Natural Protein Intake in Children with Phenylketonuria: Prescription vs. Actual Intakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Data Collection and Analysis
2.4. Statistical Analysis
2.5. Ethical Aspects
3. Results
3.1. Study Participants
3.2. Natural Protein and Phe: Prescribed vs. Actual Intakes
3.3. Metabolic Control
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blau, N.; van Spronsen, F.J.; Levy, H.L. Phenylketonuria. Lancet 2010, 376, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- van Spronsen, F.J.; Blau, N.; Harding, C.; Burlina, A.; Longo, N.; Bosch, A.M. Phenylketonuria. Nat. Rev. Dis. Primers 2021, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Ilgaz, F.; Evans, S.; van Dam, E.; Rocha, J.C.; Karabulut, E.; Hickson, M.; Daly, A.; MacDonald, A. Phenylalanine Tolerance over Time in Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3506. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; van Wegberg, A.M.J.; Ahring, K.; Beblo, S.; Bélanger-Quintana, A.; Burlina, A.; Campistol, J.; Coşkun, T.; Feillet, F.; Giżewska, M.; et al. PKU dietary handbook to accompany PKU guidelines. Orphanet J. Rare Dis. 2020, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Phenylketonuria, M.W.P. Recommendations on the dietary management of phenylketonuria. Arch. Dis. Child. 1993, 68, 426–427. [Google Scholar]
- Cazzorla, C.; Bensi, G.; Biasucci, G.; Leuzzi, V.; Manti, F.; Musumeci, A.; Papadia, F.; Stoppioni, V.; Tummolo, A.; Vendemiale, M.; et al. Living with phenylketonuria in adulthood: The PKU ATTITUDE study. Mol. Genet. Metab. Rep. 2018, 16, 39–45. [Google Scholar] [CrossRef]
- Cotugno, G.; Nicolò, R.; Cappelletti, S.; Goffredo, B.M.; Dionisi Vici, C.; Di Ciommo, V. Adherence to diet and quality of life in patients with phenylketonuria. Acta Paediatr. 2011, 100, 1144–1149. [Google Scholar] [CrossRef]
- García, M.I.; Araya, G.; Coo, S.; Waisbren, S.E.; de la Parra, A. Treatment adherence during childhood in individuals with phenylketonuria: Early signs of treatment discontinuation. Mol. Genet. Metab. Rep. 2017, 11, 54–58. [Google Scholar] [CrossRef]
- Jurecki, E.R.; Cederbaum, S.; Kopesky, J.; Perry, K.; Rohr, F.; Sanchez-Valle, A.; Viau, K.S.; Sheinin, M.Y.; Cohen-Pfeffer, J.L. Adherence to clinic recommendations among patients with phenylketonuria in the United States. Mol. Genet. Metab. 2017, 120, 190–197. [Google Scholar] [CrossRef]
- Walter, J.H.; White, F.J. Blood phenylalanine control in adolescents with phenylketonuria. Int. J. Adolesc. Med. Health 2004, 16, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Azen, C.G.; Koch, R.; Friedman, E.G.; Berlow, S.; Coldwell, J.; Krause, W.; Matalon, R.; McCabe, E.; O’Flynn, M.; Peterson, R.; et al. Intellectual development in 12-year-old children treated for phenylketonuria. Am. J. Dis. Child. 1991, 145, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Bilder, D.A.; Noel, J.K.; Baker, E.R.; Irish, W.; Chen, Y.; Merilainen, M.J.; Prasad, S.; Winslow, B.J. Systematic Review and Meta-Analysis of Neuropsychiatric Symptoms and Executive Functioning in Adults With Phenylketonuria. Dev. Neuropsychol. 2016, 41, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.N.; Gray, R.M.; O’Brien, L.L. Patterns of academic achievement among patients treated early with phenylketonuria. Eur. J. Pediatr. 2000, 159 (Suppl. S2), S96–S99. [Google Scholar] [CrossRef] [PubMed]
