Higher Short-Chain Fermentable Carbohydrates Are Associated with Lower Body Fat and Higher Insulin Sensitivity in People with Prediabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometrics, Body Composition, and Physical Activity
2.3. Biochemical Profiles
2.4. Dietary Evaluation
2.5. Statistical Analysis
2.5.1. Descriptive Analyses
2.5.2. Association Analyses
3. Results
3.1. Baseline Characteristics of the IGT Cohort
3.2. Comparison of Baseline Characteristics by BMI Categories
3.3. Correlation between FODMAP Intake and Body Composition
3.4. Correlation between FODMAP and Indices of Insulin Secretion and Resistance
3.5. Multivariate Analysis of FODMAP Intake and Associations with Body Composition, Insulin Secretion, and Insulin Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BIA | bioimpedance analysis |
BMI | body mass index |
CP | C-peptide |
DEXA | dual-energy X-ray absorptiometry |
FODMAP | fermentable oligosaccharides, disaccharides, monosaccharides, and polyols |
FOS | Fructooligosaccharides |
GLP1 | glucagon-like peptide-1 |
GOS | galactooligosaccharides |
HOMA2-IR | Homeostatic Model Assessment 2 for Insulin Resistance |
HOMA2-B | Homeostatic Model Assessment 2 for beta cell function |
hsCRP | high-sensitivity C-reactive protein |
IFG | impaired fasting glycaemia |
IGT | impaired glucose tolerance |
LPS | lipopolysaccharide |
NGT | normal glucose tolerance |
OGTT | oral glucose tolerance test |
PG | plasma glucose |
PYY | peptide YY |
SCFAs | short-chain fatty acids |
T2D | type 2 diabetes mellitus |
References
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for developing diabetes. Lancet 2012, 379, 2279. [Google Scholar] [CrossRef]
- International Diabetes Fedeartion. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Hills, R.D., Jr.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [PubMed]
- Macchione, I.G.; Lopetuso, L.R.; Ianiro, G.; Napoli, M.; Gibiino, G.; Rizzatti, G.; Petito, V.; Gasbarrini, A.; Scaldaferri, F. Akkermansia muciniphila: Key player in metabolic and gastrointestinal disorders. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8075–8083. [Google Scholar] [CrossRef]
- Tammi, R.; Männistö, S.; Harald, K.; Maukonen, M.; Eriksson, J.G.; Jousilahti, P.; Koskinen, S.; Kaartinen, N.E. Different carbohydrate exposures and weight gain—Results from a pooled analysis of three population-based studies. Int. J. Obes. 2023, 47, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Gesta, S.; Blüher, M.; Yamamoto, Y.; Norris, A.W.; Berndt, J.; Kralisch, S.; Boucher, J.; Lewis, C.; Kahn, C.R. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc. Natl. Acad. Sci. USA 2006, 103, 6676–6681. [Google Scholar] [CrossRef] [PubMed]
- Shimobayashi, M.; Albert, V.; Woelnerhanssen, B.; Frei, I.C.; Weissenberger, D.; Meyer-Gerspach, A.C.; Clement, N.; Moes, S.; Colombi, M.; Meier, J.A. Insulin resistance causes inflammation in adipose tissue. J. Clin. Investig. 2018, 128, 1538–1550. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.C.; Hoffmann, C.; Mota, J.F. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes 2018, 9, 308–325. [Google Scholar] [CrossRef]
- Gérard, P. Gut microbiota and obesity. Cell. Mol. Life Sci. 2016, 73, 147–162. [Google Scholar] [CrossRef]
- DeVries, J.W. On defining dietary fiber. Proc. Nutr. Soc. 2003, 62, 37–43. [Google Scholar] [CrossRef]
- Yang, S.; Liu, C.; Ye, Z.; Zhou, C.; Liu, M.; Zhang, Y.; Wu, Q.; Zhang, Z.; He, P.; Zhang, Y. Variety and Quantity of Dietary-Insoluble Fiber Intake from Different Sources and Risk of New-Onset Diabetes. J. Clin. Endocrinol. Metab. 2023, 108, 175–183. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef]
- Mitchell, C.M.; Davy, B.M.; Ponder, M.A.; McMillan, R.P.; Hughes, M.D.; Hulver, M.W.; Neilson, A.P.; Davy, K.P. Prebiotic inulin supplementation and peripheral insulin sensitivity in adults at elevated risk for type 2 diabetes: A pilot randomized controlled trial. Nutrients 2021, 13, 3235. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, H.M.; Whelan, K. The low FODMAP diet: Recent advances in understanding its mechanisms and efficacy in IBS. Gut 2017, 66, 1517–1527. [Google Scholar] [CrossRef]
