Adherence to a Traditional Mexican Diet Is Associated with Lower Hepatic Steatosis in US-Born Hispanics of Mexican Descent with Overweight or Obesity
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Sample
2.2. Dietary Intake Assessment
2.3. Diet Pattern Scoring
2.4. Hepatic Steatosis and Fibrosis Assessment
2.5. Covariate Assessment
2.6. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Diet Scores and Liver Steatosis and Fibrosis
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, G.A.; Lee, H.C.; Choe, J.; Kim, M.J.; Lee, M.J.; Chang, H.S.; Bae, I.Y.; Kim, H.K.; An, J.; Shim, J.H.; et al. Association between non-alcoholic fatty liver disease and cancer incidence rate. J. Hepatol. 2017, 68, 140–146. [Google Scholar] [CrossRef]
- Dhamija, E.; Paul, S.B.; Kedia, S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: An increasing concern. Indian J. Med. Res. 2019, 149, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Heredia, N.I.; Balakrishnan, M.; Thrift, A.P. Prevalence and factors associated with NAFLD detected by vibration controlled transient elastography among US adults: Results from NHANES 2017–2018. PLoS ONE 2021, 16, e0252164. [Google Scholar] [CrossRef] [PubMed]
- Saab, S.; Manne, V.; Nieto, J.; Schwimmer, J.B.; Chalasani, N.P. Nonalcoholic Fatty Liver Disease in Latinos. Clin. Gastroenterol. Hepatol. 2016, 14, 5–12; quiz e9–e10. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Goding Sauer, A.; Ortiz, A.P.; Fedewa, S.A.; Pinheiro, P.S.; Tortolero-Luna, G.; Martinez-Tyson, D.; Jemal, A.; Siegel, R.L. Cancer Statistics for Hispanics/Latinos, 2018. CA Cancer J. Clin. 2018, 68, 425–445. [Google Scholar] [CrossRef] [PubMed]
- Flores, Y.N.; Zhang, Z.F.; Bastani, R.; Leng, M.; Crespi, C.M.; Ramirez-Palacios, P.; Stevens, H.; Salmeron, J. Risk factors for liver disease among adults of Mexican descent in the United States and Mexico. World J. Gastroenterol. 2018, 24, 4281–4290. [Google Scholar] [CrossRef] [PubMed]
- Fleischman, M.W.; Budoff, M.; Zeb, I.; Li, D.; Foster, T. NAFLD prevalence differs among hispanic subgroups: The Multi-Ethnic Study of Atherosclerosis. World J. Gastroenterol. 2014, 20, 4987–4993. [Google Scholar] [CrossRef]
- Kallwitz, E.R.; Daviglus, M.L.; Allison, M.A.; Emory, K.T.; Zhao, L.; Kuniholm, M.H.; Chen, J.; Gouskova, N.; Pirzada, A.; Talavera, G.A.; et al. Prevalence of suspected nonalcoholic fatty liver disease in Hispanic/Latino individuals differs by heritage. Clin. Gastroenterol. Hepatol. 2015, 13, 569–576. [Google Scholar] [CrossRef]
- Streba, L.A.; Vere, C.C.; Rogoveanu, I.; Streba, C.T. Nonalcoholic fatty liver disease, metabolic risk factors, and hepatocellular carcinoma: An open question. World J. Gastroenterol. 2015, 21, 4103–4110. [Google Scholar] [CrossRef]
- Munteanu, M.A.; Nagy, G.A.; Mircea, P.A. Current Management of NAFLD. Med. Pharm. Rep. 2016, 89, 19–23. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Rauf, N.; Nabi, G.; Ullah, H.; Shen, Y.; Zhou, Y.D.; Fu, J. Role of Nutrition in the Pathogenesis and Prevention of Non-alcoholic Fatty Liver Disease: Recent Updates. Int. J. Biol. Sci. 2019, 15, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Romero-Gomez, M.; Zelber-Sagi, S.; Martin, F.; Bugianesi, E.; Soria, B. Nutrition could prevent or promote non-alcoholic fatty liver disease: An opportunity for intervention. BMJ 2023, 383, e075179. [Google Scholar] [CrossRef] [PubMed]
