Pediatric Onset Multiple Sclerosis and Obesity: Defining the Silhouette of Disease Features in Overweight Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Inclusion Criteria
- (1)
- Two or more non-encephalopathic clinical CNS events with presumed inflammation, separated by more than 30 days, involving more than one area of the CNS;
- (2)
- One non encephalopathic episode typical of MS which was associated with MRI findings consistent with 2010 Revised McDonald criteria for dissemination in space (DIS) and in which a follow up MRI shows at least one new enhancing or non enhancing lesion consistent with dissemination in time (DIT);
- (3)
- One ADEM attack followed by a non encephalopathic clinical event, three or more months after symptom onset, that was associated with new MRI lesions that fulfill 2010 Revised McDonald for DIS criteria;
- (4)
- A first, single, acute event that does not meet ADEM criteria and whose MRI findings are consistent with the 2010 Revised McDonald criteria for DIS and DIT (this last criterion was valid only for children over 12 years of age.
2.2. Data Collection
2.3. Subgroups Classification
2.4. Statistical Analysis
3. Results
3.1. Age at Disease Onset
3.2. Clinical Features at Disease Onset
3.3. MRI Features at Disease Onset
3.4. Laboratorial Features at Disease Onset
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boiko, A.; Vorobeychik, G.; Paty, D.; Devonshire, V.; Sadovnick, D. University of British Columbia MSCN. Early onset multiple sclerosis: A longitudinal study. Neurology 2002, 59, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Bigi, S.; Banwell, B. Pediatric Multiple Sclerosis. J. Child. Neurol. 2012, 27, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Lipkin, E.; Banwell, B. An update on multiple sclerosis in children: Diagnosis, therapies, and prospects for the future. Expert. Rev. Clin. Immunol. 2017, 13, 975–989. [Google Scholar] [CrossRef]
- Tenembaum, S. Multiple sclerosis in childhood and adolescence. J. Neurol. Sci. 2011, 311, S53–S57. [Google Scholar] [CrossRef] [PubMed]
- Rasul, T.; Frederiksen, J.L. Link between overweight/obese in children and youngsters and occurrence of multiple sclerosis. J. Neurol. 2018, 265, 2755–2763. [Google Scholar] [CrossRef] [PubMed]
- Brenton, J.N.; Woolbright, E.; Briscoe-Abath, C.; Qureshi, A.; Conaway, M.; Goldman, M.D. Body mass index trajectories in pediatric multiple sclerosis. Dev. Med. Child. Neurol. 2019, 61, 1289–1294. [Google Scholar] [CrossRef]
- Mowry, E.M.; Krupp, L.B.; Milazzo, M.; Chabas, D.; Strober, J.B.; Belman, A.L.; McDonald, J.C.; Oksenberg, J.R.; Bacchetti, P.; Waubant, E. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann. Neurol. 2010, 67, 618–624. [Google Scholar] [CrossRef]
- Pohl, D.; Krone, B.; Rostasy, K.; Kahler, E.; Brunner, E.; Lehnert, M.; Wagner, H.-J.; Gärtner, J.; Hanefeld, F. High seroprevalence of Epstein–Barr virus in children with multiple sclerosis. Neurology 2006, 67, 2063–2065. [Google Scholar] [CrossRef]
- Stampanoni Bassi, M.; Iezzi, E.; Buttari, F.; Gilio, L.; Simonelli, I.; Carbone, F.; Micillo, T.; De Rosa, V.; Sica, F.; Furlan, R. Obesity worsens central inflammation and disability in multiple sclerosis. Mult. Scler. J. 2020, 26, 1237–1246. [Google Scholar] [CrossRef]
- Manuel Escobar, J.; Cortese, M.; Edan, G.; Freedman, M.S.; Hartung, H.-P.; Montalbán, X.; Sandbrink, R.; Radü, E.-W.; Barkhof, F.; Wicklein, E.-M.; et al. Body mass index as a predictor of MS activity and progression among participants in BENEFIT. Mult. Scler. J. 2022, 28, 1277–1285. [Google Scholar] [CrossRef]
