Dietary Micronutrient Intake and Its Relationship with the Malnutrition–Inflammation–Frailty Complex in Patients Undergoing Peritoneal Dialysis
Abstract
:1. Background
2. Methods
2.1. Dietary Nutrition Intake
2.2. Nutrition and Inflammation
2.3. Frailty
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Malnutrition–Inflammation–Frailty Complex
3.3. Dietary Nutrient Intake
3.4. Relationship between Dietary Nutrient Intake and Malnutrition–Inflammation–Frailty Complex
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, G.C.; Ng, J.K.; Chow, K.M.; Kwong, V.W.; Pang, W.F.; Cheng, P.M.; Law, M.-C.; Leung, C.-B.; Li, P.K.-T.; Szeto, C.C. Interaction between central obesity and frailty on the clinical outcome of peritoneal dialysis patients. PLoS ONE 2020, 15, e0241242. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Ng, J.K.; Chow, K.M.; Cheng, P.M.; Law, M.C.; Leung, C.B.; Li, P.K.-T.; Szeto, C.-C. Polypharmacy Predicts Onset and Transition of Frailty, Malnutrition, and Adverse Outcomes in Peritoneal Dialysis Patient. J. Nutr. Health Aging 2022, 26, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Ng, J.K.; Chow, K.M.; Kwong, V.W.; Pang, W.F.; Cheng, P.M.; Law, M.-C.; Leung, C.B.; Li, P.K.-T.; Szeto, C.-C. Progression in Physical Frailty in Peritoneal Dialysis Patients. Kidney Blood Press. Res. 2021, 46, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Ng, J.K.; Chow, K.M.; Kwong, V.W.; Pang, W.F.; Cheng, P.M.; Law, M.-C.; Leung, C.-B.; Li, P.K.-T.; Szeto, C.-C. Impact of frailty and its inter-relationship with lean tissue wasting and malnutrition on kidney transplant waitlist candidacy and delisting. Clin. Nutr. 2021, 40, 5620–5629. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Than, W.H.; Kwan, B.C.; Lai, K.B.; Chan, R.C.; Ng, J.K.; Chow, K.-M.; Cheng, P.M.-S.; Law, M.-C.; Leung, C.-B.; et al. Adipose expression of miR-130b and miR-17-5p with wasting, cardiovascular event and mortality in advanced chronic kidney disease patients. Nephrol. Dial. Transpl. 2022, 37, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Kang, B.C.; Kim, H.J.; Kyung, M.S.; Oh, H.J.; Kim, J.H.; Kwon, O.; Ryu, D.R. Comparison of hemodialysis and peritoneal dialysis patients’ dietary behaviors. BMC Nephrol. 2020, 21, 91. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Fung, W.W.; Szeto, C.C.; Ng, J.K. From MIA to FIFA: The vicious matrix of frailty, inflammation, fluid overload and atherosclerosis in peritoneal dialysis. Nephrology 2023, 28, 215–226. [Google Scholar] [CrossRef]
- Chan, R.; Leung, J.; Woo, J. Dietary Patterns and Risk of Frailty in Chinese Community-Dwelling Older People in Hong Kong: A Prospective Cohort Study. Nutrients 2015, 7, 7070–7084. [Google Scholar] [CrossRef]
- Chan, R.S.M.; Yu, B.W.M.; Leung, J.; Lee, J.S.W.; Auyeung, T.W.; Kwok, T.; Woo, J. How Dietary Patterns are Related to Inflammaging and Mortality in Community-Dwelling Older Chinese Adults in Hong Kong—A Prospective Analysis. J. Nutr. Health Aging 2019, 23, 181–194. [Google Scholar] [CrossRef]
- McCance, R.A.; Widdowson, E.M. McCance and Widdowson’s the composition of foods. In The Composition of Food, 7th ed.; Royal Society of Chemistry: London, UK; Public Health England: Cambridge, UK, 2015. [Google Scholar]
- Yang, Y.X. China Food Composition Table 2004 (Book 2); The Institute of Nutrition and Food Safety, Chinese Center for Disease Control and Prevention: Beijing, China; Peking University Medical Press: Beijing, China, 2004.