- Hood, A.; Antenor-Dorsey, J.A.; Rutlin, J.; Hershey, T.; Shimony, J.S.; McKinstry, R.C.; Grange, D.K.; Christ, S.E.; Steiner, R.; White, D.A. Prolonged exposure to high and variable phenylalanine levels over the lifetime predicts brain white matter integrity in children with phenylketonuria. Mol. Genet. Metab. 2015, 114, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Nardecchia, F.; Manti, F.; Chiarotti, F.; Carducci, C.; Carducci, C.; Leuzzi, V. Neurocognitive and neuroimaging outcome of early treated young adult PKU patients: A longitudinal study. Mol. Genet. Metab. 2015, 115, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Olson, A.; Romani, C. The impact of metabolic control on cognition, neurophysiology, and well-being in PKU: A systematic review and meta-analysis of the within-participant literature. Mol. Genet. Metab. 2023, 138, 106969. [Google Scholar] [CrossRef]
- Waisbren, S.E.; Noel, K.; Fahrbach, K.; Cella, C.; Frame, D.; Dorenbaum, A.; Levy, H. Phenylalanine blood levels and clinical outcomes in phenylketonuria: A systematic literature review and meta-analysis. Mol. Genet. Metab. 2007, 92, 63–70. [Google Scholar] [CrossRef]
- Bernstein, L.; Burns, C.; Sailer-Hammons, M.; Kurtz, A.; Rohr, F. Multiclinic Observations on the Simplified Diet in PKU. J. Nutr. Metab. 2017, 2017, 4083293. [Google Scholar] [CrossRef]
- Hansen, J.; Hollander, S.; Drilias, N.; Van Calcar, S.; Rohr, F.; Bernstein, L. Simplified Diet for nutrition management of phenylketonuria: A survey of U.S. metabolic dietitians. JIMD Rep. 2020, 53, 83–89. [Google Scholar] [CrossRef]
- Sweeney, A.L.; Roberts, R.M.; Fletcher, J.M. Dietary protein counting as an alternative way of maintaining metabolic control in phenylketonuria. JIMD Rep. 2012, 3, 131–139. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Rylance, G.; Hall, S.K.; Asplin, D.; Booth, I.W. Factors affecting the variation in plasma phenylalanine in patients with phenylketonuria on diet. Arch. Dis. Child. 1996, 74, 412–417. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Rylance, G.; Davies, P.; Asplin, D.; Hall, S.K.; Booth, I.W. Free use of fruits and vegetables in phenylketonuria. J. Inherit. Metab. Dis. 2003, 26, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Daly, A.; Rocha, J.C.; Ashmore, C.; Evans, S.; Jackson, R.; Payne, A.; Hickson, M.; MacDonald, A. Impact of Fruit and Vegetable Protein vs. Milk Protein on Metabolic Control of Children with Phenylketonuria: A Randomized Crossover Controlled Trial. Nutrients 2022, 14, 4268. [Google Scholar] [CrossRef] [PubMed]
