Flaxseed Oil (Linum usitatissimum) Prevents Cognitive and Motor Damage in Rats with Hyperammonemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Flaxseed Oil
2.3. Animals
2.4. Induction of Hyperammonemia
2.5. Experimental Groups and Treatments
2.6. Behavioral Test Battery
2.6.1. Open Field Test
2.6.2. Spontaneous Object Recognition Test
2.6.3. Barnes Maze
2.6.4. Rotarod
2.7. Histology
2.8. Statistical Analysis
3. Results
3.1. Locomotor Activity and Motor Coordination
3.2. Short- and Long-Term Memory
3.3. Visuospatial Memory
3.4. Neuronal Morphology of the Prefrontal Cortex
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, V. Ammonia metabolism and hyperammonemic disorders. In Advances in Clinical Chemistry; Academic Press Inc.: Cambridge, MA, USA, 2014; Volume 67, pp. 73–150. [Google Scholar] [CrossRef]
- Braissant, O.; McLin, V.A.; Cudalbu, C. Ammonia toxicity to the brain. J. Inherit. Metab. Dis. 2013, 36, 595–612. [Google Scholar] [CrossRef] [PubMed]
- Ott, P.; Vilstrup, H. Cerebral effects of ammonia in liver disease: Current hypotheses. Metab. Brain Dis. 2014, 29, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez Vázquez, I.; Domínguez Maza, A. Avances en los mecanismos fisiopatogénicos de la encefalopatía hepática. Rev. Hosp. General. Dr. Man. Gea González 2000, 3, 60–70. [Google Scholar]
- Ferenci, P. Hepatic encephalopathy. Gastroenterol. Rep. 2017, 5, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Méndez, M.; Méndez-López, M.; López, L.; Aller, M.A.; Arias, J.; Arias, J.L. Portosystemic hepatic encephalopathy model shows reversal learning impairment and dysfunction of neural activity in the prefrontal cortex and regions involved in motivated behavior. J. Clin. Neurosci. 2011, 18, 690–694. [Google Scholar] [CrossRef]
- Renuka, M.; Vijayakumar, N.; Ramakrishnan, A. Chrysin, a flavonoid attenuates histological changes of hyperammonemic rats: A dose dependent study. Biomed. Pharmacother. 2016, 82, 345–354. [Google Scholar] [CrossRef]
- Mendes, N.F.; Mariotti, F.F.; de Andrade, J.S.; de Barros Viana, M.; Céspedes, I.C.; Nagaoka, M.R.; Le Sueur-Maluf, L. Lactulose decreases neuronal activation and attenuates motor behavioral deficits in hyperammonemic rats. Metab. Brain Dis. 2017, 32, 2073–2083. [Google Scholar] [CrossRef]
- Mangini, C.; Montagnese, S. New Therapies of Liver Diseases: Hepatic Encephalopathy. J. Clin. Med. 2021, 10, 4050. [Google Scholar] [CrossRef]
- Zullo, A.; Hassan, C.; Ridola, L.; Lorenzetti, R.; Campo, S.M.; Riggio, O. Rifaximin therapy and hepatic encephalopathy: Pros and cons. World J. Gastrointest. Pharmacol. Ther. 2012, 3, 62–67. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, H.; Guo, Y.; Long, S.; Wang, Y.; Abbasi, A.M.; Guo, X.; Jarvis, D.I. Comparison of fatty acid composition, phytochemical profile and antioxidant activity in four flax (Linum usitatissimum L.) varieties. Oil Crop Sci. 2020, 5, 136–141. [Google Scholar] [CrossRef]
- Pan, H.; Hu, X.Z.; Jacobowitz, D.M.; Chen, C.; McDonough, J.; Van Shura, K.; Lyman, M.; Marini, A.M. Alpha-linolenic acid is a potent neuroprotective agent against soman-induced neuropathology. Neurotoxicology 2012, 33, 1219–1229. [Google Scholar] [CrossRef]