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. 1), S1–S107. [Google Scholar] [CrossRef]
- Fiaccadori, E.; Sabatino, A.; Barazzoni, R.; Carrero, J.J.; Cupisti, A.; De Waele, E.; Jonckheer, J.; Singer, P.; Cuerda, C. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin. Nutr. 2021, 40, 1644–1668. [Google Scholar] [CrossRef] [PubMed]
- ASPEN. Adult Nutrition Support Core Curriculum; American Society for Parenteral and Enteral Nutrition: Silver Spring, MD, USA, 2017. [Google Scholar]
- Kalantar-Zadeh, K.; Kopple, J.D.; Block, G.; Humphreys, M.H. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2001, 38, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Sin, D.; Harasemiw, O.; Curtis, S.; Iman, Y.; Buenafe, J.; DaCosta, J.; Mollard, R.C.; Tangri, N.; Protudjer, J.L.P.; Mackay, D. Dietary Patterns and Perceptions in Older Adults with Chronic Kidney Disease in the Canadian Frailty Observation and Interventions Trial (CanFIT): A Mixed-Methods Study. Can. J. Kidney Health Dis. 2022, 9, 20543581221140633. [Google Scholar] [CrossRef] [PubMed]
- Kaysen, G.A.; Greene, T.; Daugirdas, J.T.; Kimmel, P.L.; Schulman, G.W.; Toto, R.D.; Levin, N.W.; Yan, G.; Group, H.S. Longitudinal and cross-sectional effects of C-reactive protein, equilibrated normalized protein catabolic rate, and serum bicarbonate on creatinine and albumin levels in dialysis patients. Am. J. Kidney Dis. 2003, 42, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Lichodziejewska-Niemierko, M.; Rutkowski, B.; Debska-Slizien, A.; Malgorzewicz, S. Water soluble vitamins and peritoneal dialysis—State of the art. Clin. Nutr. 2017, 36, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Martin-del-Campo, F.; Batis-Ruvalcaba, C.; Gonzalez-Espinoza, L.; Rojas-Campos, E.; Angel, J.R.; Ruiz, N.; Gonzalez, J.; Pazarin, L.; Cueto-Manzano, A.M. Dietary micronutrient intake in peritoneal dialysis patients: Relationship with nutrition and inflammation status. Perit. Dial. Int. 2012, 32, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.W.; Lin, T.Y.; Hung, S.C. Association of Frailty with Nutritional Status in CKD Patients. J. Ren. Nutr. 2023, in press.
- Coelho-Junior, H.J.; Marzetti, E.; Picca, A.; Cesari, M.; Uchida, M.C.; Calvani, R. Protein Intake and Frailty: A Matter of Quantity, Quality, and Timing. Nutrients 2020, 12, 2915. [Google Scholar] [CrossRef]
- Shimizu, S.; Tei, R.; Okamura, M.; Takao, N.; Nakamura, Y.; Oguma, H.; Maruyama, T.; Takashima, H.; Abe, M. Prevalence of Zinc Deficiency in Japanese Patients on Peritoneal Dialysis: Comparative Study in Patients on Hemodialysis. Nutrients 2020, 12, 764. [Google Scholar] [CrossRef]
- Mahajan, S.K.; Bowersox, E.M.; Rye, D.L.; Abu-Hamdan, D.K.; Prasad, A.S.; McDonald, F.D.; Biersack, K.L. Factors underlying abnormal zinc metabolism in uremia. Kidney Int. Suppl. 1989, 27, S269–S273. [Google Scholar]