- Rohde, C.; Mütze, U.; Schulz, S.; Thiele, A.G.; Ceglarek, U.; Thiery, J.; Mueller, A.S.; Kiess, W.; Beblo, S. Unrestricted fruits and vegetables in the PKU diet: A 1-year follow-up. Eur. J. Clin. Nutr. 2014, 68, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Rohde, C.; Mütze, U.; Weigel, J.F.; Ceglarek, U.; Thiery, J.; Kiess, W.; Beblo, S. Unrestricted consumption of fruits and vegetables in phenylketonuria: No major impact on metabolic control. Eur. J. Clin. Nutr. 2012, 66, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Jacobs, P.; Fingerhut, R.; Torresani, T.; Thöny, B.; Blau, N.; Baumgartner, M.R.; Rohrbach, M. Positive effect of a simplified diet on blood phenylalanine control in different phenylketonuria variants, characterized by newborn BH4 loading test and PAH analysis. Mol. Genet. Metab. 2012, 106, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; Pinto, A.; Gingell, C.; Rocha, J.C.; van Spronsen, F.; Jackson, R.; MacDonald, A. The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled Trial. Nutrients 2019, 11, 520. [Google Scholar] [CrossRef]
- Ney, D.M.; Gleason, S.T.; van Calcar, S.C.; MacLeod, E.L.; Nelson, K.L.; Etzel, M.R.; Rice, G.M.; Wolff, J.A. Nutritional management of PKU with glycomacropeptide from cheese whey. J. Inherit. Metab. Dis. 2009, 32, 32–39. [Google Scholar] [CrossRef]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; Pinto, A.; Jackson, R.; Gingell, C.; Rocha, J.; Van Spronsen, F.J.; MacDonald, A. Glycomacropeptide: Long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU. Orphanet J. Rare Dis. 2019, 14, 44. [Google Scholar] [CrossRef]
- Nakano, T.; Silva-Hernandez, E.R.; Ikawa, N.; Ozimek, L. Purification of kappa-casien glycomacropeptide from sweet whey with undetectable level of phenylalanine. Biotechnol. Prog. 2002, 18, 409–412. [Google Scholar] [CrossRef]
- Ahring, K.K.; Lund, A.M.; Jensen, E.; Jensen, T.G.; Brøndum-Nielsen, K.; Pedersen, M.; Bardow, A.; Holst, J.J.; Rehfeld, J.F.; Møller, L.B. Comparison of Glycomacropeptide with Phenylalanine Free-Synthetic Amino Acids in Test Meals to PKU Patients: No Significant Differences in Biomarkers, Including Plasma Phe Levels. J. Nutr. Metab. 2018, 2018, 6352919. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; MacDonald, A. Glycomacropeptide in children with phenylketonuria: Does its phenylalanine content affect blood phenylalanine control? J. Hum. Nutr. Diet. 2017, 30, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Kraleva, D.; Evans, S.; Pinto, A.; Daly, A.; Ashmore, C.; Pointon-Bell, K.; Rocha, J.C.; MacDonald, A. Protein Labelling Accuracy for UK Patients with PKU Following a Low Protein Diet. Nutrients 2020, 12, 3440. [Google Scholar] [CrossRef] [PubMed]
- Hall, I.; Pinto, A.; Evans, S.; Daly, A.; Ashmore, C.; Ford, S.; Buckley, S.; MacDonald, A. The Challenges and Dilemmas of Interpreting Protein Labelling of Prepackaged Foods Encountered by the PKU Community. Nutrients 2022, 14, 1355. [Google Scholar] [CrossRef] [PubMed]
- Bickel, H.; Gerrard, J.; Hickmans, E.M. Influence of phenylalanine intake on phenylketonuria. Lancet 1953, 265, 812–813. [Google Scholar] [CrossRef] [PubMed]
- Eijgelshoven, I.; Demirdas, S.; Smith, T.A.; van Loon, J.M.; Latour, S.; Bosch, A.M. The time consuming nature of phenylketonuria: A cross-sectional study investigating time burden and costs of phenylketonuria in the Netherlands. Mol. Genet. Metab. 2013, 109, 237–242. [Google Scholar] [CrossRef]
