Artificial Intelligence Technology for Food Nutrition
Author Contributions
Conflicts of Interest
References
- James, W.P.T.; Ferro-Luzzi, A.; Isaksson, B.; Szostak, W. Healthy Nutrition: Preventing Nutrition-Related Diseases in Europe; World Health Organization. Regional Office for Europe: Copenhagen, Denmark, 1988. [Google Scholar]
- Fanzo, J.; Hawkes, C.; Udomkesmalee, E.; Afshin, A.; Allemandi, L.; Assery, O.; Baker, P.; Battersby, J.; Bhutta, Z.; Chen, K. 2018 Global Nutrition Report: Shining a Light to Spur Action on Nutrition; Development Initiatives: Bristol, UK, 2018. [Google Scholar]
- Cao, E.; Watt, M.J.; Nowell, C.J.; Quach, T.; Simpson, J.S.; De Melo Ferreira, V.; Agarwal, S.; Chu, H.; Srivastava, A.; Anderson, D. Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nat. Metab. 2021, 3, 1175–1188. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-Q.; Yu, L.-l.; Chen, W.; Tian, F.-W.; Zhai, Q.-X. Dietary patterns affect Parkinson’s disease via the microbiota-gut-brain axis. Trends Food Sci. Technol. 2021, 116, 90–101. [Google Scholar] [CrossRef]
- Siontis, K.C.; Noseworthy, P.A.; Attia, Z.I.; Friedman, P.A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 2021, 18, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Goodell, J.W.; Kumar, S.; Lim, W.M.; Pattnaik, D. Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. J. Behav. Exp. Financ. 2021, 32, 100577. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, J.; Lu, W.; Wang, H.; Pan, M.; Tian, P.; Zhao, J.; Zhang, H.; Chen, W. Uncovering Predictive Factors and Interventions for Restoring Microecological Diversity after Antibiotic Disturbance. Nutrients 2023, 15, 3925. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xie, H.; Yang, Z.; Chen, J.; Yin, J.; Tian, P.; Wang, H.; Zhao, J.; Zhang, H.; Lu, W. Statistical modeling of gut microbiota for personalized health status monitoring. Microbiome 2023, 11, 184. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Bisht, B.; Kumar, V.; Singh, N.; Jameel Pasha, S.B.; Singh, N.; Kumar, S. Artificial intelligence assisted food science and nutrition perspective for smart nutrition research and healthcare. Syst. Microbiol. Biomanufacturing 2023, 3, 1–16. [Google Scholar] [CrossRef]
- Miyazawa, T.; Hiratsuka, Y.; Toda, M.; Hatakeyama, N.; Ozawa, H.; Abe, C.; Cheng, T.-Y.; Matsushima, Y.; Miyawaki, Y.; Ashida, K. Artificial intelligence in food science and nutrition: A narrative review. Nutr. Rev. 2022, 80, 2288–2300. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Song, W.; Yuan, W.; Zhou, Q.; Sadiq, F.A.; Zhao, J.; Wu, W.; Lu, W. Modulating the Human Gut Microbiota through Hypocaloric Balanced Diets: An Effective Approach for Managing Obesity. Nutrients 2023, 15, 3101. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Min, W.; Li, T.; Dong, X.; Li, H.; Jiang, S. A review on vision-based analysis for automatic dietary assessment. Trends Food Sci. Technol. 2022, 122, 223–237. [Google Scholar] [CrossRef]
- Jaswanthi, R.; Amruthatulasi, E.; Bhavyasree, C.; Satapathy, A. A Hybrid Network Based on GAN and CNN for Food Segmentation and Calorie Estimation. In Proceedings of the 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), Erode, India, 7–9 April 2022; pp. 436–441. [Google Scholar]
- Ruede, R.; Heusser, V.; Frank, L.; Roitberg, A.; Haurilet, M.; Stiefelhagen, R. Multi-task learning for calorie prediction on a novel large-scale recipe dataset enriched with nutritional information. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 4001–4008. [Google Scholar]
- Lu, Y.; Stathopoulou, T.; Mougiakakou, S. Partially supervised multi-task network for single-view dietary assessment. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 8156–8163. [Google Scholar]
- Sadhu, T.; Banerjee, I.; Lahiri, S.K.; Chakrabarty, J. Enhancement of nutritional value of fried fish using an artificial intelligence approach. Environ. Sci. Pollut. Res. 2022, 29, 20048–20063. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.I.; Broadhurst, D.; Goodacre, R. Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning. Anal. Chim. Acta 2004, 514, 193–201. [Google Scholar] [CrossRef]
- Hu, S.; Li, H.; Chen, C.; Chen, C.; Zhao, D.; Dong, B.; Lv, X.; Zhang, K.; Xie, Y. Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey. Sci. Rep. 2022, 12, 3456. [Google Scholar] [CrossRef] [PubMed]
- Min, W.; Jiang, S.; Jain, R. Food recommendation: Framework, existing solutions, and challenges. IEEE Trans. Multimed. 2019, 22, 2659–2671. [Google Scholar] [CrossRef]
- Yang, L.; Hsieh, C.-K.; Yang, H.; Pollak, J.P.; Dell, N.; Belongie, S.; Cole, C.; Estrin, D. Yum-me: A personalized nutrient-based meal recommender system. ACM Trans. Inf. Syst. (TOIS) 2017, 36, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Duan, L.-Y.; Jiang, H.; Jing, P.; Song, X.; Nie, L. Market2Dish: Health-aware food recommendation. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2021, 17, 1–19. [Google Scholar] [CrossRef]
- Ji, H.; Pu, D.; Yan, W.; Zhang, Q.; Zuo, M.; Yuyu, Z. Recent advances and application of machine learning in food flavor prediction and regulation. Trends Food Sci. Technol. 2023, 138, 738–751. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Wang, G. Artificial Intelligence Technology for Food Nutrition. Nutrients 2023, 15, 4562. https://doi.org/10.3390/nu15214562
Zhu J, Wang G. Artificial Intelligence Technology for Food Nutrition. Nutrients. 2023; 15(21):4562. https://doi.org/10.3390/nu15214562
Chicago/Turabian StyleZhu, Jinlin, and Gang Wang. 2023. "Artificial Intelligence Technology for Food Nutrition" Nutrients 15, no. 21: 4562. https://doi.org/10.3390/nu15214562
APA StyleZhu, J., & Wang, G. (2023). Artificial Intelligence Technology for Food Nutrition. Nutrients, 15(21), 4562. https://doi.org/10.3390/nu15214562