- Pafili, K.; Roden, M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol. Metab. 2021, 50, 101122. [Google Scholar] [CrossRef] [PubMed]
- Basaranoglu, M.; Neuschwander-Tetri, B.A. Nonalcoholic Fatty Liver Disease: Clinical Features and Pathogenesis. Gastroenterol. Hepatol. 2006, 2, 282–291. [Google Scholar]
- Spruss, A.; Bergheim, I. Dietary fructose and intestinal barrier: Potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. J. Nutr. Biochem. 2009, 20, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Parks, E.; Yki-Jarvinen, H.; Hawkins, M. Out of the frying pan: Dietary saturated fat influences nonalcoholic fatty liver disease. J. Clin. Investig. 2017, 127, 454–456. [Google Scholar] [CrossRef]
- Hong, T.; Chen, Y.; Li, X.; Lu, Y. The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD. Oxidative Med. Cell. Longev. 2021, 2021, 6889533. [Google Scholar] [CrossRef]
- Rives, C.; Fougerat, A.; Ellero-Simatos, S.; Loiseau, N.; Guillou, H.; Gamet-Payrastre, L.; Wahli, W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020, 10, 1702. [Google Scholar] [CrossRef]
- Arroyave-Ospina, J.C.; Wu, Z.; Geng, Y.; Moshage, H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants 2021, 10, 174. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Li, Z.; Lam, C.W.K.; Xiao, Y.; Wu, Q.; Zhang, W. Consumption of Sugar-Sweetened Beverages Has a Dose-Dependent Effect on the Risk of Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Dose-Response Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2192. [Google Scholar] [CrossRef] [PubMed]
- Noureddin, M.; Zelber-Sagi, S.; Wilkens, L.R.; Porcel, J.; Boushey, C.J.; Le Marchand, L.; Rosen, H.R.; Setiawan, V.W. Diet Associations With Nonalcoholic Fatty Liver Disease in an Ethnically Diverse Population: The Multiethnic Cohort. Hepatology 2020, 71, 1940–1952. [Google Scholar] [CrossRef]
- Sharkey, J.R.; Johnson, C.M.; Dean, W.R. Nativity is associated with sugar-sweetened beverage and fast-food meal consumption among Mexican-origin women in Texas border colonias. Nutr. J. 2011, 10, 101. [Google Scholar] [CrossRef]
- Ogden, C.L.; Kit, B.K.; Carroll, M.D.; Park, S. Consumption of Sugar Drinks in the United States, 2005–2008. In NCHS Data Brief; NCH: Highlandsville, MD, USA, 2011; pp. 1–8. [Google Scholar]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Razavi Zade, M.; Telkabadi, M.H.; Bahmani, F.; Salehi, B.; Farshbaf, S.; Asemi, Z. The effects of DASH diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: A randomized clinical trial. Liver Int. 2016, 36, 563–571. [Google Scholar] [CrossRef]
- Alazmi, W.M.; Regev, A.; Molina, E.G.; Schiff, E.R. Predictors of cirrhosis in Hispanic patients with nonalcoholic steatohepatitis. Dig. Dis. Sci. 2006, 51, 1725–1729. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, D.; Mukherjee, P.; Raychaudhuri, M.; Ghosh, S.; Mukherjee, S.; Chowdhury, S. Profile of liver enzymes in non-alcoholic fatty liver disease in patients with impaired glucose tolerance and newly detected untreated type 2 diabetes. Indian J. Endocrinol. Metab. 2015, 19, 597–601. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Salomone, F.; Mlynarsky, L. The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: Evidence and plausible mechanisms. Liver Int. 2017, 37, 936–949. [Google Scholar] [CrossRef]