- Nanayakkara, W.S.; Skidmore, P.M.; O’Brien, L.; Wilkinson, T.J.; Gearry, R.B. Efficacy of the low FODMAP diet for treating irritable bowel syndrome: The evidence to date. Clin. Exp. Gastroenterol. 2016, 9, 131. [Google Scholar]
- Vandeputte, D.; Joossens, M. Effects of Low and High FODMAP Diets on Human Gastrointestinal Microbiota Composition in Adults with Intestinal Diseases: A Systematic Review. Microorganisms 2020, 8, 1638. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, H.M.; Scholz, M.; Lomer, M.C.; Ralph, F.S.; Irving, P.M.; Lindsay, J.O.; Fava, F.; Tuohy, K.; Whelan, K. Gut microbiota associations with diet in irritable bowel syndrome and the effect of low FODMAP diet and probiotics. Clin. Nutr. 2021, 40, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- Guzior, D.; Quinn, R. Review: Microbial transformations of human bile acids. Microbiome 2021, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Lundgren, P.; Thaiss, C.A. The microbiome-adipose tissue axis in systemic metabolism. Am. J. Physiol.-Gastrointest. Liver Physiol. 2020, 318, G717–G724. [Google Scholar] [CrossRef]
- Miedzybrodzka, E.L.; Reimann, F.; Gribble, F.M. The Enteroendocrine System in Obesity. Handb. Exp. Pharmacol. 2022, 274, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Mistry, R.H.; Liu, F.; Borewicz, K.; Lohuis, M.A.; Smidt, H.; Verkade, H.J.; Tietge, U.J. Long-term β-galacto-oligosaccharides supplementation decreases the development of obesity and insulin resistance in mice fed a western-type diet. Mol. Nutr. Food Res. 2020, 64, 1900922. [Google Scholar] [CrossRef] [PubMed]
- Burokas, A.; Arboleya, S.; Moloney, R.D.; Peterson, V.L.; Murphy, K.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry 2017, 82, 472–487. [Google Scholar] [CrossRef] [PubMed]
- Hadri, Z.; Rasoamanana, R.; Fromentin, G.; Azzout-Marniche, D.; Even, P.C.; Gaudichon, C.; Darcel, N.; Bouras, A.D.; Tomé, D.; Chaumontet, C. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet. Physiol. Behav. 2017, 182, 114–120. [Google Scholar] [CrossRef]
- Hong, K.B.; Kim, J.H.; Kwon, H.K.; Han, S.H.; Park, Y.; Suh, H.J. Evaluation of prebiotic effects of high-purity galactooligosaccharides in vitro and in vivo. Food Technol. Biotechnol. 2016, 54, 156. [Google Scholar] [CrossRef]
- Canfora, E.E.; van der Beek, C.M.; Hermes, G.D.; Goossens, G.H.; Jocken, J.W.; Holst, J.J.; van Eijk, H.M.; Venema, K.; Smidt, H.; Zoetendal, E.G. Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. Gastroenterology 2017, 153, 87–97.e83. [Google Scholar] [CrossRef]
- Chu, N.; Chan, J.C.; Chow, E. A diet high in FODMAPs as a novel dietary strategy in diabetes? Clin. Nutr. 2022, 41, 2103–2112. [Google Scholar] [CrossRef]
- Zhang, L.; Ouyang, Y.; Li, H.; Shen, L.; Ni, Y.; Fang, Q.; Wu, G.; Qian, L.; Xiao, Y.; Zhang, J. Metabolic phenotypes and the gut microbiota in response to dietary resistant starch type 2 in normal-weight subjects: A randomized crossover trial. Sci. Rep. 2019, 9, 4736. [Google Scholar] [CrossRef]
- Ho, J.; Nicolucci, A.C.; Virtanen, H.; Schick, A.; Meddings, J.; Reimer, R.A.; Huang, C. Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 4427–4440. [Google Scholar] [CrossRef]
- Thomas, E.L.; Collins, A.L.; McCarthy, J.; Fitzpatrick, J.; Durighel, G.; Goldstone, A.P.; Bell, J.D. Estimation of abdominal fat compartments by bioelectrical impedance: The validity of the ViScan measurement system in comparison with MRI. Eur. J. Clin. Nutr. 2010, 64, 525–533. [Google Scholar] [CrossRef]
- Nagai, M.; Komiya, H.; Mori, Y.; Ohta, T.; Kasahara, Y.; Ikeda, Y. Development of a new method for estimating visceral fat area with multi-frequency bioelectrical impedance. Tohoku J. Exp. Med. 2008, 214, 105–112. [Google Scholar] [CrossRef]
- Consultation, W.E. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar]
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.T.; So, W.-Y.; Tong, P.C.; Chan, W.-B.; Yang, X.; Ma, R.C.; Kong, A.P.; Ozaki, R.; Yeung, C.-Y.; Chow, C.-C. Effect of interactions between C peptide levels and insulin treatment on clinical outcomes among patients with type 2 diabetes mellitus. Cmaj 2009, 180, 919–926. [Google Scholar] [CrossRef]
- Diabetes Trials Unit. HOMA Calculator v2.2.3. Available online: http://www.dtu.ox.ac.uk (accessed on 23 June 2022).