- Milles, P.; De Filippo, G.; Maurey, H.; Tully, T.; Deiva, K. Obesity in Pediatric-Onset Multiple Sclerosis: A French Cohort Study. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1044. [Google Scholar] [CrossRef]
- Pfeifenbring, S.; Bunyan, R.F.; Metz, I.; Röver, C.; Huppke, P.; Gärtner, J.; Lucchinetti, C.F.; Brück, W. Extensive acute axonal damage in pediatric multiple sclerosis lesions: Axonal Damage in Pediatric MS. Ann. Neurol. 2015, 77, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Huppke, P.; Huppke, B.; Ellenberger, D.; Rostasy, K.; Hummel, H.; Stark, W.; Brück, W.; Gärtner, J. Therapy of highly active pediatric multiple sclerosis. Mult. Scler. J. 2019, 25, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.; Berenbaum, T.; Finlayson, M.; Motl, R.W.; Yeh, E.A. Youth with multiple sclerosis have low levels of fitness. Mult. Scler. J. 2021, 27, 1597–1605. [Google Scholar] [CrossRef]
- Di Filippo, M.; Anderson, V.M.; Altmann, D.R.; Swanton, J.K.; Plant, G.T.; Thompson, A.J.; Miller, D.H. Brain atrophy and lesion load measures over 1 year relate to clinical status after 6 years in patients with clinically isolated syndromes. J. Neurol. Neurosurg. Psychiatry 2010, 81, 204–208. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Brara, S.M.; Beaber, B.E.; Koebnick, C. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology 2013, 80, 548–552. [Google Scholar] [CrossRef]
- Munger, K.L.; Bentzen, J.; Laursen, B.; Stenager, E.; Koch-Henriksen, N.; Sørensen, T.I.; Baker, J.L. Childhood body mass index and multiple sclerosis risk: A long-term cohort study. Mult. Scler. J. 2013, 19, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, R.I.; Niculescu, A.G.; Vladacenco, O.A.; Roza, E.; Perjoc, R.S.; Teleanu, D.M. The State of the Art of Pediatric Multiple Sclerosis. Int. J. Mol. Sci. 2023, 24, 8251. [Google Scholar] [CrossRef] [PubMed]
- Van Hijfte, L.; Loret, G.; Bachmann, H.; Reynders, T.; Breuls, M.; Deschepper, E.; Kuhle, J.; Willekens, B.; Laureys, G. Lifestyle factors in multiple sclerosis disability progression and silent brain damage: A cross-sectional study. Mult. Scler. Relat. Disord. 2022, 65, 104016. [Google Scholar] [CrossRef]
- Huppke, B.; Ellenberger, D.; Hummel, H.; Stark, W.; Röbl, M.; Gärtner, J.; Huppke, P. Association of Obesity with Multiple Sclerosis Risk and Response to First-line Disease Modifying Drugs in Children. JAMA Neurol. 2019, 76, 1157. [Google Scholar] [CrossRef]
- Woolbright, E.; Koshiya, H.; Brenton, J.N. Body size perceptions & diet modification in youth with multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 58, 103402. [Google Scholar] [CrossRef] [PubMed]
- Krupp, L.B.; Tardieu, M.; Amato, M.P.; Banwell, B.; Chitnis, T.; Dale, R.C.; Ghezzi, A.; Hintzen, R.; Kornberg, A.; Pohl, D.; et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: Revisions to the 2007 definitions. Mult. Scler. J. 2013, 19, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Balijepalli, C.; Desai, K.; Gullapalli, L.; Druyts, E. Epidemiology of pediatric multiple sclerosis: A systematic literature review and meta-analysis. Mult. Scler. Relat. Disord. 2020, 44, 102260. [Google Scholar] [CrossRef] [PubMed]
- Boiko, A.N.; Gusev, E.I.; Sudomoina, M.A.; Alekseenkov, A.D.; Kulakova, O.G.; Bikova, O.V.; Maslova, O.I.; Guseva, M.R.; Boiko, S.Y.; Guseva, M.E.; et al. Association and linkage of juvenile MS with HLA-DR2(15) in Russians. Neurology 2002, 58, 658. [Google Scholar] [CrossRef]
