Effect of Lactobacillus kefiri, in Conjunction with PENS T6 and a Hypocaloric Diet, on Weight Loss, Hypertension and Laboratory Glycemic and Lipid Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Percutaneous Electrical Stimulation of Dermatome T6 (PENS)
2.2. Hypocaloric Diet
2.3. Administration of Lactobacillus kefiri
2.4. Analysis of Microbiota
2.5. Analytical Variables
2.6. Clinical Variables
2.7. Statistical Analysis
3. Results
3.1. Evolution of Weight Loss, Blood Pressure, and Glycemic and Lipid Profiles
3.2. Evolution of Gut Microbiota
3.3. Bristol Stools Scale
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, G.A. Medical consequences of obesity. J. Clin. Endocrinol. Metab. 2004, 89, 2583–2589. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.W.; Ghushchyan, V.H.; Ben-Joseph, R. The impact of obesity on diabetes, hyperlipidemia and hypertension in the United States. Qual. Life Res. 2008, 17, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Magno, C.P.; Lane, K.T.; Hinojosa, M.W.; Lane, J.S. Association of hypertension, diabetes, dyslipidemia and metabolic syndrome with obesity: Findings from the National Healcth and Nutrition Examination Survey 1999 to 2004. J. Am. Coll. Surg. 2008, 207, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Martin Duce, A.; del Val, I.D. Cirugía de la Obesidad Mórbida; Guías Clínicas de la Asociación Española de Cirujanos: Madrid, Aran, 2007. [Google Scholar]
- Ruiz-Tovar, J.; Oller, I.; Diez, M.; Zubiaga, L.; Arroyo, A.; Calpena, R. Percutaneous electrical neurostimulation of dermatome T6 for appetite reduction and weight loss in morbidly obese patients. Obes. Surg. 2014, 24, 205–211. [Google Scholar] [CrossRef]
- Ruiz-Tovar, J.; Llavero, C. Long-term effect of percutaneous electrical neurostimulation of dermatome T6 for appetite reduction and weight loss in obese patients. Surg. Laparosc. Endosc. Percutaneous Tech. 2016, 26, 212–215. [Google Scholar] [CrossRef]
- Ruiz-Tovar, J.; Llavero, C.; Smith, W. Percutaneous electrical neurostimulation of dermatome T6 for short-term weight loss in overweight and obeses patients: Effect on ghrelin levels, glucose, lipid and hormonal profile. Surg. Laparosc. Endosc. Percutaneous Tech. 2017, 27, 241–247. [Google Scholar] [CrossRef]
- Schroeder, B.O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. 2019, 7, 3–12. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Sun, L.; Ma, L.; Ma, Y.; Zhang, F.; Zhao, C.; Nie, Y. Insights into the role of gut microbiota in obesity: Pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 2018, 9, 397–403. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen ARKaser, A. Obesity and the Microbiota. Gastroenterology 2009, 136, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Lobley, G.; Holtrop, G.; Ince, J.; Johnstone, A.M.; Louis, P.; Flint, H.J. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 2008, 32, 1720–1724. [Google Scholar] [CrossRef]
- Jumpertz, R.; Le, D.S.; Turnbaugh, P.J.; Trinidad, C.; Bogardus, C.; Gordon, J.I.; Krakoff, J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 2011, 94, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Cerdó, T.; García-Santos, J.A.; Bermúdez, M.G.; Campoy, C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients 2019, 11, 635. [Google Scholar] [CrossRef] [PubMed]
- Ajala, O.; English, P.; Pinkney, J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am. J. Clin. Nutr. 2013, 97, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Choo, J.M.; Leong, L.E.X.; Rogers, G.B. Sample storage conditions significantly influence faecal microbiome profiles. Sci. Rep. 2015, 5, 16350. [Google Scholar] [CrossRef]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of mammals and their gut microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef]
- Cole, J.R. The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 2004, 33, D294–D296. [Google Scholar] [CrossRef]
- Dupont, G.; Wahl, L.; Alcala Dominguez, T.; Wong, T.L.; Haładaj, R.; Wysiadecki, G.; Iwanaga, J.; Tubbs, R.S. Anatomy, physiology, and updates on the clinical management of constipation. Clin. Anat. 2020, 33, 1181–1186. [Google Scholar] [CrossRef]
- Ruiz-Tovar, J.; Llavero, C.; Ortega, I.; Diez, M.; Zubiaga, L.; Calpena, R. La neuroestimulación eléctrica percutánea del dermatoma T7 mejora el perfil glucémico en pacientes obesos y diabéticos tipo 2. Estudio clínico aleatorizado. Cirugía Española 2015, 93, 460–465. [Google Scholar] [CrossRef]