- Estrada Del Campo, Y.; Cubillos, L.; Vu, M.B.; Aguirre, A.; Reuland, D.S.; Keyserling, T.C. Feasibility and acceptability of a Mediterranean-style diet intervention to reduce cardiovascular risk for low income Hispanic American women. Ethn. Health 2019, 24, 415–431. [Google Scholar] [CrossRef]
- Santiago-Torres, M.; Kratz, M.; Lampe, J.W.; De Dieu, T.J.; Breymeyer, K.L.; Levy, L.; Villasenor, A.; Wang, C.Y.; Song, X.; Neuhouser, M.L. Metabolic responses to a traditional Mexican diet compared with a commonly consumed US diet in women of Mexican descent: A randomized crossover feeding trial. Am. J. Clin. Nutr. 2016, 103, 366–374. [Google Scholar] [CrossRef]
- Flores, M.; Macias, N.; Rivera, M.; Lozada, A.; Barquera, S.; Rivera-Dommarco, J.; Tucker, K.L. Dietary patterns in Mexican adults are associated with risk of being overweight or obese. J. Nutr. 2010, 140, 1869–1873. [Google Scholar] [CrossRef]
- Lopez-Pentecost, M.; Crane, T.E.; Garcia, D.O.; Kohler, L.N.; Wertheim, B.C.; Hebert, J.R.; Steck, S.E.; Shivappa, N.; Santiago-Torres, M.; Neuhouser, M.L.; et al. Role of dietary patterns and acculturation in cancer risk and mortality among postmenopausal Hispanic women: Results from the Women’s Health Initiative (WHI). J. Public Health 2020, 30, 811–822. [Google Scholar] [CrossRef]
- Robles-Ordaz, M.D.; Gallegos-Aguilar, A.C.; Urquidez-Romero, R.; Diaz-Zavala, R.G.; Lavandera-Torres, M.G.; Esparza-Romero, J. Prevalence of prediabetes and modifiable factors in an ethnic group of Mexico: The Comcaac Project. Public Health Nutr. 2018, 21, 333–338. [Google Scholar] [CrossRef]
- Santiago-Torres, M.; Tinker, L.F.; Allison, M.A.; Breymeyer, K.L.; Garcia, L.; Kroenke, C.H.; Lampe, J.W.; Shikany, J.M.; Van Horn, L.; Neuhouser, M.L. Development and Use of a Traditional Mexican Diet Score in Relation to Systemic Inflammation and Insulin Resistance among Women of Mexican Descent. J. Nutr. 2015, 145, 2732–2740. [Google Scholar] [CrossRef]
- Valerino-Perea, S.; Armstrong, M.E.G.; Papadaki, A. Adherence to a traditional Mexican diet and non-communicable disease-related outcomes: Secondary data analysis of the cross-sectional Mexican National Health and Nutrition Survey. Br. J. Nutr. 2022, 129, 1266–1279. [Google Scholar] [CrossRef]
- Pan, J.J.; Fallon, M.B. Gender and racial differences in nonalcoholic fatty liver disease. World J. Hepatol. 2014, 6, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Dongiovanni, P.; Valenti, L. A Nutrigenomic Approach to Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2017, 18, 1534. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Le, K.A.; Walker, R.W.; Vikman, S.; Spruijt-Metz, D.; Weigensberg, M.J.; Allayee, H.; Goran, M.I. Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption. Am. J. Clin. Nutr. 2010, 92, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.O.; Morrill, K.E.; Lopez-Pentecost, M.; Villavicencio, E.A.; Vogel, R.M.; Bell, M.L.; Klimentidis, Y.C.; Marrero, D.G.; Thomson, C.A. Nonalcoholic Fatty Liver Disease and Associated Risk Factors in a Community-Based Sample of Mexican-Origin Adults. Hepatol. Commun. 2022, 6, 1322–1335. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Choi, J.H.; Sohn, W.; Cho, Y.K. The effect of moderate alcohol drinking in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2020, 26, 662–669. [Google Scholar] [CrossRef]
- Roerecke, M.; Vafaei, A.; Hasan, O.S.M.; Chrystoja, B.R.; Cruz, M.; Lee, R.; Neuman, M.G.; Rehm, J. Alcohol Consumption and Risk of Liver Cirrhosis: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2019, 114, 1574–1586. [Google Scholar] [CrossRef]