- Balfour, H.H.; Schmeling, D.O.; Grimm-Geris, J.M. The promise of a prophylactic Epstein–Barr virus vaccine. Pediatr. Res. 2020, 87, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; Or-Geva, N.; Aftab, B.T.; Khanna, R.; Croze, E.; Steinman, L.; Han, M.H. Molecular signature of Epstein-Barr virus infection in MS brain lesions. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e466. [Google Scholar] [CrossRef] [PubMed]
- Gianfrancesco, M.A.; Acuna, B.; Shen, L.; Briggs, F.B.S.; Quach, H.; Bellesis, K.H.; Bernstein, A.; Hedstrom, A.K.; Kockum, I.; Alfredsson, L.; et al. Obesity during childhood and adolescence increases susceptibility to multiple sclerosis after accounting for established genetic and environmental risk factors. Obes. Res. Clin. Pract. 2014, 8, e435–e447. [Google Scholar] [CrossRef]
- Munger, K.L.; Chitnis, T.; Ascherio, A. Body size and risk of MS in two cohorts of US women. Neurology 2009, 73, 1543–1550. [Google Scholar] [CrossRef]
- Hedström, A.; Olsson, T.; Alfredsson, L. Body mass index during adolescence, rather than childhood, is critical in determining MS risk. Mult. Scler. J. 2016, 22, 878–883. [Google Scholar] [CrossRef]
- Wesnes, K.; Riise, T.; Casetta, I.; Drulovic, J.; Granieri, E.; Holmøy, T.; Kampman, M.T.; Landtblom, A.-M.; Lauer, K.; Lossius, A.; et al. Body size and the risk of multiple sclerosis in Norway and Italy: The EnvIMS study. Mult. Scler. J. 2015, 21, 388–395. [Google Scholar] [CrossRef]
- Harroud, A.; Mitchell, R.E.; Richardson, T.G.; Morris, J.A.; Forgetta, V.; Davey Smith, G.; Baranzini, S.E.; Richards, J.B. Childhood obesity and multiple sclerosis: A Mendelian randomization study. Mult. Scler. J. 2021, 27, 2150–2158. [Google Scholar] [CrossRef] [PubMed]
- Hedström, A.K.; Olsson, T.; Alfredsson, L. High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult. Scler. J. 2012, 18, 1334–1336. [Google Scholar] [CrossRef] [PubMed]
- Huppke, B.; Ellenberger, D.; Rosewich, H.; Friede, T.; Gärtner, J.; Huppke, P. Clinical presentation of pediatric multiple sclerosis before puberty. Eur. J. Neurol. 2014, 21, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Renoux, C.; Vukusic, S.; Mikaeloff, Y.; Edan, G.; Clanet, M.; Dubois, B.; Debouverie, M.; Brochet, B.; Lebrun-Frenay, C.; Pelletier, J. Natural history of multiple sclerosis with childhood onset. N. Engl. J. Med. 2007, 356, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Boesen, M.S.; Blinkenberg, M.; Thygesen, L.C.; Eriksson, F.; Magyari, M. School performance, psychiatric comorbidity, and healthcare utilization in pediatric multiple sclerosis: A nationwide population-based observational study. Mult. Scler. J. 2021, 27, 259–267. [Google Scholar] [CrossRef] [PubMed]
- McKay, K.A.; Hillert, J.; Manouchehrinia, A. Long-term disability progression of pediatric-onset multiple sclerosis. Neurology 2019, 92, e2764–e2773. [Google Scholar] [CrossRef] [PubMed]
- Baruch, N.F.; O’Donnell, E.H.; Glanz, B.I.; Benedict, R.H.; Musallam, A.J.; Healy, B.C.; Rintell, D.; Chitnis, T. Cognitive and patient-reported outcomes in adults with pediatric-onset multiple sclerosis. Mult. Scler. J. 2016, 22, 354–361. [Google Scholar] [CrossRef]
- Ruano, L.; Branco, M.; Portaccio, E.; Goretti, B.; Niccolai, C.; Patti, F.; Chisari, C.; Gallo, P.; Grossi, P.; Ghezzi, A.; et al. Patients with paediatric-onset multiple sclerosis are at higher risk of cognitive impairment in adulthood: An Italian collaborative study. Mult. Scler. J. 2018, 24, 1234–1242. [Google Scholar] [CrossRef]