- Heurteaux, C.; Laigle, C.; Blondeau, N.; Jarretou, G.; Lazdunski, M. Alpha-linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience 2006, 137, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Ibrahim, A.; Mbodji, K.; Coëffier, M.; Ziegler, F.; Bounoure, F.; Chardigny, J.M.; Skiba, M.; Savoye, G.; Déchelotte, P.; et al. An α-linolenic acid-rich formula reduces oxidative stress and inflammation by regulating NF-κB in rats with TNBS-induced colitis. J. Nutr. 2010, 140, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Piermartiri, T.C.; Chen, J.; McDonough, J.; Oppel, C.; Driwech, W.; Winter, K.; McFarland, E.; Black, K.; Figueiredo, T.; et al. Repeated systemic administration of the nutraceutical alpha-linolenic acid exerts neuroprotective efficacy, an antidepressant effect and improves cognitive performance when given after soman exposure. Neurotoxicology 2015, 51, 38–50. [Google Scholar] [CrossRef]
- Veselinovic, M.; Vasiljevic, D.; Vucic, V.; Arsic, A.; Petrovic, S.; Tomic-Lucic, A.; Savic, M.; Zivanovic, S.; Stojic, V.; Jakovljevic, V. Clinical Benefits of n-3 PUFA and ɤ-Linolenic Acid in Patients with Rheumatoid Arthritis. Nutrients 2017, 9, 325. [Google Scholar] [CrossRef] [PubMed]
- Joris, P.J.; Draijer, R.; Fuchs, D.; Mensink, R.P. Effect of α-linolenic acid on vascular function and metabolic risk markers during the fasting and postprandial phase: A randomized placebo-controlled trial in untreated (pre-)hypertensive individuals. Clin. Nutr. 2020, 39, 2413–2419. [Google Scholar] [CrossRef]
- Cunnane, S.C.; Ganguli, S.; Menard, C.; Liede, A.C.; Hamadeh, M.J.; Chen, Z.Y.; Wolever, T.M.; Jenkins, D.J. High alpha-linolenic acid flaxseed (Linum usitatissimum): Some nutritional properties in humans. Br. J. Nutr. 1993, 69, 443–453. [Google Scholar] [CrossRef]
- Hartman, I.S. alpha-Linolenic acid: A preventive in secondary coronary events? Nutr. Rev. 1995, 53, 194–197. [Google Scholar] [CrossRef]
- de Lorgeril, M.; Renaud, S.; Salen, P.; Monjaud, I.; Mamelle, N.; Martin, J.L.; Guidollet, J.; Touboul, P.; Delaye, J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994, 343, 1454–1459. [Google Scholar] [CrossRef]
- Jung, J.Y.; Kwon, H.H.; Hong, J.S.; Yoon, J.Y.; Park, M.S.; Jang, M.Y.; Suh, D.H. Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: A randomised, double-blind, controlled trial. Acta Derm. Venereol. 2014, 94, 521–525. [Google Scholar] [CrossRef]
- Nowak, W.; Jeziorek, M. The Role of Flaxseed in Improving Human Health. Healthcare 2023, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Lane, K.; Derbyshire, E.; Li, W.; Brennan, C. Bioavailability and potential uses of vegetarian sources of omega-3 fatty acids: A review of the literature. Crit. Rev. Food Sci. Nutr. 2014, 54, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.I. Animal experimentation: Implementation and application of the 3Rs. Emerg. Top. Life Sci. 2019, 3, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Azorín, I.; Miñana, M.-D.; Felipo, V.; Grisolía, S. A simple animal model of hyperammonemia. Hepatology 1989, 10, 311–314. [Google Scholar] [CrossRef]
- Rodrigo, R.; Cauli, O.; Gomez-Pinedo, U.; Agusti, A.; Hernandez-Rabaza, V.; Garcia-Verdugo, J.M.; Felipo, V. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 2010, 139, 675–684. [Google Scholar] [CrossRef]