- Centre for Food Safety, The Government of Hong Kong Special Administrative Region. Nutrient Information Inquiry. Available online: https://www.cfs.gov.hk/english/nutrient/fc-introduction.php (accessed on 12 December 2022).
- Monash University. The Monash FODMAP Calculator. Available online: https://www.monashfodmapcalculator.com.au/ (accessed on 11 August 2023).
- Gibson, P.R.; Halmos, E.P.; So, D.; Yao, C.K.; Varney, J.E.; Muir, J.G. Diet as a therapeutic tool in chronic gastrointestinal disorders: Lessons from the FODMAP journey. J. Gastroenterol. Hepatol. 2022, 37, 644–652. [Google Scholar] [CrossRef]
- Iacovou, M.; Tan, V.; Muir, J.G.; Gibson, P.R. The low FODMAP diet and its application in East and Southeast Asia. J. Neurogastroenterol. Motil. 2015, 21, 459. [Google Scholar] [CrossRef] [PubMed]
- He, F. Diets with a low glycaemic load have favourable effects on prediabetes progression and regression: A prospective cohort study. J. Hum. Nutr. Diet. 2018, 31, 292–300. [Google Scholar] [CrossRef]
- den Boer, A.T.; Herraets, I.; Stegen, J.; Roumen, C.; Corpeleijn, E.; Schaper, N.; Feskens, E.; Blaak, E. Prevention of the metabolic syndrome in IGT subjects in a lifestyle intervention: Results from the SLIM study. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1147–1153. [Google Scholar] [CrossRef]
- Woo, J.; Ho, S.; Sham, A.; Sea, M.; Lam, K.; Lam, T.; Janus, E. Diet and glucose tolerance in a Chinese population. Eur. J. Clin. Nutr. 2003, 57, 523–530. [Google Scholar] [CrossRef]
- Siddiqui, S.; Zainal, H.; Harun, S.N.; Ghadzi, S.M.S. Dietary assessment of pre-diabetic patients by using food frequency questionnaire. A systematic review of study quality, study outcome, study questionnaire and their relative validity and reliability. Clin. Nutr. ESPEN 2019, 29, 213–223. [Google Scholar] [CrossRef]
- Nybacka, S.; Störsrud, S.; Liljebo, T.; Le Nevé, B.; Törnblom, H.; Simrén, M.; Winkvist, A. Within-and between-subject variation in dietary intake of fermentable oligo-, di-, monosaccharides, and polyols among patients with irritable bowel syndrome. Curr. Dev. Nutr. 2019, 3, nzy101. [Google Scholar] [CrossRef]
- Zahedi, M.J.; Behrouz, V.; Azimi, M. Low fermentable oligo-di-mono-saccharides and polyols diet versus general dietary advice in patients with diarrhea-predominant irritable bowel syndrome: A randomized controlled trial. J. Gastroenterol. Hepatol. 2018, 33, 1192–1199. [Google Scholar] [CrossRef]
- Böhn, L.; Störsrud, S.; Liljebo, T.; Collin, L.; Lindfors, P.; Törnblom, H.; Simrén, M. Diet low in FODMAPs reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: A randomized controlled trial. Gastroenterology 2015, 149, 1399–1407.e2. [Google Scholar] [CrossRef] [PubMed]
- Halmos, E.P.; Power, V.A.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 2014, 146, 67–75.e65. [Google Scholar] [CrossRef] [PubMed]