- Tavares, A.; Mafra, D.; Leal, V.O.; Gama, M.D.S.; Vieira, R.; Brum, I.; Borges, N.A.; Silva, A.A. Zinc Plasma Status and Sensory Perception in Nondialysis Chronic Kidney Disease Patients. J. Ren. Nutr. 2021, 31, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Hamza, R.T.; Hamed, A.I.; Sallam, M.T. Effect of zinc supplementation on growth hormone-insulin growth factor axis in short Egyptian children with zinc deficiency. Ital. J. Pediatr. 2012, 38, 21. [Google Scholar] [CrossRef] [PubMed]
- Gembillo, G.; Visconti, L.; Giuffrida, A.E.; Labbozzetta, V.; Peritore, L.; Lipari, A.; Calabrese, V.; Piccoli, G.B.; Torreggiani, M.; Siligato, R.; et al. Role of Zinc in Diabetic Kidney Disease. Nutrients 2022, 14, 1353. [Google Scholar] [CrossRef] [PubMed]
- Gammoh, N.Z.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Than, W.H.; Kwan, B.C.; Lai, K.B.; Chan, R.C.; Teoh, J.Y.; Ng, J.K.; Chow, K.M.; Fung, W.W.; Cheng, P.M.; et al. Adipose and serum zinc alpha-2-glycoprotein (ZAG) expressions predict longitudinal change of adiposity, wasting and predict survival in dialysis patients. Sci. Rep. 2022, 12, 9087. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jiang, D.; Zhu, Y.; Fang, Z.; Che, L.; Lin, Y.; Xu, S.; Li, J.; Huang, C.; Zou, Y.; et al. Chronic High Dose Zinc Supplementation Induces Visceral Adipose Tissue Hypertrophy without Altering Body Weight in Mice. Nutrients 2017, 9, 1138. [Google Scholar] [CrossRef]
- Kobayashi, H.; Abe, M.; Okada, K.; Tei, R.; Maruyama, N.; Kikuchi, F.; Higuchi, T.; Soma, M. Oral zinc supplementation reduces the erythropoietin responsiveness index in patients on hemodialysis. Nutrients 2015, 7, 3783–3795. [Google Scholar] [CrossRef]
- Munie, S.; Pintavorn, P. Erythropoietin-Resistant Anemia Secondary to Zinc-Induced Hypocupremia in a Hemodialysis Patient. Case Rep. Nephrol. Dial. 2021, 11, 167–175. [Google Scholar] [CrossRef]
- Mak, R.H.; Querfeld, U.; Gonzalez, A.; Gunta, S.; Cheung, W.W. Differential Effects of 25-Hydroxyvitamin D3 versus 1alpha 25-Dihydroxyvitamin D3 on Adipose Tissue Browning in CKD-Associated Cachexia. Cells 2021, 10, 3382. [Google Scholar] [CrossRef]
- Wickstrom, J.F.; Sayles, H.R.; Graeff-Armas, L.A.; Yentes, J.M. The Likelihood of Self-reporting Balance Problems in Those with Advanced Chronic Kidney Disease, Slow Gait Speed, or Low Vitamin D. J. Ren. Nutr. 2019, 29, 490–497. [Google Scholar] [CrossRef]
- Matias, P.J.; Jorge, C.; Ferreira, C.; Borges, M.; Aires, I.; Amaral, T.; Gil, C.; Cortez, J.; Ferreira, A. Cholecalciferol supplementation in hemodialysis patients: Effects on mineral metabolism, inflammation, and cardiac dimension parameters. Clin. J. Am. Soc. Nephrol. 2010, 5, 905–911. [Google Scholar] [CrossRef]
- Meireles, M.S.; Kamimura, M.A.; Dalboni, M.A.; Giffoni de Carvalho, J.T.; Aoike, D.T.; Cuppari, L. Effect of cholecalciferol on vitamin D-regulatory proteins in monocytes and on inflammatory markers in dialysis patients: A randomized controlled trial. Clin. Nutr. 2016, 35, 1251–1258. [Google Scholar] [CrossRef]