- Ozakbas, S.; Kaya, D.; Idiman, E. Early Onset Multiple Sclerosis Has Worse Prognosis Than Adult Onset Multiple Sclerosis Based on Cognition and Magnetic Resonance Imaging. Autoimmune Dis. 2012, 2012, 563989. [Google Scholar] [CrossRef]
- Amato, M.P.; Krupp, L.B.; Charvet, L.E.; Penner, I.; Till, C. Pediatric multiple sclerosis: Cognition and mood. Neurology 2016, 87, S82–S87. [Google Scholar] [CrossRef]
- Amato, M.P.; Goretti, B.; Ghezzi, A.; Hakiki, B.; Niccolai, C.; Lori, S.; Moiola, L.; Falautano, M.; Viterbo, R.G.; Patti, F.; et al. Neuropsychological features in childhood and juvenile multiple sclerosis: Five-year follow-up. Neurology 2014, 83, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, K.; Weiss, S.; Rosenbauer, J.; Gärtner, J.; Von Kries, R. Multiple sclerosis in children and adolescents: Incidence and clinical picture–new insights from the nationwide G erman surveillance (2009–2011). Eur. J. Neurol. 2014, 21, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B.; Ghezzi, A.; Bar-Or, A.; Mikaeloff, Y.; Tardieu, M. Multiple sclerosis in children: Clinical diagnosis, therapeutic strategies, and future directions. Lancet Neurol. 2007, 6, 887–902. [Google Scholar] [CrossRef]
- Hammond, S.R.; McLeod, J.G.; Macaskill, P.; English, D.R. Multiple sclerosis in Australia: Prognostic factors. J. Clin. Neurosci. 2000, 7, 16–19. [Google Scholar] [CrossRef]
- Bergamaschi, R. Prognostic Factors in Multiple Sclerosis. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 79, pp. 423–447. ISBN 978-0-12-373736-6. [Google Scholar]
- Mikaeloff, Y.; Suissa, S.; Vallée, L.; Lubetzki, C.; Ponsot, G.; Confavreux, C.; Tardieu, M.; KIDMUS Study Group. First episode of acute CNS inflammatory demyelination in childhood: Prognostic factors for multiple sclerosis and disability. J. Pediatr. 2004, 144, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Kopp, T.I.; Blinkenberg, M.; Chalmer, T.A.; Petersen, T.; Ravnborg, M.H.; Soelberg Sørensen, P.; Magyari, M. Predictors of treatment outcome in patients with paediatric onset multiple sclerosis. Mult. Scler. J. 2020, 26, 964–975. [Google Scholar] [CrossRef] [PubMed]
- Briggs, F.B.S.; Yu, J.C.; Davis, M.F.; Jiangyang, J.; Fu, S.; Parrotta, E.; Gunzler, D.D.; Ontaneda, D. Multiple sclerosis risk factors contribute to onset heterogeneity. Mult. Scler. Relat. Disord. 2019, 28, 11–16. [Google Scholar] [CrossRef]
- Thaler, C.; Faizy, T.; Sedlacik, J.; Holst, B.; Stellmann, J.-P.; Young, K.L.; Heesen, C.; Fiehler, J.; Siemonsen, S. T1- Thresholds in Black Holes Increase Clinical-Radiological Correlation in Multiple Sclerosis Patients. PLoS ONE 2015, 10, e0144693. [Google Scholar] [CrossRef]
- Bitsch, A.; Kuhlmann, T.; Stadelmann, C.; Lassmann, H.; Lucchinetti, C.; Brück, W. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions: Longitudinal Study of Hypointense T1 Lesions. Ann. Neurol. 2001, 49, 793–796. [Google Scholar] [CrossRef]
- Verhey, L.H.; Branson, H.M.; Shroff, M.M.; Callen, D.J.; Sled, J.G.; Narayanan, S.; Sadovnick, A.D.; Bar-Or, A.; Arnold, D.L.; Marrie, R.A.; et al. MRI parameters for prediction of multiple sclerosis diagnosis in children with acute CNS demyelination: A prospective national cohort study. Lancet. Neurol. 2011, 10, 1065–1073. [Google Scholar] [CrossRef]