- Eswaran, S.L.; Chey, W.D.; Han-Markey, T.; Ball, S.; Jackson, K. A Randomized Controlled Trial Comparing the Low FODMAP Diet vs. Modified NICE Guidelines in US Adults with IBS-D. Am. J. Gastroenterol. 2016, 111, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Liljebo, T.; Störsrud, S.; Andreasson, A. Presence of fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) in commonly eaten foods: Extension of a database to indicate dietary FODMAP content and calculation of intake in the general population from food diary data. BMC Nutr. 2020, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Hewawasam, S.P.; Iacovou, M.; Muir, J.G.; Gibson, P.R. Dietary practices and FODMAPs in South Asia: Applicability of the low FODMAP diet to patients with irritable bowel syndrome. J. Gastroenterol. Hepatol. 2018, 33, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Tan, V.P. The low-FODMAP diet in the management of functional dyspepsia in East and Southeast Asia. J. Gastroenterol. Hepatol. 2017, 32, 46–52. [Google Scholar] [CrossRef]
- Bellini, M.; Tonarelli, S.; Nagy, A.G.; Pancetti, A.; Costa, F.; Ricchiuti, A.; de Bortoli, N.; Mosca, M.; Marchi, S.; Rossi, A. Low FODMAP diet: Evidence, doubts, and hopes. Nutrients 2020, 12, 148. [Google Scholar] [CrossRef]
- Miketinas, D.C.; Bray, G.A.; Beyl, R.A.; Ryan, D.H.; Sacks, F.M.; Champagne, C.M. Fiber intake predicts weight loss and dietary adherence in adults consuming calorie-restricted diets: The POUNDS lost (preventing overweight using novel dietary strategies) study. J. Nutr. 2019, 149, 1742–1748. [Google Scholar] [CrossRef]
- Yu, K.; Ke, M.-Y.; Li, W.-H.; Zhang, S.-Q.; Fang, X.-C. The impact of soluble dietary fiber on gastric emptying, postprandial blood glucose and insulin in patients with type 2 diabetes. Asia Pac. J. Clin. Nutr. 2014, 23, 210–218. [Google Scholar] [PubMed]
- Chu, N.; Chan, T.Y.; Chu, Y.K.; Ling, J.; He, J.; Leung, K.; Ma, R.C.; Chan, J.C.; Chow, E. Higher dietary magnesium and potassium intake are associated with lower body fat in people with impaired glucose tolerance. Front. Nutr. 2023, 10, 1169705. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.R. History of the low FODMAP diet. J. Gastroenterol. Hepatol. 2017, 32, 5–7. [Google Scholar] [CrossRef]
- Fernández-Bañares, F. Carbohydrate Maldigestion and Intolerance. Nutrients 2022, 14, 1923. [Google Scholar] [CrossRef] [PubMed]
- So, D.; Yao, C.K.; Gill, P.A.; Thwaites, P.A.; Ardalan, Z.S.; McSweeney, C.S.; Denman, S.E.; Chrimes, A.F.; Muir, J.G.; Berean, K.J. Detection of changes in regional colonic fermentation in response to supplementing a low FODMAP diet with dietary fibers by hydrogen concentrations, but not by luminal pH. Aliment. Pharmacol. Ther. 2023, 58, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.K.; Hackett, T.A.; Galli, A.; Flynn, C.R. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem. Int. 2019, 128, 94–105. [Google Scholar] [CrossRef]
- Toejing, P.; Khampithum, N.; Sirilun, S.; Chaiyasut, C.; Lailerd, N. Influence of Lactobacillus paracasei HII01 supplementation on glycemia and inflammatory biomarkers in type 2 diabetes: A randomized clinical trial. Foods 2021, 10, 1455. [Google Scholar] [CrossRef]
- Overduin, J.; Schoterman, M.H.; Calame, W.; Schonewille, A.J.; Ten Bruggencate, S.J. Dietary galacto-oligosaccharides and calcium: Effects on energy intake, fat-pad weight and satiety-related, gastrointestinal hormones in rats. Br. J. Nutr. 2013, 109, 1338–1348. [Google Scholar] [CrossRef]
- Asmar, M.; Asmar, A.; Simonsen, L.; Gasbjerg, L.S.; Sparre-Ulrich, A.H.; Rosenkilde, M.M.; Hartmann, B.; Dela, F.; Holst, J.J.; Bulow, J. The Gluco- and Liporegulatory and Vasodilatory Effects of Glucose-Dependent Insulinotropic Polypeptide (GIP) Are Abolished by an Antagonist of the Human GIP Receptor. Diabetes 2017, 66, 2363–2371. [Google Scholar] [CrossRef]