- Hewitt, N.A.; O’Connor, A.A.; O’Shaughnessy, D.V.; Elder, G.J. Effects of cholecalciferol on functional, biochemical, vascular, and quality of life outcomes in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2013, 8, 1143–1149. [Google Scholar] [CrossRef]
- Singer, R.; Chacko, B.; Talaulikar, G.; Karpe, K.; Walters, G. Placebo-controlled, randomized clinical trial of high-dose cholecalciferol in renal dialysis patients: Effect on muscle strength and quality of life. Clin. Kidney J. 2019, 12, 281–287. [Google Scholar] [CrossRef]
- Rambod, M.; Bross, R.; Zitterkoph, J.; Benner, D.; Pithia, J.; Colman, S.; Kovesdy, C.P.; Kopple, J.D.; Kalantar-Zadeh, K. Association of Malnutrition-Inflammation Score with quality of life and mortality in hemodialysis patients: A 5-year prospective cohort study. Am. J. Kidney Dis. 2009, 53, 298–309. [Google Scholar] [CrossRef]
Frail (n = 127) | Robust (n = 82) | p-Value | |
---|---|---|---|
Age | 61.9 ± 9.5 | 55.6 ± 12.8 | p < 0.001 a |
Age older than 65 | 51 (40.2%) | 19 (23.2%) | p = 0.03 b |
Male | 63 (49.6%) | 39 (47.6%) | p = 0.8 b |
Time on dialysis (months) | 9.2 ± 50.7 | 25.5 ± 87.0 | p = 0.09 a |
Primary cause of renal failure | p = 0.4 b | ||
- Diabetes mellitus | 56 (44.1%) | 25 (30.5%) | |
- Hypertension | 16 (12.6%) | 9 (11%) | |
- Glomerulonephritis | 36 (28.3%) | 33 (40.2%) | |
- Urological cause | 2 (1.6%) | 2 (2.4%) | |
- Polycystic kidney disease | 5 (3.9%) | 2 (2.4%) | |
- Others | 2 (1.6%) | 2 (2.4%) | |
- Unknown | 10 (7.9%) | 9 (11%) | |
Comorbidities | |||
- Hypertension | 117 (92.1%) | 74 (90.2%) | p = 0.6 b |
- Diabetes mellitus | 67 (52.8%) | 27 (32.9%) | p = 0.005 b |
- Ischemic heart disease | 15 (11.8%) | 6 (7.3%) | p = 0.2 b |
- Cerebrovascular accident | 12 (9.4%) | 4 (4.9%) | p = 0.3 b |
Kt/V | 1.78 ± 0.69 | 1.75 ± 0.44 | p = 0.8 a |
Assisted peritoneal dialysis | 9 (7.1%) | 0 (0%) | p = 0.018 b |
Peritoneal dialysis (PD) modality | p = 0.4 b | ||
- Continuous ambulatory PD | 109 (85.8%) | 59 (72%) | |
- Continuous cyclic PD | 6 (4.7%) | 4 (4.9%) | |
- Nocturnal intermittent PD | 12 (9.4%) | 12 (14.6%) | |
Systolic blood pressure (mmHg) | 141 ± 22 | 140 ± 20 | p = 0.7 a |
Diastolic blood pressure (mmHg) | 77 ± 13 | 80 ± 12 | p = 0.1 a |
Pulse rate (per minute) | 79 ± 13 | 94 ± 11 | p = 0.09 a |
Laboratory results | |||
- Hemoglobin (g/dL) | 9.9 ± 1.5 | 10.0 ± 1.4 | p = 0.6 a |
- White blood cell (109/L) | 7.3 ± 2.4 | 7.8 ± 2.7 | p = 0.2 a |
- Neutrophil (109/L) | 5.2 ± 2.1 | 5.5 ± 2.4 | p = 0.3 a |
- Lymphocyte (109/L) | 1.1 ± 0.4 | 1.3 ± 0.4 | p = 0.045 a |
- Neutrophil–Lymphocyte ratio | 5.5 ± 4.6 | 4.8 ± 2.4 | p = 0.2 a |
- Platelet–Lymphocyte ratio | 274 ± 316 | 232 ± 126 | p = 0.3 a |
- C-reactive protein (mg/L) | 1.8 ± 4.1 | 2.2 ± 5.9 | p = 0.7 a |
- Total protein (g/L) | 69.4 ± 6.8 | 67.6 ± 6.3 | p = 0.07 a |
- Albumin (g/L) | 28.6 ± 5.0 | 29.1 ± 4.5 | p = 0.5 a |