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [CrossRef] [PubMed]
- Schakel, S.F.; Buzzard, I.; Gebhardt, S.E. Procedures for Estimating Nutrient Values for Food Composition Databases. J. Food Compos. Anal. 1997, 10, 102–114. [Google Scholar] [CrossRef]
- Valerino-Perea, S.; Lara-Castor, L.; Armstrong, M.E.G.; Papadaki, A. Definition of the Traditional Mexican Diet and Its Role in Health: A Systematic Review. Nutrients 2019, 11, 2803. [Google Scholar] [CrossRef] [PubMed]
- Tamez, M. A Traditional Mexican Diet Score, Diet Quality Scores, and Risk of Hypertension Among U.S. Adults of Mexican Heritage. Ph.D. Thesis, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 2020. [Google Scholar]
- Mikolasevic, I.; Orlic, L.; Franjic, N.; Hauser, G.; Stimac, D.; Milic, S. Transient elastography (FibroScan®) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease—Where do we stand? World J. Gastroenterol. 2016, 22, 7236–7251. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Dhyani, M.; Grajo, J.R.; Sirlin, C.; Samir, A.E. Current status of imaging in nonalcoholic fatty liver disease. World J. Hepatol. 2018, 10, 530–542. [Google Scholar] [CrossRef]
- Jang, H.W.; Kim, S.U.; Park, J.Y.; Ahn, S.H.; Han, K.H.; Chon, C.Y.; Park, Y.N.; Choi, E.H.; Kim, D.Y. How many valid measurements are necessary to assess liver fibrosis using FibroScan® in patients with chronic viral hepatitis? An analysis of subjects with at least 10 valid measurements. Yonsei Med. J. 2012, 53, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Caussy, C.; Alquiraish, M.H.; Nguyen, P.; Hernandez, C.; Cepin, S.; Fortney, L.E.; Ajmera, V.; Bettencourt, R.; Collier, S.; Hooker, J.; et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 2018, 67, 1348–1359. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Dai, G.; Liu, P.; Li, X.; Zhou, X.; He, S. Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease (NAFLD) susceptibility and severity: A meta-analysis. Medicine 2019, 98, e14324. [Google Scholar] [CrossRef]
- Watt, G.P.; De La Cerda, I.; Pan, J.J.; Fallon, M.B.; Beretta, L.; Loomba, R.; Lee, M.; McCormick, J.B.; Fisher-Hoch, S.P. Elevated Glycated Hemoglobin Is Associated With Liver Fibrosis, as Assessed by Elastography, in a Population-Based Study of Mexican Americans. Hepatol. Commun. 2020, 4, 1793–1801. [Google Scholar] [CrossRef]
- Watt, G.P.; Lee, M.; Pan, J.J.; Fallon, M.B.; Loomba, R.; Beretta, L.; McCormick, J.B.; Fisher-Hoch, S.P. High Prevalence of Hepatic Fibrosis, Measured by Elastography, in a Population-Based Study of Mexican Americans. Clin. Gastroenterol. Hepatol. 2019, 17, 968–975. [Google Scholar] [CrossRef]
- Park, S.Y.; Noureddin, M.; Boushey, C.; Wilkens, L.R.; Setiawan, V.W. Diet Quality Association with Nonalcoholic Fatty Liver Disease by Cirrhosis Status: The Multiethnic Cohort. Curr. Dev. Nutr. 2020, 4, nzaa024. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Guo, B.; Xiao, X.; Yin, J.; Wang, Z.; Jiang, X.; Li, J.; Long, L.; Zhou, J.; Zhang, N.; et al. Healthy dietary patterns and metabolic dysfunction-associated fatty liver disease in less-developed ethnic minority regions: A large cross-sectional study. BMC Public Health 2022, 22, 118. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.L.; Lin, J.S.; Li, Y.H.; Liu, M.; Deng, Y.Y.; Wang, C.Y.; Chen, Y.M. Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet is associated with lower presence of non-alcoholic fatty liver disease in middle-aged and elderly adults. Public Health Nutr. 2020, 23, 674–682. [Google Scholar] [CrossRef]