- Bae, M.; Cassilly, C.D.; Liu, X.; Park, S.M.; Tusi, B.K.; Chen, X.; Kwon, J.; Filipcik, P.; Bolze, A.S.; Liu, Z.; et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature 2022, 608, 168–173. [Google Scholar] [CrossRef]
- El-Salhy, M.; Gundersen, D. Diet in irritable bowel syndrome. Nutr. J. 2015, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Van de Wouw, M.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Microbiota-gut-brain axis: Modulator of host metabolism and appetite. J. Nutr. 2017, 147, 727–745. [Google Scholar] [CrossRef] [PubMed]
- Gonai, M.; Shigehisa, A.; Kigawa, I.; Kurasaki, K.; Chonan, O.; Matsuki, T.; Yoshida, Y.; Aida, M.; Hamano, K.; Terauchi, Y. Galacto-oligosaccharides ameliorate dysbiotic Bifidobacteriaceae decline in Japanese patients with type 2 diabetes. Benef. Microbes 2017, 8, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, S.K.; Taylor, B.; Muir, J.; Costa, R.J.S. Impact of 24-h high and low fermentable oligo-, di-, monosaccharide, and polyol diets on markers of exercise-induced gastrointestinal syndrome in response to exertional heat stress. Appl. Physiol. Nutr. Metab. 2020, 45, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Molla, A.; Molla, A.; Sarker, S.; Khatun, M. Whole-gut transit time and its relationship to absorption of macronutrients during diarrhoea and after recovery. Scand. J. Gastroenterol. 1983, 18, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Timm, D.; Willis, H.; Thomas, W.; Sanders, L.; Boileau, T.; Slavin, J. The use of a wireless motility device (SmartPill(R)) for the measurement of gastrointestinal transit time after a dietary fiber intervention. Br. J. Nutr. 2011, 105, 1337–1342. [Google Scholar] [CrossRef]
- Ullrich, I.H.; Albrink, M.J. The effect of dietary fiber and other factors on insulin response: Role in obesity. J. Environ. Pathol. Toxicol. Oncol. 1985, 5, 137–155. [Google Scholar]
- Liu, J.; An, N.; Ma, C.; Li, X.; Zhang, J.; Zhu, W.; Zhang, Y.; Li, J. Correlation analysis of intestinal flora with hypertension. Exp. Ther. Med. 2018, 16, 2325–2330. [Google Scholar] [CrossRef]
- Mishima, E.; Abe, T. Role of the microbiota in hypertension and antihypertensive drug metabolism. Hypertens. Res. 2022, 45, 246–253. [Google Scholar] [CrossRef]
Variable | Total Population (n = 177) | Normal (n = 34) | Overweight (n = 70) | Obesity (n = 73) | p Value | Missing Data (n) |
---|---|---|---|---|---|---|
Age, years | 60 (54–62) | 60 (55–63) | 61 (58–63) | 57 (51–61) | 0.008 | 0 |
Male, n (%) | 72 (41) | 11 (32.4) | 32 (45.7) | 29 (40.7) | 0.421 | 0 |
Weight, kg | 70.6 ± 12.9 | 57.8 ± 7.7 | 67.3 ± 7.4 | 79.8 ± 12.5 | <0.0001 | 0 |
Waist circumference, cm | 93.5 ± 9.8 | 82.4 ± 5.4 | 91.4 ± 5.5 | 100.8 ± 8.8 | <0.0001 | 0 |
Hip circumference, cm | 99.8 ± 7.5 | 92.1 ± 4.1 | 97.1 ± 3.4 | 106.2 ± 6.5 | <0.0001 | 0 |
BMI, kg/m2 | 26.8 ± 3.9 | 21.7 ± 1.4 | 25.4 ± 1.1 | 30.4 ± 2.9 | <0.0001 | 0 |
Systolic blood pressure, mmHg | 133 ± 16 | 125 ± 15 | 134 ± 15 | 136 ± 17 | 0.048 | 1 |
Diastolic blood pressure, mmHg | 83 ± 10 | 79 ± 10 | 84 ± 10 | 84 ± 11 | 0.027 | 1 |
Body fat, % | 31.8 ± 8.7 | 25.3 ± 6.1 | 29.4 ± 6.1 | 37.0 ± 8.8 | <0.0001 | 2 |