- Vockley, J.; Andersson, H.C.; Antshel, K.M.; Braverman, N.E.; Burton, B.K.; Frazier, D.M.; Mitchell, J.; Smith, W.E.; Thompson, B.H.; Berry, S.A. Phenylalanine hydroxylase deficiency: Diagnosis and management guideline. Genet. Med. 2014, 16, 188–200. [Google Scholar] [CrossRef]
- Gupta, S.; Lau, K.; Harding, C.O.; Shepherd, G.; Boyer, R.; Atkinson, J.P.; Knight, V.; Olbertz, J.; Larimore, K.; Gu, Z.; et al. Association of immune response with efficacy and safety outcomes in adults with phenylketonuria administered pegvaliase in phase 3 clinical trials. eBioMedicine 2018, 37, 366–373. [Google Scholar] [CrossRef]
- Harding, C.O.; Amato, R.S.; Stuy, M.; Longo, N.; Burton, B.K.; Posner, J.; Weng, H.H.; Merilainen, M.; Gu, Z.; Jiang, J.; et al. Pegvaliase for the treatment of phenylketonuria: A pivotal, double-blind randomized discontinuation Phase 3 clinical trial. Mol. Genet. Metab. 2018, 124, 20–26. [Google Scholar] [CrossRef]
- Longo, N.; Zori, R.; Wasserstein, M.P.; Vockley, J.; Burton, B.K.; Decker, C.; Li, M.; Lau, K.; Jiang, J.; Larimore, K.; et al. Long-term safety and efficacy of pegvaliase for the treatment of phenylketonuria in adults: Combined phase 2 outcomes through PAL-003 extension study. Orphanet J. Rare Dis. 2018, 13, 108. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Levy, H.; Amato, S.; Vockley, J.; Zori, R.; Dimmock, D.; Harding, C.O.; Bilder, D.A.; Weng, H.H.; Olbertz, J.; et al. Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM). Mol. Genet. Metab. 2018, 124, 27–38. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Smith, T.A.; de Silva, S.; Alam, V.; van Loon, J.M. The personal burden for caregivers of children with phenylketonuria: A cross-sectional study investigating time burden and costs in the UK. Mol. Genet. Metab. Rep. 2016, 9, 1–5. [Google Scholar] [CrossRef]
- Suárez López, M.M.; Kizlansky, A.; López, L.B. Assessment of protein quality in foods by calculating the amino acids score corrected by digestibility. Nutr. Hosp. 2006, 21, 47–51. [Google Scholar]
- Amigo, L.; Hernández-Ledesma, B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020, 25, 4479. [Google Scholar] [CrossRef] [PubMed]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Verduci, E.; Carbone, M.T.; Borghi, E.; Ottaviano, E.; Burlina, A.; Biasucci, G. Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients 2020, 12, 3319. [Google Scholar] [CrossRef]
- Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Gokmen-Ozel, H.; Lammardo, A.M.; MacDonald, A.; Motzfeldt, K.; Nowacka, M.; Robert, M.; van Rijn, M. Blood phenylalanine control in phenylketonuria: A survey of 10 European centres. Eur. J. Clin. Nutr. 2011, 65, 275–278. [Google Scholar] [CrossRef]
# | Age at Baseline (Years) | Gender | Mutations | Phenotype a | N of Prescribed 1 g Protein Exchanges/Day b |
---|---|---|---|---|---|
1 | 10 | F | Unknown | cPKU | 5 |
2 | 8 | M | C1315+1G>A.p.? c.782G>A p (Arg261Gln) | cPKU | 6.5 |
3 | 12 | M | c.960G>C p. (Lys320Asn) c.728G>A (Arg243Gln) | mPKU | 27 |
4 | 13 | F | c.194T>C p. (Ile65Thr) C.1066-11G>Ap.? | mPKU | 14 |
5 | 9 | F | C194t>c c.1222C>T p.(Arg408Trp) | cPKU | 6 |
6 | 12 | M | c. 1066-11 G>A p. ? c. 912+1 G>A p. ? | cPKU | 7.5 |