- Calcium (mmol/L) | 2.3 ± 0.2 | 2.3 ± 0.2 | p = 0.03 a |
- Phosphate (mmol/L) | 1.9 ± 0.5 | 2.0 ± 0.6 | p = 0.07 a |
- Iron (microgram/L) | 12.5 ± 5.6 | 14.5 ± 8.5 | p = 0.049 a |
- Vitamin B12 (Cobalamin) (pmol/L) | 115 ± 23 | 118 ± 16 | p = 0.5 a |
- Vitamin B9 (Folate) (nmol/L) | 23.9 ± 26.8 | 16.5 ± 9.1 | p = 0.4 a |
- Cholesterol, total (mmol/L) | 4.4 ± 1.7 | 4.5 ± 1.0 | p = 0.6 a |
- Cholesterol, HDL-C (mmol/L) | 1.2 ± 0.4 | 1.3 ± 0.4 | p = 0.4 a |
- Cholesterol, LDL-C (mmol/L) | 2.5 ± 1.6 | 2.6 ± 0.9 | p = 0.6 a |
- Triglycerides (mmol/L) | 1.8 ± 1.3 | 1.5 ± 0.9 | p = 0.1 a |
Frail (n = 127) | Robust (n = 82) | p-Value | |
---|---|---|---|
Body weight (kg) | 62.2 ± 14.4 | 64.8 ± 17.6 | p = 0.3 |
Body mass index (kg/m2) | 23.9 ± 5.1 | 24.8 ± 9.4 | p = 0.4 |
Waist circumference (cm) | 92.6 ± 11.9 | 88.8 ± 16.3 | p = 0.06 |
Hip circumference (cm) | 95.2 ± 12.3 | 93.4 ± 13.2 | p = 0.3 |
Normalized protein catabolic rate | 1.78 ± 8.85 | 0.94 ± 0.17 | p = 0.4 |
Subjective Global Assessment (SGA) | |||
- Weight loss | 5.4 ± 0.8 | 5.7 ± 0.9 | p = 0.003 |
- Anorexia | 5.3 ± 0.7 | 5.7 ± 0.8 | p = 0.001 |
- Loss of fat | 5.3 ± 0.9 | 6.0 ± 1.8 | p < 0.001 |
- Loss of muscle | 5.0 ± 1.0 | 5.8 ± 1.1 | p < 0.001 |
- Total score | 21.0 ± 2.7 | 22.7 ± 3.1 | p < 0.001 |
Malnutrition-Inflammation Score (MIS) | |||
- A—Patients’ related medical history | 0.88 ± 0.43 | 0.48 ± 0.38 | p < 0.001 |
- B—Physical exam | 1.00 ± 0.70 | 0.52 ± 0.58 | p < 0.001 |
- C—Body mass index | 0.31 ± 0.70 | 0.29 ± 0.69 | p = 0.9 |
- D—Laboratory parameters | 1.91 ± 0.58 | 1.85 ± 0.92 | p = 0.5 |
- Total score | 10.55 ± 3.72 | 7.18 ± 3.61 | p < 0.001 |
BMI | SGA | MIS | FQ | |
---|---|---|---|---|
SGA | r = 0.32 | / | / | / |
p < 0.001 | ||||
MIS | r = −0.29 | r = −0.70 | / | / |
p < 0.001 | p < 0.001 | |||
FQ | r = −0.08 | r = 0.48 | r = 0.50 | / |
p = 0.3 | p < 0.001 | p < 0.001 | ||
C-reactive protein | r = 0.08 | r = −0.09 | r = 0.26 | r = 0.20 |
p = 0.4 | p = 0.4 | p = 0.006 | p = 0.04 | |
Neutrophil–lymphocyte ratio | r = −0.04 | r = −0.19 | r = 0.24 | r = 0.03 |
p = 0.6 | p = 0.006 | p < 0.001 | p = 0.7 | |
Platelet–lymphocyte ratio | r = −0.12 | r = −0.14 | r = 0.25 | r = 0.01 |
p = 0.08 | p = 0.05 | p < 0.001 | p = 0.9 | |
Zinc | r = 0.31 | r = 0.22 | r = −0.22 | r = −0.67 |
p < 0.001 | p = 0.01 | p = 0.01 | p = 0.5 | |
Vitamin B1 (Thiamine) | r = 0.24 | r = 0.18 | r = 0.18 | r = −0.023 |
p = 0.006 | p = 0.045 | p = 0.046 | p = 0.8 | |
Vitamin B2 (Riboflavin) | r = 0.25 | r = 0.21 | r = −0.20 | r = −0.10 |
p = 0.004 | p = 0.015 | p = 0.02 | p = 0.3 | |
Vitamin B9 (Folate) | r = 0.22 | r = 0.20 | r = −0.20 | r = −0.12 |
p = 0.01 | p = 0.02 | p = 0.028 | p = 0.2 | |
Vitamin B12 (Cobalamin) | r = 0.28 | r = 0.24 | r = −0.21 | r = −0.11 |
p < 0.001 | p = 0.005 | p = 0.019 | p = 0.2 |
Dietary Micronutrients Intake (Unit) | |
---|---|
Protein (g) | 8.2 ± 6.5 |
- Low protein intake | 89 (42.6%) |