Antihypertensive drug use, n (%) | 76 (42.9) | 12 (35.3) | 25 (35.7) | 39 (53.4) | 0.061 | 0 |
Statin use, n (%) | 66 (37.3) | 9 (26.5) | 30 (42.9) | 27 (37.0) | 0.268 | 0 |
Physical activities | ||||||
Vigorous, MET-min/week | 0 (0–0) | 0 (0–510) | 0 (0–0) | 0 (0–0) | 0.560 | 2 |
Moderate, MET-min/week | 0 (0–480) | 240 (0–630) | 120 (0–480) | 0 (0–240) | 0.047 | 3 |
Light, MET-min/week | 693 (330–1386) | 891 (322–1634) | 693 (396–1386) | 594 (289–1238) | 0.172 | 11 |
Total physical activity MET-min/week | 1166 (484–2243) | 1569 (880–2891) | 1181 (690–2233) | 693 (297–2079) | 0.018 | 1 |
Sedentary, min/day | 300 (180–480) | 240 (180–375) | 300 (180–465) | 360 (180–480) | 0.331 | 17 |
Glycaemic indices | ||||||
Fasting plasma glucose, mmol/L | 5.3 ± 0.5 | 5.3 ± 0.5 | 5.4 ± 0.5 | 5.4 ± 0.5 | 0.795 | 0 |
1 h plasma glucose, mmol/L | 10.9 ± 1.6 | 11.0 ± 1.5 | 10.8 ± 1.7 | 11.0 ± 1.6 | 0.778 | 2 |
2 h plasma glucose, mmol/L | 8.4 ± 1.4 | 8.3 ± 1.4 | 8.4 ± 1.5 | 8.5 ± 1.4 | 0.709 | 0 |
AUC-PG, mmol.L−1.min−1 | 18.5 ± 1.9 | 18.6 ± 1.6 | 18.4 ± 1.9 | 18.7 ± 2.0 | 0.638 | 2 |
Fasting plasma C-peptide, pmol/L | 563 (434–742) | 333 (270–458) | 518 (431–651) | 728 (579–827) | <0.0001 | 2 |
2 h plasma C-peptide, pmol/L | 2955 (2295–3757) | 2339 (1986–2900) | 2774 (2274–3790) | 3491 (2731–3914) | <0.0001 | 2 |
HOMA2-IR | 1.27 (0.94–1.67) | 0.74 (0.61–1.02) | 1.16 (0.94–1.50) | 1.63 (1.31–1.86) | <0.0001 | 2 |
HOMA2- β (%) | 99.9 (77.0–125.5) | 74.0 (55.2–87.8) | 99.8 (73.9–117.6) | 116.1 (97.4–142.9) | <0.0001 | 2 |
HOMA2-S (%) | 78.4 (59.0–104.1) | 135.2 (97.6–163.6) | 86.2 (64.5–105.0) | 61.3 (53.8–76.5) | <0.0001 | 2 |
Early C-peptidogenic index (pmol/mmol) | 228 (163–333) | 178 (135–205) | 235 (180–353) | 258 (185–377) | 0.001 | 5 |
Late C-peptidogenic index (pmol/mmol) | 718 (551–1030) | 741 (466–976) | 702 (539–1107) | 723 (584–1019) | 0.405 | 5 |
Total Population (n = 176) | Normal BMI > 18 and <23 kg/m2 (n = 34) | Overweight BMI 23–26.9 kg/m2 (n = 70) |
Obesity BMI ≥ 27 kg/m2 (n = 72) | p Value | |
---|---|---|---|---|---|
Macronutrients | |||||
Energy, kcal/day | 1885 (1553–2182) | 1782 (1544–2112) | 1966 (1563–2357) | 1857 (1497–2122) | 0.264 |
Carbohydrates, g/day | 201 (165–248) | 194 (157–233) | 208 (158–256) | 200 (167–244) | 0.700 |
Protein, g/day | 87 (72–102) | 85 (69–101) | 88 (80–103) | 84 (67–102) | 0.141 |
Fat, g/day | 79 (61–96) | 75 (59–96) | 81 (62–100) | 78 (59–94) | 0.516 |
Sugar, g/day | 41 (29–58) | 43 (34–58) | 42 (29–56) | 40 (25–65) | 0.664 |
Fibre, g/day | 11 (8–15) | 16 (13–19) | 12 (9–15) | 9 (6–13) | <0.0001 |
Dietary glucose, g/day | 7.7 (3.8–11.2) | 10.2 (6.6–15.6) | 7.5 (4.0–11.7) | 5.7 (2.6–9.5) | 0.001 |
Dietary fructose, g/day | 6.3 (3.3–9.2) | 8.6 (5.6–11.2) | 6.4 (3.2–8.8) | 4.7 (2.3–8.7) | 0.001 |
FODMAPs | |||||
Total FODMAPs, g/day | 6.6 (4.5–10.3) | 7.9 (6.2–12.7) | 6.6 (4.6–9.9) | 5.8 (3.8–9.0) | 0.038 |
Excess fructose #, g/day | 0.9 (0.4–1.5) | 1.0 (0.6–1.7) | 0.9 (0.3–1.5) | 0.8 (0.3–1.3) | 0.094 |
Polyols *, g/day | 0.6 (0.2–1.5) | 1.2 (0.4–1.7) | 0.8 (0.4–1.5) | 0.3 (0.1–1.0) | 0.001 |
Fructans, g/day | 1.8 (1.4–2.6) | 2.0 (1.4–3.0) | 2.0 (1.6–2.7) | 1.7 (1.2–2.3) | 0.015 |
GOSs, g/day | 0.4 (0.2–0.7) | 0.48 (0.28–1.25) | 0.46 (0.26–0.90) | 0.26 (0.14–0.53) | <0.0001 |
Lactose, g/day | 1.6 (0.3–4.4) | 2.3 (0.5–5.9) | 1.4 (0.1–4.0) | 1.9 (0.2–4.3) | 0.182 |