- Ma, J.; Hennein, R.; Liu, C.; Long, M.T.; Hoffmann, U.; Jacques, P.F.; Lichtenstein, A.H.; Hu, F.B.; Levy, D. Improved Diet Quality Associates With Reduction in Liver Fat, Particularly in Individuals With High Genetic Risk Scores for Nonalcoholic Fatty Liver Disease. Gastroenterology 2018, 155, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Cantero, I.; Abete, I.; Babio, N.; Aros, F.; Corella, D.; Estruch, R.; Fito, M.; Hebert, J.R.; Martinez-Gonzalez, M.A.; Pinto, X.; et al. Dietary Inflammatory Index and liver status in subjects with different adiposity levels within the PREDIMED trial. Clin. Nutr. 2018, 37, 1736–1743. [Google Scholar] [CrossRef]
- Entezari, M.R.; Talenezhad, N.; Mirzavandi, F.; Rahimpour, S.; Mozaffari-Khosravi, H.; Fallahzadeh, H.; Hosseinzadeh, M. Mediterranean dietary pattern and non-alcoholic fatty liver diseases: A case-control study. J. Nutr. Sci. 2021, 10, e55. [Google Scholar] [CrossRef]
- Salehi-Sahlabadi, A.; Sadat, S.; Beigrezaei, S.; Pourmasomi, M.; Feizi, A.; Ghiasvand, R.; Hadi, A.; Clark, C.C.T.; Miraghajani, M. Dietary patterns and risk of non-alcoholic fatty liver disease. BMC Gastroenterol. 2021, 21, 41. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef]
- Lopez, L.; Peralta, C.A.; Lee, A.; Zeki Al Hazzouri, A.; Haan, M.N. Impact of acculturation on cardiovascular risk factors among elderly Mexican Americans. Ann. Epidemiol. 2014, 24, 714–719. [Google Scholar] [CrossRef]
- Afable-Munsuz, A.; Mayeda, E.R.; Perez-Stable, E.J.; Haan, M.N. Immigrant generation and diabetes risk among Mexican Americans: The Sacramento Area Latino Study on Aging. Am. J. Public Health 2013, 103, e45–e52. [Google Scholar] [CrossRef]
- Akresh, I.R. Overweight and obesity among foreign-born and U.S.-born Hispanics. Biodemography Soc. Biol. 2008, 54, 183–199. [Google Scholar] [CrossRef]
- Tapsell, L.C. Dietary behaviour changes to improve nutritional quality and health outcomes. Chronic Dis. Transl. Med. 2017, 3, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Grafenauer, S.J.; Tapsell, L.C.; Beck, E.J.; Batterham, M.J. Baseline dietary patterns are a significant consideration in correcting dietary exposure for weight loss. Eur. J. Clin. Nutr. 2013, 67, 330–336. [Google Scholar] [CrossRef]
- Santoro, N.; Savoye, M.; Kim, G.; Marotto, K.; Shaw, M.M.; Pierpont, B.; Caprio, S. Hepatic fat accumulation is modulated by the interaction between the rs738409 variant in the PNPLA3 gene and the dietary omega6/omega3 PUFA intake. PLoS ONE 2012, 7, e37827. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.A.; Deverka, P.A.; Hooker, G.W.; Douglas, M.P. Genetic Test Availability And Spending: Where Are We Now? Where Are We Going? Health Aff. 2018, 37, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Italian Association for the Study of the Liver (AISF). AISF position paper on nonalcoholic fatty liver disease (NAFLD): Updates and future directions. Dig. Liver Dis. 2017, 49, 471–483. [Google Scholar] [CrossRef]
- Morrill, K.E.; Lopez-Pentecost, M.; Molina, L.; Pfander, J.L.; Hingle, M.D.; Klimentidis, Y.C.; Thomson, C.A.; Garcia, D.O. Weight Loss Interventions for Hispanic Women in the United States: A Systematic Review. J. Environ. Public Health 2021, 2021, 8714873. [Google Scholar] [CrossRef]