- Sailer, M.; Losseff, N.A.; Wang, L.; Gawne-Cain, M.L.; Thompson, A.J.; Miller, D.H. T1 lesion load and cerebral atrophy as a marker for clinical progression in patients with multiple sclerosis. A prospective 18 months follow-up study. Eur. J. Neurol. 2001, 8, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Paolillo, A.; Pozzilli, C.; Gasperini, C.; Giugni, E.; Mainero, C.; Giuliani, S.; Tomassini, V.; Millefiorini, E.; Bastianello, S. Brain atrophy in relapsing-remitting multiple sclerosis: Relationship with “black holes”, disease duration and clinical disability. J. Neurol. Sci. 2000, 174, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Radue, E.-W.; Barkhof, F.; Kappos, L.; Sprenger, T.; Haring, D.A.; de Vera, A.; von Rosenstiel, P.; Bright, J.R.; Francis, G.; Cohen, J.A. Correlation between brain volume loss and clinical and MRI outcomes in multiple sclerosis. Neurology 2015, 84, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Giorgio, A.; Stromillo, M.L.; Bartolozzi, M.L.; Rossi, F.; Battaglini, M.; De Leucio, A.; Guidi, L.; Maritato, P.; Portaccio, E.; Sormani, M.P.; et al. Relevance of hypointense brain MRI lesions for long-term worsening of clinical disability in relapsing multiple sclerosis. Mult. Scler. J. 2014, 20, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Tam, R.; Traboulsee, A.; Riddehough, A.; Sheikhzadeh, F.; Li, D.K.B. The impact of intensity variations in T1-hypointense lesions on clinical correlations in multiple sclerosis. Mult. Scler. J. 2011, 17, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, T.; Huynh, L.; Kelley, C.; Galebach, P.; Signorovitch, J.; DiBernardo, A.; Sasane, R. Relationship between brain volume loss and cognitive outcomes among patients with multiple sclerosis: A systematic literature review. Neurol. Sci. 2016, 37, 165–179. [Google Scholar] [CrossRef]
- Yeh, E.A.; Weinstock-Guttman, B.; Ramanathan, M.; Ramasamy, D.P.; Willis, L.; Cox, J.L.; Zivadinov, R. Magnetic resonance imaging characteristics of children and adults with paediatric-onset multiple sclerosis. Brain 2009, 132, 3392–3400. [Google Scholar] [CrossRef]
- Mowry, E.M.; Azevedo, C.J.; McCulloch, C.E.; Okuda, D.T.; Lincoln, R.R.; Waubant, E.; Hauser, S.L.; Pelletier, D. Body mass index, but not vitamin D status, is associated with brain volume change in MS. Neurology 2018, 91, e2256–e2264. [Google Scholar] [CrossRef]
- Lutfullin, I.; Eveslage, M.; Bittner, S.; Antony, G.; Flaskamp, M.; Luessi, F.; Salmen, A.; Gisevius, B.; Klotz, L.; Korsukewitz, C.; et al. Association of obesity with disease outcome in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2023, 94, 57–61. [Google Scholar] [CrossRef]
- Kappus, N.; Weinstock-Guttman, B.; Hagemeier, J.; Kennedy, C.; Melia, R.; Carl, E.; Ramasamy, D.P.; Cherneva, M.; Durfee, J.; Bergsland, N.; et al. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2015, 87, 181–187. [Google Scholar] [CrossRef]
- Castro, K.; Ntranos, A.; Amatruda, M.; Petracca, M.; Kosa, P.; Chen, E.Y.; Morstein, J.; Trauner, D.; Watson, C.T.; Kiebish, M.A.; et al. Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course. EBioMedicine 2019, 43, 392–410. [Google Scholar] [CrossRef] [PubMed]
- Alkolfat, F.; Said, S.; Mekky, J.; Eldeeb, H. What an adult multiple sclerosis registry can tell us about pediatric onset multiple sclerosis? Mult. Scler. Relat. Disord. 2023, 79, 104962. [Google Scholar] [CrossRef] [PubMed]
- Beiki, O.; Frumento, P.; Bottai, M.; Manouchehrinia, A.; Hillert, J. Changes in the Risk of Reaching Multiple Sclerosis Disability Milestones in Recent Decades: A Nationwide Population-Based Cohort Study in Sweden. JAMA Neurol. 2019, 76, 665. [Google Scholar] [CrossRef]