- Cauli, O.; Rodrigo, R.; Piedrafita, B.; Boix, J.; Felipo, V. Inflammation and hepatic encephalopathy: Ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 2007, 46, 514–519. [Google Scholar] [CrossRef]
- Mantzioris, E.; Cleland, L.G.; Gibson, R.A.; Neumann, M.A.; Demasi, M.; James, M.J. Biochemical effects of a diet containing foods enriched with n-3 fatty acids. Am. J. Clin. Nutr. 2000, 72, 42–48. [Google Scholar] [CrossRef]
- Jover, R.; Rodrigo, R.; Felipo, V.; Insausti, R.; Sáez-Valero, J.; García-Ayllón, M.S.; Suárez, I.; Candela, A.; Compañ, A.; Esteban, A.; et al. Brain edema and inflammatory activation in bile duct ligated rats with diet-induced hyperammonemia: A model of hepatic encephalopathy in cirrhosis. Hepatology 2006, 43, 1257–1266. [Google Scholar] [CrossRef]
- DeMorrow, S.; Cudalbu, C.; Davies, N.; Jayakumar, A.R.; Rose, C.F. 2021 ISHEN guidelines on animal models of hepatic encephalopathy. Liver Int. 2021, 41, 1474–1488. [Google Scholar] [CrossRef]
- Khan, A.; Shal, B.; Naveed, M.; Shah, F.A.; Atiq, A.; Khan, N.U.; Kim, Y.S.; Khan, S. Matrine ameliorates anxiety and depression-like behaviour by targeting hyperammonemia-induced neuroinflammation and oxidative stress in CCl4 model of liver injury. Neurotoxicology 2019, 72, 38–50. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, R.F. Hepatic Encephalopathy in Cirrhosis: Pathology and Pathophysiology. Drugs 2019, 79, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Fang, M.; Xiong, Z.; Zhou, K.; Zeng, P. Mechanistic insights into the anti-depressant effect of curcumin based on network pharmacology and experimental validation. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 25, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Amini, F.; Amini-Khoei, H.; Haratizadeh, S.; Setayesh, M.; Basiri, M.; Raeiszadeh, M.; Nozari, M. Hydroalcoholic extract of Passiflora incarnata improves the autistic-like behavior and neuronal damage in a valproic acid-induced rat model of autism. J. Tradit. Complement. Med. 2023, 13, 315–324. [Google Scholar] [CrossRef]
- He, J.; Li, D.; Wei, J.; Wang, S.; Chu, S.; Zhang, Z.; He, F.; Wei, D.; Li, Y.; Xie, J.; et al. Mahonia Alkaloids (MA) Ameliorate Depression Induced Gap Junction Dysfunction by miR-205/Cx43 Axis. Neurochem. Res. 2022, 47, 3761–3776. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Q.; Chen, X.; Jing, L.; Wang, W.; Yu, Z.; Zhang, G.; Xie, M. Linolenic acid provides multi-cellular protective effects after photothrombotic cerebral ischemia in rats. Neurochem. Res. 2014, 39, 1797–1808. [Google Scholar] [CrossRef]
- Alam, S.-I.; Kim, M.-W.; Shah, F.A.; Saeed, K.; Ullah, R.; Kim, M.-O. Alpha-Linolenic Acid Impedes Cadmium-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration in Mouse Brain. Cells 2021, 10, 2274. [Google Scholar] [CrossRef]
- Lee, A.Y.; Lee, M.H.; Lee, S.; Cho, E.J. Neuroprotective Effect of Alpha-Linolenic Acid against Aβ-Mediated Inflammatory Responses in C6 Glial Cell. J. Agric. Food Chem. 2018, 66, 4853–4861. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Hartnett, K.B.; Ferguson, B.J.; Hecht, P.M.; Schuster, L.E.; Shenker, J.I.; Mehr, D.R.; Fritsche, K.L.; Belury, M.A.; Scharre, D.W.; Horwitz, A.J.; et al. Potential Neuroprotective Effects of Dietary Omega-3 Fatty Acids on Stress in Alzheimer’s Disease. Biomolecules 2023, 13, 1096. [Google Scholar] [CrossRef]