- Saeed, N.; Glass, L.M.; Habbal, H.; Mahmood, A.; Sengstock, D.; Saini, S.D.; Tincopa, M.A. Primary care and referring physician perspectives on non-alcoholic fatty liver disease management: A nationwide survey. Ther. Adv. Gastroenterol. 2021, 14, 17562848211042200. [Google Scholar] [CrossRef]
- Fu, J.; Zheng, Y.; Gao, Y.; Xu, W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022, 10, 2507. [Google Scholar] [CrossRef]
- Nogal, A.; Valdes, A.M.; Menni, C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021, 13, 1–24. [Google Scholar] [CrossRef]
- Lopez-Pentecost, M.; Hallmark, B.; Thomson, C.A.; Chilton, F.; Garcia, D.O. Association between Dietary Fatty Acid Intake and Liver Steatosis and Fibrosis in a Sample of Mexican-Origin Hispanic Adults with Overweight or Obesity. Int. J. Environ. Res. Public Health 2023, 20, 3103. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Jin, L.; Qin, X.; He, B. Natural flavonoids: Potential therapeutic strategies for non-alcoholic fatty liver disease. Front. Pharmacol. 2022, 13, 1005312. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Li, S.; Li, J.; Wang, J.; Zhang, R.; Zhou, Y.; Yin, Q.; Zheng, Y.; Wang, F.; Xia, Y.; et al. Effects of Omega-3 Fatty Acid in Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Gastroenterol. Res. Pract. 2016, 2016, 1459790. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Muller, C.; Paul, S. Racial disparities in nonalcoholic fatty liver disease clinical trial enrollment: A systematic review and meta-analysis. World J. Hepatol. 2020, 12, 506–518. [Google Scholar] [CrossRef]
- Chrysavgis, L.; Ztriva, E.; Protopapas, A.; Tziomalos, K.; Cholongitas, E. Nonalcoholic fatty liver disease in lean subjects: Prognosis, outcomes and management. World J. Gastroenterol. 2020, 26, 6514–6528. [Google Scholar] [CrossRef]
Men | Women | |||||
---|---|---|---|---|---|---|
Total (n = 102, 36%) | Mexico-Born (n = 70, 68%) | US-Born (n = 32, 32%) | Total (n = 178, 64%) | Mexico-Born (n = 126, 71%) | US-Born (n = 52, 29%) | |
Liver steatosis (CAP dB/m, mean ± SD) | 291.0 ± 49.7 | 293.1 ± 49.6 | 286.6 ± 50.6 | 287.6 ± 48.5 | 290.6 ± 48.5 | 280.5 ± 48.1 |
Liver fibrosis (kPa, mean ± SD) | 5.8 ± 2.4 | 5.8 ± 2.6 | 5.7 ± 1.7 | 5.5 ± 2.1 | 5.5 ± 2.1 | 5.4 ± 1.9 |
Age (years, mean ± SD) ab | 42.6 ± 12.1 | 45.9 ± 10.8 | 35.5 ± 11.9 | 46.0 ± 10.3 | 46.6 ± 9.7 | 44.5 ± 11.7 |
Health insurance (n, %) bc | ||||||
Yes | 67 (65.7) | 41 (58.6) | 26 (81.3) | 104 (58.4) | 56 (44.4) | 48 (92.3) |
Education (n, %) c | ||||||
Less than high school | 25 (24.5) | 22 (31.4) | 3 (9.4) | 55 (30.9) | 45 (35.7) | 10 (19.2) |
High school or GED | 23 (22.6) | 15 (21.4) | 8 (25.0) | 39 (21.9) | 33 (26.2) | 6 (11.5) |
Greater than high school | 54 (52.9) | 33 (47.1) | 21 (65.6) | 84 (47.2) | 48 (38.1) | 36 (69.2) |
Language in the home (n, %) bc | ||||||
English | 27 (26.2) | 4 (5.7) | 23 (71.9) | 49 (27.5) | 12 (9.5) | 37 (71.2) |
Spanish | 75 (73.6) | 66 (94.3) | 9 (28.1) | 129 (72.4) | 114 (90.5) | 16 (30.8) |
BMI (kg/m2, median, IQR) abc | 30.6 (25.4, 45.1) | 30.1 (25.4, 44.7) | 32.5 (25.9, 45.1) | 32.2 (25.0, 55.5) | 31.4 (25.0, 55.5) | 34.1 (25.0, 51.1) |
BMI Classification (n, %) c | ||||||
Overweight (25–29.9 kg/m2) | 44 (43.1) | 34 (48.6) | 10 (31.2) | 57 (32.0) | 47 (37.3) | 10 (19.2) |