- Capra, R.; Cordioli, C.; Rasia, S.; Gallo, F.; Signori, A.; Sormani, M.P. Assessing long-term prognosis improvement as a consequence of treatment pattern changes in MS. Mult. Scler. J. 2017, 23, 1757–1761. [Google Scholar] [CrossRef] [PubMed]
- Narula, S.; Hopkins, S.E.; Banwell, B. Treatment of Pediatric Multiple Sclerosis. Curr. Treat. Options Neurol. 2015, 17, 10. [Google Scholar] [CrossRef]
- Papetti, L.; Figà Talamanca, L.; Spalice, A.; Vigevano, F.; Centonze, D.; Valeriani, M. Predictors of Evolution into Multiple Sclerosis after a First Acute Demyelinating Syndrome in Children and Adolescents. Front. Neurol. 2019, 9, 1156. [Google Scholar] [CrossRef]
- Wesnes, K.; Myhr, K.-M.; Riise, T.; Cortese, M.; Pugliatti, M.; Boström, I.; Landtblom, A.-M.; Wolfson, C.; Bjørnevik, K. Physical activity is associated with a decreased multiple sclerosis risk: The EnvIMS study. Mult. Scler. J. 2018, 24, 150–157. [Google Scholar] [CrossRef]
- Dorans, K.S.; Massa, J.; Chitnis, T.; Ascherio, A.; Munger, K.L. Physical activity and the incidence of multiple sclerosis. Neurology 2016, 87, 1770–1776. [Google Scholar] [CrossRef]
- Motl, R.W.; Pilutti, L.A. Is physical exercise a multiple sclerosis disease modifying treatment? Expert. Rev. Neurother. 2016, 16, 951–960. [Google Scholar] [CrossRef]
- Lopez-Garcia, E.; Schulze, M.B.; Meigs, J.B.; Manson, J.E.; Rifai, N.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Consumption of Trans Fatty Acids Is Related to Plasma Biomarkers of Inflammation and Endothelial Dysfunction. J. Nutr. 2005, 135, 562–566. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Pischon, T.; Hankinson, S.E.; Rifai, N.; Joshipura, K.; Willett, W.C.; Rimm, E.B. Dietary intake of trans fatty acids and systemic inflammation in women. Am. J. Clin. Nutr. 2004, 79, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, S.; Bogie, J.F.J.; Vanmierlo, T.; Lütjohann, D.; Stinissen, P.; Hellings, N.; Hendriks, J.J.A. High Fat Diet Exacerbates Neuroinflammation in an Animal Model of Multiple Sclerosis by Activation of the Renin Angiotensin System. J. Neuroimmune Pharmacol. 2014, 9, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Azary, S.; Schreiner, T.; Graves, J.; Waldman, A.; Belman, A.; Guttman, B.W.; Aaen, G.; Tillema, J.-M.; Mar, S.; Hart, J.; et al. Contribution of dietary intake to relapse rate in early paediatric multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2018, 89, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Aristotelous, P.; Stefanakis, M.; Pantzaris, M.; Pattichis, C.S.; Calder, P.C.; Patrikios, I.S.; Sakkas, G.K.; Giannaki, C.D. The Effects of Specific Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins on Gait and Functional Capacity Parameters in Patients with Relapsing-Remitting Multiple Sclerosis. Nutrients 2021, 13, 3661. [Google Scholar] [CrossRef] [PubMed]
- Atabilen, B.; Akdevelioğlu, Y. Effects of different dietary interventions in multiple sclerosis: A systematic review of evidence from 2018 to 2022. Nutr. Neurosci. 2022, 26, 1279–1291. [Google Scholar] [CrossRef]
- Brenton, J.N.; Lehner-Gulotta, D.; Woolbright, E.; Banwell, B.; Bergqvist, A.G.C.; Chen, S.; Coleman, R.; Conaway, M.; Goldman, M.D. Phase II study of ketogenic diets in relapsing multiple sclerosis: Safety, tolerability and potential clinical benefits. J. Neurol. Neurosurg. Psychiatry 2022, 93, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, G.; Butzkueven, H.; Dhib-Jalbut, S.; Hobart, J.; Kobelt, G.; Pepper, G.; Sormani, M.P.; Thalheim, C.; Traboulsee, A.; Vollmer, T. Brain health: Time matters in multiple sclerosis. Mult. Scler. Relat. Disord. 2016, 9, S5–S48. [Google Scholar] [CrossRef]