Fat (g) | 3.8 ± 3.4 |
Carbohydrates (g) | 21.5 ± 13 |
Energy (kcal) | 149.4 ± 99.4 |
- Low energy intake | 104 (49.8%) |
Minerals | |
Calcium (mg) | 2.5 ± 1.9 |
- Low calcium intake | 34 (16.3%) |
Phosphate (mg) | 6.7 ± 3.7 |
- High phosphate intake | 41 (19.6%) |
Iron (mg) | 1.4 ± 1.1 |
Zinc (mg) | 1.3 ± 0.8 |
Copper (mg) | 0.2 ± 0.1 |
Fatty acids (FA) | |
Saturated FA (g) | 0.9 ± 0.8 |
Polyunsaturated FA (PUFA) (g) | 0.2 ± 0.2 |
Monosaturated FA (g) | 1.1 ± 1.1 |
Vitamins | |
Vitamin B1 (Thiamine) (mg) | 0.1 ± 0.1 |
Vitamin B2 (Riboflavin) (mg) | 0.1 ± 0.1 |
Vitamin B3 (Niacin) (mg) | 2.1 ± 1.5 |
Vitamin B5 (Pantothenate) (mg) | 0.3 ± 0.3 |
Vitamin B6 (Pyridoxine) (mg) | 0.1 ± 0.1 |
- Low vitamin B6 intake | 86 (41.1%) |
Vitamin B7 (Biotin) (microgram) | 1.8 ± 2 |
Vitamin B9 (Folate) (microgram) | 15 ± 10.3 |
- Low vitamin B9 intake | 84 (40.2%) |
Vitamin B12 (Cobalamin) (microgram) | 0.3 ± 0.3 |
Vitamin D (microgram) | 0.2 ± 0.2 |
Vitamin K1 (microgram) | 3.3 ± 6.1 |
Body Weight | Subjective Global Assessment (SGA) | Malnutrition-Inflammation Score (MIS) | Frailty Score (FQ) | |||||
---|---|---|---|---|---|---|---|---|
Beta (95% CI) | p-Value | Beta (95% CI) | p-Value | Beta (95% CI) | p-Value | Beta (95% CI) | p-Value | |
Zinc | 0.41 (0.19–0.62) | p < 0.001 | 0.03 (0.009–0.05) | p = 0.003 | −0.14 (−0.22–−0.06) | p < 0.001 | −0.28 (−0.43–−0.12) | p < 0.001 |
Saturated fatty acid | 0.38 (0.04–0.73) | p = 0.03 | −0.08 (−0.13–−0.03) | p = 0.003 | ||||
Vitamin D | 0.77 (0.38–1.17) | p < 0.001 | −0.13 (−0.24–0.01) | p = 0.03 | −0.18 (−0.33–−0.02) | p = 0.03 | ||
Calcium | −0.003 (−0.005–−0.001) | p = 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, G.C.-K.; Ng, J.K.-C.; Cheng, P.M.-S.; Chow, K.-M.; Szeto, C.-C.; Li, P.K.-T. Dietary Micronutrient Intake and Its Relationship with the Malnutrition–Inflammation–Frailty Complex in Patients Undergoing Peritoneal Dialysis. Nutrients 2023, 15, 4934. https://doi.org/10.3390/nu15234934
Chan GC-K, Ng JK-C, Cheng PM-S, Chow K-M, Szeto C-C, Li PK-T. Dietary Micronutrient Intake and Its Relationship with the Malnutrition–Inflammation–Frailty Complex in Patients Undergoing Peritoneal Dialysis. Nutrients. 2023; 15(23):4934. https://doi.org/10.3390/nu15234934
Chicago/Turabian StyleChan, Gordon Chun-Kau, Jack Kit-Chung Ng, Phyllis Mei-Shan Cheng, Kai-Ming Chow, Cheuk-Chun Szeto, and Philip Kam-Tao Li. 2023. "Dietary Micronutrient Intake and Its Relationship with the Malnutrition–Inflammation–Frailty Complex in Patients Undergoing Peritoneal Dialysis" Nutrients 15, no. 23: 4934. https://doi.org/10.3390/nu15234934
APA StyleChan, G. C. -K., Ng, J. K. -C., Cheng, P. M. -S., Chow, K. -M., Szeto, C. -C., & Li, P. K. -T. (2023). Dietary Micronutrient Intake and Its Relationship with the Malnutrition–Inflammation–Frailty Complex in Patients Undergoing Peritoneal Dialysis. Nutrients, 15(23), 4934. https://doi.org/10.3390/nu15234934