Oral Zinc-Rich Oyster Supplementation Corrects Anemia in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Acquisition and Housing
2.2. Zinc Supplementation and Dietary Preparation
2.3. Effects of Different Zinc Supplementation Methods on RBC Levels of PHZ-Induced Anemic Rats
2.4. Effects of Oral ZnSO4 and Oyster Supplementation on RBC Levels in 5/6-Nephrectomized Anemic Rats
2.5. Comparison of the Effect of ZnSO4, Oyster, or Clam Supplementation on RBC Levels of 5/6-Nephrectomized Rats
2.6. Hematological Analysis
2.7. Determination of Zinc Concentration
2.8. Statistical Analysis
3. Results
3.1. Effects of Various Zinc Supplementation Methods on RBC Levels in PHZ-Induced Anemic Rat
3.2. Effects of Oral ZnSO4 and Oyster Supplementation on RBC Levels in 5/6-Nephrectomized Anemic Rats
3.3. Comparison of Oyster and Hard Clam Supplementation Effects on RBC Levels in 5/6-Nephrectomized Rats
4. Discussion
4.1. Reversing Anemia in Rats through Oral Oyster Supplementation
4.2. Major Factor in Oysters Responsible for Correcting Anemia in Rats
4.3. The Effectiveness of Zinc Supplementation Is Influenced by Several Key Factors, including the Method of Administration, the Dosage of Zinc, and the Specific Form of Zinc Utilized
4.4. Oysters and Their Potential Role in Managing Anemia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kassebaum, N.J. The Global Burden of Anemia. Hematol. Oncol. Clin. N. Am. 2016, 30, 247–308. [Google Scholar] [CrossRef] [PubMed]
- Northrop-Clewes, C.A.; Thurnham, D.I. Biomarkers for the differentiation of anemia and their clinical usefulness. J. Blood Med. 2013, 4, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2016, 387, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Neto, L.; Bacci, M.; Sverzutt, L.; Costa, M.; Alves, B.; Fonseca, F. The role of zinc in chronic kidney disease patients on hemodialysis: A systematic review. Health 2016, 8, 344. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Jasrasaria, R.; Naghavi, M.; Wulf, S.K.; Johns, N.; Lozano, R.; Regan, M.; Weatherall, D.; Chou, D.P.; Eisele, T.P. A systematic analysis of global anemia burden from 1990 to 2010. Blood J. Am. Soc. Hematol. 2014, 123, 615–624. [Google Scholar] [CrossRef]
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low-and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef]
- Jeng, S.S.; Chen, Y.H. Association of Zinc with Anemia. Nutrients 2022, 14, 4918. [Google Scholar] [CrossRef]
- Bunn, H.F. Erythropoietin. Cold Spring Harb. Perspect. Med. 2013, 3, a011619. [Google Scholar] [CrossRef]
- Jelkmann, W. Physiology and pharmacology of erythropoietin. Transfus. Med. Hemother. 2013, 40, 302–309. [Google Scholar] [CrossRef]
- Toto, R.D. Anemia of chronic disease: Past, present, and future. Kidney Int. Suppl. 2003, 64, S20–S23. [Google Scholar] [CrossRef]
- Vallee, B.L. Biochemistry, physiology and pathology of zinc. Physiol. Rev. 1959, 39, 443–490. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc: An overview. Nutrition 1995, 11 (Suppl. S1), 93–99. [Google Scholar] [PubMed]
- Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Solomons, N.W. Update on zinc biology. Ann. Nutr. Metab. 2013, 62 (Suppl. S1), 8–17. [Google Scholar] [CrossRef]
- Kaur, K.; Gupta, R.; Saraf, S.A.; Saraf, S.K. Zinc: The metal of life. Compr. Rev. Food Sci. Food Saf. 2014, 13, 358–376. [Google Scholar] [CrossRef] [PubMed]