- Cutuli, D.; Landolfo, E.; Decandia, D.; Nobili, A.; Viscomi, M.T.; La Barbera, L.; Sacchetti, S.; De Bartolo, P.; Curci, A.; D’Amelio, M.; et al. Neuroprotective role of dietary supplementation with omega-3 fatty acids in the presence of basal forebrain cholinergic neurons degeneration in aged mice. Int. J. Mol. Sci. 2020, 21, 1741. [Google Scholar] [CrossRef] [PubMed]
- Kerdiles, O.; Layé, S.; Calon, F. Omega-3 polyunsaturated fatty acids and brain health: Preclinical evidence for the prevention of neurodegenerative diseases. Trends Food Sci. Technol. 2017, 69, 203–213. [Google Scholar] [CrossRef]
- Nobre, M.E.; Correia, A.O.; Mendonça, F.N.; Uchoa, L.R.; Vasconcelos, J.T.; de Araújo, C.N.; Brito, G.A.; Siqueira, R.M.; Cerqueira, G.D.; Neves, K.R.; et al. Omega-3 Fatty Acids: Possible Neuroprotective Mechanisms in the Model of Global Ischemia in Rats. J. Nutr. Metab. 2016, 2016, 6462120. [Google Scholar] [CrossRef]
- Gibson, R.A.; Muhlhausler, B.; Makrides, M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern. Child. Nutr. 2011, 7 (Suppl. S2), 17–26. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Calder, P.C. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef] [PubMed]
- Brenna, J.T.; Salem, N.; Sinclair, A.J.; Cunnane, S.C. alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fatty Acids 2009, 80, 85–91. [Google Scholar] [CrossRef]
Variable | Control Group | HaC | HaIbu | HaFOD1 | HaFOD2 |
---|---|---|---|---|---|
Square crossings | 38 ± 8.68 | 88.6 ± 15.56 | 80.9 ± 11.88 | 83.7 ± 15.64 | 87.6 ± 12.13 |
Rearing (freq) | 4.6 ± 0.92 | 20 ± 4.08 * | 20.6 ± 3.12 * | 14.6 ± 3.59 | 13.9 ± 1.29 |
Grooming (sec) | 36 ± 7.13 | 5.7 ± 2.75 * | 12.6 ± 3.89 * | 39 ± 9.89 | 23.9 ± 4.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocaña-Sánchez, M.F.; Soto-Ojeda, G.A.; Cocotle-Ronzón, Y.; Soria-Fregozo, C.; Sánchez-Medina, A.; García-Rodríguez, R.V.; Rodríguez-Landa, J.F.; Corro-Méndez, E.J.; Hernández-Lozano, M. Flaxseed Oil (Linum usitatissimum) Prevents Cognitive and Motor Damage in Rats with Hyperammonemia. Nutrients 2023, 15, 4550. https://doi.org/10.3390/nu15214550
Ocaña-Sánchez MF, Soto-Ojeda GA, Cocotle-Ronzón Y, Soria-Fregozo C, Sánchez-Medina A, García-Rodríguez RV, Rodríguez-Landa JF, Corro-Méndez EJ, Hernández-Lozano M. Flaxseed Oil (Linum usitatissimum) Prevents Cognitive and Motor Damage in Rats with Hyperammonemia. Nutrients. 2023; 15(21):4550. https://doi.org/10.3390/nu15214550
Chicago/Turabian StyleOcaña-Sánchez, Marcos F., Gabriel A. Soto-Ojeda, Yolanda Cocotle-Ronzón, Cesar Soria-Fregozo, Alberto Sánchez-Medina, Rosa V. García-Rodríguez, Juan F. Rodríguez-Landa, Erick J. Corro-Méndez, and Minerva Hernández-Lozano. 2023. "Flaxseed Oil (Linum usitatissimum) Prevents Cognitive and Motor Damage in Rats with Hyperammonemia" Nutrients 15, no. 21: 4550. https://doi.org/10.3390/nu15214550
APA StyleOcaña-Sánchez, M. F., Soto-Ojeda, G. A., Cocotle-Ronzón, Y., Soria-Fregozo, C., Sánchez-Medina, A., García-Rodríguez, R. V., Rodríguez-Landa, J. F., Corro-Méndez, E. J., & Hernández-Lozano, M. (2023). Flaxseed Oil (Linum usitatissimum) Prevents Cognitive and Motor Damage in Rats with Hyperammonemia. Nutrients, 15(21), 4550. https://doi.org/10.3390/nu15214550