10.3390/nu15245094