- Kolsteren, P.; Rahman, S.; Hilberbrand, K.; Dintz, A. Treatment for iron deficiency anaemia with a combined supple mentation of iron, vitamin A and zinc in women of Dinajpur, Bangladesh. Eur. J. Clin. Nutr. 1999, 53, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, K.; Kolsteren, P.W.; Prada, A.M.; Chian, A.M.; Velarde, R.E.; Pecho, I.L.; Hoeree, T.F. Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia. Am. J. Clin. Nutr. 2004, 80, 1276–1282. [Google Scholar] [CrossRef]
- Mahmoudian, A.; Khademlou, M. The effect of simultaneous administration of zinc sulfate and ferrous sulfate in the treatment of anemic pregnant women. J. Res. Med. Sci. 2005, 10, 205–209. [Google Scholar]
- Walker, C.F.; Kordas, K.; Stoltzfus, R.J.; Black, R.E. Interactive effects of iron and zinc on biochemical and functional outcomes in supplementation trials–. Am. J. Clin. Nutr. 2005, 82, 5–12. [Google Scholar] [CrossRef]
- Berger, J.; Ninh, N.; Khan, N.; Nhien, N.; Lien, D.; Trung, N.; Khoi, H. Efficacy of combined iron and zinc supplementation on micronutrient status and growth in Vietnamese infants. Eur. J. Clin. Nutr. 2006, 60, 443–454. [Google Scholar] [CrossRef]
- Yalda, M.A.; Ibrahiem, A.A. The effect of combined supplementation of iron and zinc versus iron alone on anemic pregnant patients in Dohuk. Jordan Med. J. 2010, 44, 9–16. [Google Scholar]
- Chen, L.; Liu, Y.F.; Gong, M.; Jiang, W.; Fan, Z.; Qu, P.; Chen, J.; Liu, Y.X.; Li, T.Y. Effects of vitamin A, vitamin A plus zinc, and multiple micronutrients on anemia in preschool children in Chongqing, China. Asia Pac. J. Clin. Nutr. 2012, 21, 3–11. [Google Scholar] [PubMed]
- Mujica-Coopman, M.F.; Borja, A.; Pizarro, F.; Olivares, M. Effect of daily supplementation with iron and zinc on iron status of childbearing age women. Biol. Trace Elem. Res. 2015, 165, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.-L.; Chen, Y.-H.; Jeng, S.-S. Effect of Zinc Supplementation on Renal Anemia in 5/6-Nephrectomized Rats and a Comparison with Treatment with Recombinant Human Erythropoietin. Int. J. Mol. Sci. 2019, 20, 4985. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Feng, H.-L.; Jeng, S.-S. Zinc supplementation stimulates red blood cell formation in rats. Int. J. Mol. Sci. 2018, 19, 2824. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Jeng, S.-S.; Hsu, Y.-C.; Liao, Y.-M.; Wang, Y.-X.; Cao, X.; Huang, L.-J. In anemia zinc is recruited from bone and plasma to produce new red blood cells. J. Inorg. Biochem. 2020, 210, 111172. [Google Scholar] [CrossRef]
- Flanagan, J.P.; Lessler, M.A. Controlled Phenylhydrazine-Induced Reticulocytosis in the Rat; Ohio State University: Columbus, OH, USA, 1970. [Google Scholar]
- Biswas, S.; Bhattacharyya, J.; Dutta, A.G. Oxidant induced injury of erythrocyte—Role of green tea leaf and ascorbic acid. Mol. Cell. Biochem. 2005, 276, 205–210. [Google Scholar] [CrossRef]
- Berger, J. Phenylhydrazine haematotoxicity. J. Appl. Biomed. 2007, 5, 125–130. [Google Scholar] [CrossRef]
- Anagnostou, A.; Vercellotti, G.; Barone, J.; Fried, W. Factors which affect erythropoiesis in partially nephrectomized and sham-operated rats. Blood 1976, 48, 425–433. [Google Scholar] [CrossRef]
- Mason, C.; Thomas, T. A model for erythropoiesis in experimental chronic renal failure. Br. J. Haematol. 1984, 58, 729–740. [Google Scholar] [CrossRef]