7 | 13 | F | c.47_48del p. (Ser16*) c.1222C>T p.(Arg408Trp) | cPKU | 4.5 |
8 | 9 | M | c.1222C>T p. (Arg408Trp) c.1222C>T p. (Arg408Trp) | cPKU | 3 |
9 | 6 | F | c.745C>T p. (Leu249Phe) c.1315+1G>A.p.? | cPKU | 5.5 |
10 | 12 | F | c.558_559del p. (Trp187Glyfs*12) c.558_559del p. (Trp187Glyfs*12) | cPKU | 4 |
11 | 12 | F | c.782G>A p. (Arg261Gln) c.896T>G p. (Phe299Cys) | cPKU | 7 |
12 | 12 | F | c.558_559del p. (Trp187Glyfs*12) c.558_559del p. (Trp187Glyfs*12) | cPKU | 4 |
13 | 11 | F | c.782G>A p. (Arg261Gln) c.896T>G p. (Phe299Cys) | cPKU | 6.5 |
14 | 11 | F | Unknown | cPKU | 6 |
15 | 9 | M | c.926C>T p. (Ala309Val) c.1103A>G p. (Glu368Gly) | cPKU | 4 |
16 | 10 | F | c.782G>A p. (Arg261Gln) c.1222C>T p. (Arg408Trp) | cPKU | 6 |
Prescribed; Median (Range) | Actual Intake; Median (Range) | |||
---|---|---|---|---|
Natural Protein (g/day) | Phenylalanine (mg/day) | Natural Protein (g/day) | Phenylalanine (mg/day) | |
Month 1 | 6 (3–27) | 300 (150–1350) | 10 (5–31) | 500 (250–1550) |
Month 2 | 9 (4–35) | 450 (200–1750) | ||
Month 3 | 10 (5–33) | 500 (250–1650) | ||
Month 4 | 10 (4–34) | 500 (200–1700) | ||
Month 5 | 9.5 (4–31) | 475 (200–1550) | ||
Month 6 | 9 (4–37) | 450 (200–1850) | ||
Median (range) | 10 (4–37) | 500 (200–1850) |
Mean (SD) | Median (Range) | |
---|---|---|
Prescribed natural protein (g/day) | 7 (6) | 6 (3–27) |
Actual natural protein intake (g/day) | 11 (6) | 10 (4–37) |
Difference between prescribed and actual intakes of natural protein | 4 (2.4) | 4 (−2.5–11.5) |
Prescribed Phe (mg/day) | 367 (289) | 300 (150–1350) |
Actual Phe intake (mg/day) | 563 (323) | 500 (200–1850) |
Difference between prescribed and actual intakes of Phe | 197 (118) | 200 (−125–575) |
Metabolic Control Parameters | |
---|---|
Median (range) of blood Phe levels (μmol/L) | 250 (20–750) |
Mean (SD) of blood Phe levels (μmol/L) | 271 (142) |
% of blood Phe levels within target (0–11 years: <360 μmol/L; ≥12 years: <600 μmol/L) | 91 (59–100) |
Median (range) of blood Tyr levels (μmol/L) | 50 (20–210) |
Total number of blood spots for all subjects | 348 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, A.; Daly, A.; Rocha, J.C.; Ashmore, C.; Evans, S.; Ilgaz, F.; Hickson, M.; MacDonald, A. Natural Protein Intake in Children with Phenylketonuria: Prescription vs. Actual Intakes. Nutrients 2023, 15, 4903. https://doi.org/10.3390/nu15234903
Pinto A, Daly A, Rocha JC, Ashmore C, Evans S, Ilgaz F, Hickson M, MacDonald A. Natural Protein Intake in Children with Phenylketonuria: Prescription vs. Actual Intakes. Nutrients. 2023; 15(23):4903. https://doi.org/10.3390/nu15234903
Chicago/Turabian StylePinto, Alex, Anne Daly, Júlio César Rocha, Catherine Ashmore, Sharon Evans, Fatma Ilgaz, Mary Hickson, and Anita MacDonald. 2023. "Natural Protein Intake in Children with Phenylketonuria: Prescription vs. Actual Intakes" Nutrients 15, no. 23: 4903. https://doi.org/10.3390/nu15234903
APA StylePinto, A., Daly, A., Rocha, J. C., Ashmore, C., Evans, S., Ilgaz, F., Hickson, M., & MacDonald, A. (2023). Natural Protein Intake in Children with Phenylketonuria: Prescription vs. Actual Intakes. Nutrients, 15(23), 4903. https://doi.org/10.3390/nu15234903