Obesity (≥30 kg/m2) | 58 (56.9) | 36 (51.4) | 22 (68.8) | 121 (68.0) | 79 (62.7) | 42 (80.8) |
PNPLA3 risk allele status (n, %) | ||||||
No risk allele (CC) | 22 (21.6) | 14 (20.0) | 8 (25.0) | 46 (25.8) | 35 (27.8) | 11 (21.2) |
At least one risk allele (CG or GG) | 80 (78.4) | 56 (80.0) | 24 (75.0) | 132 (74.2) | 91 (72.2) | 41 (78.8) |
Diabetes (n, %) | 9 (8.8) | 4 (5.7) | 5 (15.6) | 18 (10.1) | 12 (9.5) | 6 (11.5) |
Total energy intake, kcals/day a (median, IQR) | 1679.3 (729.9, 3947.5) | 1684.9 (729.9, 3947.5) | 1642.9 (1007.2, 3013.9) | 1299.2 (500.6, 2980.4) | 1296.2 (519.9, 2980.4) | 1309.4 (500.6, 2500.5) |
Leisure activity, min/week (Median, IQR) | 120 (0, 1680) | 110 (0, 960) | 120 (0, 1680) | 90 (0, 960) | 90 (0, 960) | 80 (0, 420) |
Sedentary time, hours/week c (Median, IQR) | 5.0 (1.0, 14.0) | 4.8 (1.0, 14.0) | 6.5 (1.5, 14) | 5.0 (0.33, 20.0) | 4.0 (0.33, 14.0) | 8.8 (1.0, 20.0) |
Traditional Mexican diet score (tMexS) (mean ± SD) abc | 5.8 ± 2.1 | 6.2 ± 1.9 | 5.0 ± 2.1 | 6.0 ± 2.1 | 6.3 ± 2.0 | 5.3 ± 2.0 |
Crude Model | Model 1 a | Model 2 b | |||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | 95% CI | p-Value | Estimate | 95% CI | p-Value | Estimate | 95% CI | p-Value | |
Steatosis | |||||||||
tMexS | −1.8 | −4.6, 0.9 | 0.20 | −0.06 | −2.7, 2.6 | 0.96 | −0.8 | −3.4, 1.9 | 0.57 |
Fibrosis | |||||||||
tMexS | −0.06 | −0.2, 0.07 | 0.37 | 0.02 | −0.1, 0.1 | 0.68 | 0.02 | −0.1, 0.1 | 0.81 |
Hepatic Steatosis | Hepatic Fibrosis | |||||
---|---|---|---|---|---|---|
Estimate | 95% CI | p-Value | Estimate | 95% CI | p-Value | |
Sex | ||||||
Male (n = 102) | −3.3 | −7.6, 1.1 | 0.14 | 0.22 | −0.01, 0.5 | 0.07 |
Female (n = 178) | 0.90 | −2.5, 4.3 | 0.60 | −0.11 | −0.3, 0.04 | 0.14 |
Birthplace | ||||||
Mexico-born (n = 196) | 1.5 | −1.7, 4.7 | 0.35 | 0.05 | −0.1, 0.2 | 0.51 |
US-born (n = 84) | −5.7 | −10.9, −0.6 | 0.03 | −0.09 | −0.3, 0.1 | 0.41 |
Risk allele status | ||||||
No risk allele (CC) (n = 68) | −6.1 | −12.7, −0.4 | 0.07 | −0.04 | −0.27, 0.2 | 0.74 |
One or more risk allele (CG or GG) (n = 212) | 1.3 | −1.6, 4.2 | 0.38 | 0.05 | −0.1, 0.2 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Pentecost, M.; Tamez, M.; Mattei, J.; Jacobs, E.T.; Thomson, C.A.; Garcia, D.O. Adherence to a Traditional Mexican Diet Is Associated with Lower Hepatic Steatosis in US-Born Hispanics of Mexican Descent with Overweight or Obesity. Nutrients 2023, 15, 4997. https://doi.org/10.3390/nu15234997
Lopez-Pentecost M, Tamez M, Mattei J, Jacobs ET, Thomson CA, Garcia DO. Adherence to a Traditional Mexican Diet Is Associated with Lower Hepatic Steatosis in US-Born Hispanics of Mexican Descent with Overweight or Obesity. Nutrients. 2023; 15(23):4997. https://doi.org/10.3390/nu15234997
Chicago/Turabian StyleLopez-Pentecost, Melissa, Martha Tamez, Josiemer Mattei, Elizabeth T. Jacobs, Cynthia A. Thomson, and David O. Garcia. 2023. "Adherence to a Traditional Mexican Diet Is Associated with Lower Hepatic Steatosis in US-Born Hispanics of Mexican Descent with Overweight or Obesity" Nutrients 15, no. 23: 4997. https://doi.org/10.3390/nu15234997
APA StyleLopez-Pentecost, M., Tamez, M., Mattei, J., Jacobs, E. T., Thomson, C. A., & Garcia, D. O. (2023). Adherence to a Traditional Mexican Diet Is Associated with Lower Hepatic Steatosis in US-Born Hispanics of Mexican Descent with Overweight or Obesity. Nutrients, 15(23), 4997. https://doi.org/10.3390/nu15234997