- Yang, H.-C.; Zuo, Y.; Fogo, A.B. Models of chronic kidney disease. Drug Discov. Today Dis. Models 2010, 7, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Comin-Colet, J.; de Francisco, A.; Dignass, A.; Doehner, W.; Lam, C.S. Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am. J. Hematol. 2017, 92, 1068–1078. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Musallam, K.M.; Taher, A.T. Iron deficiency anaemia revisited. J. Intern. Med. 2020, 287, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Solomons, N.W.; Jacob, R.A.; Pineda, O.; Viteri, F. Studies on the bioavailability of zinc in man. II. Absorption of zinc from organic and inorganic sources. J. Lab. Clin. Med. 1979, 94, 335–343. [Google Scholar]
- Solomons, N.W.; Ruz, M. Zinc and iron interaction: Concepts and perspectives in the developing world. Nutr. Res. 1997, 17, 177–185. [Google Scholar] [CrossRef]
- Osis, D.; Kramer, L.; Wiatrowski, E.; Spencer, H. Dietary zinc intake in man. Am. J. Clin. Nutr. 1972, 25, 582–588. [Google Scholar] [CrossRef]
- Murphy, E.W.; Willis, B.; Watt, B.K. Provisional tables on the zinc content of foods. J. Am. Diet. Assoc. 1975, 66, 345–355. [Google Scholar] [CrossRef]
- Hsu, S.-Y. The occurrence and seasonal variations of Na, K, Ca, Mg and heavy metals in Taiwan’s oyster and clam. Bull. Inst. Zool. Acad. Sin. 1979, 18, 11–20. [Google Scholar]
- Sun, L.-T.; Jeng, S.-S. Comparative zinc concentrations in tissues of common carp and other aquatic organisms. Zool. Stud. 1998, 37, 184–190. [Google Scholar]
- O’dell, B.; Burpo, C.; Savage, J. Evaluation of zinc availability in foodstuffs of plant and animal origin. J. Nutr. 1972, 102, 653–660. [Google Scholar] [CrossRef]
- Fuwa, K.; Pulido, P.; Mckay, R.; Vallee, B.L. Determination of zinc in biological materials by atomic absorption spectrometry. Anal. Chem. 1964, 36, 2407–2411. [Google Scholar] [CrossRef]
- Jeng, S.; Hsu, S.-Y.; Wang, G.S. Chemical Compositions of Taiwan’s Oyster and Clams. Bull. Inst. Zool. Acad. Sin. 1979, 18, 1–10. [Google Scholar]
- Ulagesan, S.; Krishnan, S.; Nam, T.-J.; Choi, Y.-H. A review of bioactive compounds in oyster shell and tissues. Front. Bioeng. Biotechnol. 2022, 10, 913839. [Google Scholar] [CrossRef] [PubMed]
- Coulson, E.J.; Levine, H.; Remington, R.E. Oysters and anemia. Am. J. Public Health Nations Health 1932, 22, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
Group | Zn Supplemented | Source |
---|---|---|
(a) Injection of saline | 0 | Market diet only |
(b) Injection of ZnSO4 | 0.95 mg Zn/rat | Market diet + 1 injection of 4.18 mg ZnSO4·7H2O/rat |
(c) Fed with ZnSO4 | 2.70 mg Zn/day/rat | Market diet + 11.88 mg ZnSO4·7H2O/day/rat |
(d) Fed with oyster | 2.70 mg Zn/day/rat | Market diet + 30 g oyster/day/rat |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-H.; Feng, H.-L.; Lu, Y.-C.; Jeng, S.-S. Oral Zinc-Rich Oyster Supplementation Corrects Anemia in Rats. Nutrients 2023, 15, 4675. https://doi.org/10.3390/nu15214675
Chen Y-H, Feng H-L, Lu Y-C, Jeng S-S. Oral Zinc-Rich Oyster Supplementation Corrects Anemia in Rats. Nutrients. 2023; 15(21):4675. https://doi.org/10.3390/nu15214675
Chicago/Turabian StyleChen, Yen-Hua, Hui-Lin Feng, Yu-Cheng Lu, and Sen-Shyong Jeng. 2023. "Oral Zinc-Rich Oyster Supplementation Corrects Anemia in Rats" Nutrients 15, no. 21: 4675. https://doi.org/10.3390/nu15214675
APA StyleChen, Y. -H., Feng, H. -L., Lu, Y. -C., & Jeng, S. -S. (2023). Oral Zinc-Rich Oyster Supplementation Corrects Anemia in Rats. Nutrients, 15(21), 4675. https://doi.org/10.3390/nu15214675