POMS Subjects | ||||
---|---|---|---|---|
Sex | No. | % | Age, y | |
Mean | SD | |||
Male | 21 | 38.2% | 13.1 | 3.2 |
Female | 34 | 61.8% | 13.7 | 3.06 |
Total | 55 | 100% | 13.5 | 3.1 |
Healthy Weight | Obese/Overweight | |||||||
---|---|---|---|---|---|---|---|---|
No. | % | Age, y | No. | % | Age, y | |||
Mean | DS | Mean | DS | |||||
Total | 33 | 60 | 14.6 | 4.1 | 22 | 40 | 12.7 | 3.8 |
Male | 14 | 42.4 | 12.4 | 3.5 | 7 | 31.8 | 14.5 | 1.8 |
Female | 19 | 57.6 | 13 | 3.8 | 15 | 68.2 | 14.6 | 1.2 |
Healthy Weight | Obese/Overweight | p-Value | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Age at onset, y | 14.6 | 4.1 | 12.7 | 3.8 | <0.05 |
Expanded disability status scale (EDSS) at onset | 1.9 | 0.5 | 2.2 | 0.6 | 0.07 |
No. | % | No. | % | ||
Monofocal onset | 22 | 66.6 | 4 | 18.1 | <0.05 |
Polifocal onset | 7 | 21.2 | 16 | 72.7 | <0.05 |
Encephalopathy at onset | 4 | 12.1 | 2 | 9.1 | 0.08 |
Pyramidal functions | 8 | 25.4 | 11 | 50 | <0.05 |
Superficial sensation (light, touch and pain) | 9 | 27.3 | 11 | 50 | 0.07 |
Proprioceptive sensation | 9 | 27.3 | 6 | 27.3 | 0.08 |
Cerebellar functions | 9 | 27.3 | 3 | 13.6 | 0.19 |
Brainstem functions | 16 | 48.5 | 9 | 40.9 | 0.39 |
Visual deficit | 10 | 30.3 | 9 | 40.8 | 0.3 |
Bowel and bladder functions | 2 | 6.1 | 2 | 9.1 | 0.52 |
Oligoclonal band (intrathecal IgG synthesis) | 26 | 83.9 | 19 | 95 | 0.23 |
Pleocytosis (>5 cell/mmc) | 13 | 50 | 14 | 70 | 0.14 |
Ig G anti-Epstein–Bar virus | 30 | 91 | 22 | 100 | 0.2 |
Healthy Weight | Obese/Overweight | p-Value | |||
---|---|---|---|---|---|
No. | % | No. | % | ||
Black holes | 5 | 15.5 | 12 | 54.5 | <0.05 |
Periventricular lesion | 29 | 87.9 | 18 | 81.8 | 0.4 |
Juxtacortical/cortical | 25 | 75.8 | 19 | 86.4 | 0.27 |
Infratentorial | 23 | 69.7 | 13 | 59.1 | 0.3 |
Optic nerve | 13 | 39.4 | 9 | 40.9 | 0.5 |
Spinal cord | 20 | 60.6 | 13 | 59.1 | 0.09 |
Gadolinium enhancing lesions | 25 | 75.8 | 19 | 86.4 | 0.27 |
Tumefactive lesions | 8 | 24.2 | 6 | 27.3 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papetti, L.; Panella, E.; Monte, G.; Ferilli, M.A.N.; Tarantino, S.; Checchi, M.P.; Valeriani, M. Pediatric Onset Multiple Sclerosis and Obesity: Defining the Silhouette of Disease Features in Overweight Patients. Nutrients 2023, 15, 4880. https://doi.org/10.3390/nu15234880
Papetti L, Panella E, Monte G, Ferilli MAN, Tarantino S, Checchi MP, Valeriani M. Pediatric Onset Multiple Sclerosis and Obesity: Defining the Silhouette of Disease Features in Overweight Patients. Nutrients. 2023; 15(23):4880. https://doi.org/10.3390/nu15234880
Chicago/Turabian StylePapetti, Laura, Elena Panella, Gabriele Monte, Michela Ada Noris Ferilli, Samuela Tarantino, Martina Proietti Checchi, and Massimiliano Valeriani. 2023. "Pediatric Onset Multiple Sclerosis and Obesity: Defining the Silhouette of Disease Features in Overweight Patients" Nutrients 15, no. 23: 4880. https://doi.org/10.3390/nu15234880
APA StylePapetti, L., Panella, E., Monte, G., Ferilli, M. A. N., Tarantino, S., Checchi, M. P., & Valeriani, M. (2023). Pediatric Onset Multiple Sclerosis and Obesity: Defining the Silhouette of Disease Features in Overweight Patients. Nutrients, 15(23), 4880. https://doi.org/10.3390/nu15234880