Correlation Coefficient | Dietary Glucose | Dietary Fructose | Excess Fructose | Lactose | Sorbitol | Mannitol | Fructans | GOSs | Total FODMAPs |
---|---|---|---|---|---|---|---|---|---|
Age, years | r = 0.108, p = 0.158 | r = 0.106, p = 0.162 | r = 0.034, p = 0.655 | r = −0.062, p = 0.411 | r = −0.038, p = 0.619 | r = −0.013, p = 0.865 | r = 0.041, p = 0.591 | r = 0.039, p = 0.612 | r = −0.022, p = 0.773 |
Sex | r = 0.010, p = 0.898 | r = −0.005, p = 0.949 | r = −0.075, p = 0.320 | r = −0.202, p = 0.007 | r = 0.001, p = 0.992 | r = 0.113, p = 0.137 | r = −0.124, p = 0.101 | r = 0.036, p = 0.638 | r = −0.202, p = 0.007 |
Weight, kg | r = −0.190, p = 0.012 | r = −0.167, p = 0.027 | r = −0.051, p = 0.505 | r = 0.110, p = 0.147 | r = −0.092, p = 0.223 | r = −0.228, p = 0.002 | r = −0.056, p = 0.459 | r = −0.174, p = 0.021 | r = 0.026, p = 0.732 |
Waist circumference, cm | r = −0.243, p = 0.001 | r = −0.232, p = 0.002 | r = −0.144, p = 0.056 | r = −0.016, p = 0.829 | r = −0.172, p = 0.022 | r = −0.204, p = 0.007 | r = −0.160, p = 0.034 | r = −0.245, p = 0.001 | r = −0.132, p = 0.080 |
Hip circumference, cm | r = −0.220, p = 0.003 | r = −0.218, p = 0.004 | r = −0.144, p = 0.056 | r = −0.031, p=0.686 | r = −0.152, p = 0.044 | r = −0.220, p = 0.003 | r = −0.121, p = 0.110 | r = −0.229, p = 0.002 | r = −0.145, p = 0.054 |
BMI, kg/m2 | r = −0.260, p < 0.0001 | r = −0.252, p < 0.0001 | r = −0.165, p = 0.029 | r = −0.020, p=0.796 | r = −0.183, p = 0.015 | r = −0.271, p < 0.0001 | r = −0.147, p = 0.051 | r = −0.291, p < 0.0001 | r = −0.145, p = 0.054 |
Body fat, % | r = −0.216 p = 0.005 | r = −0.234, p = 0.002 | r = −0.190, p = 0.013 | r = −0.206, p = 0.007 | r = −0.090, p = 0.242 | r = −0.099, p = 0.196 | r = −0.224, p = 0.003 | r = −0.192, p = 0.012 | r = −0.293, p < 0.0001 |
Correlation Coefficient | Dietary Glucose | Dietary Fructose | Excess Fructose | Lactose | Sorbitol | Mannitol | Fructans | GOSs | Total FODMAPs |
---|---|---|---|---|---|---|---|---|---|
Fasting glucose, mmol/L | r = −0.066, p = 0.387 | r = −0.073, p = 0.333 | r = −0.056, p = 0.464 | r = 0.094, p = 0.217 | r = 0.014, p = 0.854 | r = 0.013, p = 0.867 | r = −0.033, p = 0.668 | r = 0.075, p = 0.320 | r = 0.051, p = 0.500 |
1 h PG, mmol/L | r = −0.108, p = 0.157 | r = −0.106, p = 0.164 | r = −0.080, p = 0.297 | r = 0.118, p = 0.122 | r = 0.027, p = 0.724 | r = −0.072, p = 0.347 | r = −0.094, p = 0.217 | r = −0.072, p = 0.344 | r = 0.024, p = 0.755 |
2 h PG, mmol/L | r = −0.037, p = 0.629 | r = −0.056, p = 0.456 | r = −0.031, p = 0.682 | r = −0.079, p = 0.299 | r = 0.070, p = 0.356 | r = −0.003, p = 0.969 | r = 0.053, p = 0.488 | r = −0.056, p = 0.457 | r = −0.065, p = 0.389 |
Fasting C-peptide, pmol/L | r = −0.162, p = 0.033 | r = −0.140, p = 0.066 | r = 0.002, p = 0.984 | r = 0.003, p = 0.966 | r = −0.040, p = 0.603 | r = −0.142, p = 0.061 | r = −0.144, p = 0.058 | r = −0.288, p < 0.0001 | r = −0.044, p = 0.563 |
2 h plasma C-peptide, pmol/L | r = −0.086, p = 0.261 | r = −0.035, p = 0.645 | r = 0.080, p = 0.296 | r = −0.060, p = 0.434 | r = −0.006, p = 0.936 | r = −0.124, p = 0.103 | r = −0.129, p = 0.089 | r = −0.291, p < 0.0001 | r = −0.059, p = 0.437 |
HOMA2-IR | r = −0.159, p = 0.036 | r = −0.134, p = 0.077 | r = 0.010, p = 0.899 | r = 0.009, p = 0.906 | r = −0.030, p = 0.699 | r = −0.137, p = 0.070 | r = −0.145, p = 0.055 | r = −0.281, p < 0.0001 | r = −0.038, p = 0.622 |
HOMA2-beta | r = −0.092, p = 0.226 | r = −0.074, p = 0.333 | r = −0.017, p = 0.823 | r = −0.068, p = 0.371 | r = −0.109, p = 0.151 | r = −0.165, p = 0.029 | r = −0.115, p = 0.130 | r = −0.318, p < 0.0001 | r = −0.102, p = 0.179 |
HOMA2-S, % | r = 0.128, p = 0.092 | r = 0.109, p = 0.153 | r = 0.019, p = 0.804 | r = 0.018, p = 0.811 | r = 0.059, p = 0.440 | r = 0.166, p = 0.028 | r = 0.156, p = 0.039 | r = 0.301, p < 0.0001 | r = 0.068, p = 0.373 |
Early C-peptidogenic index (pmol/mmol) | r = 0.048, p = 0.529 | r = 0.053, p = 0.489 | r = 0.109, p = 0.155 | r = −0.046, p = 0.549 | r = 0.079, p = 0.304 | r = −0.061, p = 0.426 | r = −0.032, p = 0.679 | r = −0.193, p = 0.011 | r = −0.001, p = 0.988 |
Late C-peptidogenic index (pmol/mmol) | r = 0.010, p = 0.899 | r = 0.082, p = 0.282 | r = 0.155, p = 0.042 | r = 0.038, p = 0.622 | r = 0.002, p = 0.978 | r = −0.021, p = 0.783 | r = 0.165, p = 0.030 | r = 0.061, p = 0.422 | r = 0.043, p = 0.578 |
Dependent Variable | Standardised Beta Coefficient | 95% CI | p Value | Adjusted R2 |
---|---|---|---|---|
Body fat (%) | ||||
Base model | −0.156 | [−4.273 to −0.732] | 0.006 | 0.467 |
Model 1 | −0.106 | [−3.559 to 0.167] | 0.074 | 0.497 |
Model 2 | −0.131 | [−4.057 to −0.148] | 0.035 | 0.535 |
Model 3 | −0.116 | [−3.797 to 0.087] | 0.061 | 0.548 |
HOMA2-S% | ||||
Base model | 0.243 | [6.227 to 24.416] | 0.001 | 0.081 |
Model 1 | 0.206 | [3.855 to 22.187] | 0.006 | 0.152 |
Model 2 | 0.211 | [3.311 to 23.676] | 0.010 | 0.136 |
Model 3 | 0.212 | [3.524 to 23.597] | 0.008 | 0.161 |
Postprandial 2 h CP (pmol/L) | ||||
Base model | −0.202 | [−570.756 to −88.413] | 0.008 | 0.036 |
Model 1 | −0.174 | [−533.255 to −34.202] | 0.026 | 0.062 |
Model 2 | −0.178 | [−551.027 to −24.811] | 0.032 | 0.106 |
Model 3 | −0.178 | [−550.093 to −28.674] | 0.030 | 0.122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, N.H.S.; He, J.; Leung, K.H.T.; Ma, R.C.W.; Lee, J.Y.S.; Varney, J.; Chan, J.C.N.; Muir, J.G.; Chow, E. Higher Short-Chain Fermentable Carbohydrates Are Associated with Lower Body Fat and Higher Insulin Sensitivity in People with Prediabetes. Nutrients 2023, 15, 5070. https://doi.org/10.3390/nu15245070
Chu NHS, He J, Leung KHT, Ma RCW, Lee JYS, Varney J, Chan JCN, Muir JG, Chow E. Higher Short-Chain Fermentable Carbohydrates Are Associated with Lower Body Fat and Higher Insulin Sensitivity in People with Prediabetes. Nutrients. 2023; 15(24):5070. https://doi.org/10.3390/nu15245070
Chicago/Turabian StyleChu, Natural H. S., Jie He, Kathy H. T. Leung, Ronald C. W. Ma, Jimmy Y. S. Lee, Jane Varney, Juliana C. N. Chan, Jane G. Muir, and Elaine Chow. 2023. "Higher Short-Chain Fermentable Carbohydrates Are Associated with Lower Body Fat and Higher Insulin Sensitivity in People with Prediabetes" Nutrients 15, no. 24: 5070. https://doi.org/10.3390/nu15245070
APA StyleChu, N. H. S., He, J., Leung, K. H. T., Ma, R. C. W., Lee, J. Y. S., Varney, J., Chan, J. C. N., Muir, J. G., & Chow, E. (2023). Higher Short-Chain Fermentable Carbohydrates Are Associated with Lower Body Fat and Higher Insulin Sensitivity in People with Prediabetes. Nutrients, 15(24), 5070. https://doi.org/10.3390/nu15245070