- Huang, X.; Fan, X.; Ying, J.; Chen, S. Emerging trends and research foci in gastrointestinal microbiome. J. Transl. Med. 2019, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Grigorescu, I.; Dumitrascu, D. Implication of gut microbiota in diabetes mellitus and obesity. Acta Endocrinol. 2016, 12, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Roselli, M.; Devirgiliis, C.; Zinno, P.; Guantario, B.; Finamore, A.; Rami, R.; Perozzi, G. Impact of supplementation with a food-derived microbial community on obesity-associated inflammation and gut microbiota composition. Genes Nutr. 2017, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Montandon, S.A.; Jornayvaz, F.R. Effects of antidiabetic drugs on gut microbiota composition. Genes 2017, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Kovatcheva-Datchary, P.; Nilsson, A.; Akrami, R.; Lee, Y.S.; De Vadder, F.; Arora, T.; Hallen, A.; Martens, E.; Björck, I.; Bäckhed, F. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab. 2015, 22, 971–982. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Morita, H.; Hashimoto, H.; Hosoda, M.; Kurisaki, J.-I.; Ouwehand, A.C.; Isolauri, E.; Benno, Y.; Salminen, S. Intestinal Bifidobacterium species induce varying cytokine production. J. Allergy Clin. Immunol. 2002, 109, 1035–1036. [Google Scholar] [CrossRef]
- Cani, P.D.; Possemiers, S.; Van De Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.M.; et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009, 58, 1091–1103. [Google Scholar] [CrossRef]
- Nagpal, R.; Wang, S.; Woods, L.C.S.; Seshie, O.; Chung, S.T.; Shively, C.A.; Register, T.C.; Craft, S.; McClain, D.A.; Yadav, H. Comparative Microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces. Front. Microbiol. 2018, 9, 2897. [Google Scholar] [CrossRef]
- Lin, H.V.; Frassetto, A.; Kowalik, E.J.; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G.; et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 2012, 7, e35240. [Google Scholar] [CrossRef]
- Geerlings, S.Y.; Kostopoulos, I.; De Vos, W.M.; Belzer, C. Akkermansia muciniphila in the human gastrointestinal tract: When, where, and how? Microorganisms 2018, 6, 75. [Google Scholar] [CrossRef]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Lee, J.C.; Lee, H.Y.; Kim, M.S.; Whon, T.W.; Lee, M.S.; Bae, J.W. An increase in the Akkermansiaspp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2013, 63, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, S.; Vanhoutte, P.M.; Woo, C.W.; Xu, A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- Mice. Circulation 2016, 133, 2434–2446. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.B.; Xin, S.S.; Ding, L.N.; Ding, W.Y.; Hou, Y.L.; Liu, C.Q.; Zhang, X.D. The potential role of probiotics in controlling overweight/obesity and associated metabolic parameters in adults: A systematic review and meta-analysis. Evid. Based Complement. Altern. Med. 2019, 2019, 3862971. [Google Scholar] [CrossRef]
- Lorenzo, O.; Crespo-Yanguas, M.; Hang, T.; Lumpuy-Castillo, J.; Hernández, A.M.; Llavero, C.; García-Alonso, M.; Ruiz-Tovar, J. Addition of Probiotics to Anti-Obesity Therapy by Percutaneous Electrical Stimulation of Dermatome T6.A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 7239. [Google Scholar] [CrossRef] [PubMed]
- Carasi, P.; Díaz, M.; Racedo, S.M.; De Antoni, G.; Urdaci, M.C.; Serradell, M.d.L.A. Safety characterization and antimicrobial properties of kefir-isolated Lactobacillus kefiri. Biomed. Res. Int. 2014, 2014, 208974. [Google Scholar] [CrossRef]
- Carasi, P.; Racedo, S.M.; Jacquot, C.; Romanin, D.E.; Serradell, M.A.; Urdaci, M.C. Impact of kefir derived Lactobacillus kefiri on the mucosal immune response and gut microbiota. J. Immunol. Res. 2015, 2015, 361604. [Google Scholar] [CrossRef]
- Toscano, M.; De Grandi, R.; Miniello, V.L.; Mattina, R.; Drago, L. Ability of Lactobacillus kefiri LKF01 (DSM32079) to colonize the intestinal environment and modify the gut microbiota composition of healthy individuals. Dig. Liver Dis. 2017, 49, 261–267. [Google Scholar] [CrossRef]
- Jeong, D.; Kim, D.H.; Kang, I.B.; Kim, H.; Song, K.-Y.; Kim, H.-S.; Seo, K.-H. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food Funct. 2017, 8, 680–686. [Google Scholar] [CrossRef]
PENS-Diet (N = 30) | PENS-Diet + L. kefiri (N = 30) | p | |
---|---|---|---|
Age (years) | 44.2 +/− 9.2 | 44.3 +/− 7.0 | 0.963 |
Females/Males | 20/10 | 21/9 | 0.781 |
Weight (kg) | 84.8 +/− 4.8 | 91.1 +/− 9.5 | 0.002 |
BMI (kg/m2) | 32.3 +/− 3.5 (range 30.8–44.8) | 33.4 +/− 3.5 (range 30.2–45.6) | 0.392 |
Systolic blood pressure (mmHg) | 135.5 +/− 11.6 | 131 +/− 12.7 | 0.157 |
Diastolic blood pressure (mmHg) | 81.5 +/− 9.4 | 82.5 +/− 6.0 | 0.625 |
Fasting glucose (mg/dL) | 101.4 +/− 26.0 | 100.1 +/− 12.4 | 0.814 |
A1c (%) | 5.4 +/− 0.8 | 5.6 +/− 0.6 | 0.537 |
Triglycerides (mg/dL) | 151.2 +/− 60.1 | 152.5 +/− 36.6 | 0.918 |
Total cholesterol (mg/dL) | 201.3 +/− 49.2 | 191.7 +/− 34.0 | 0.383 |
HDL-cholesterol (mg/dL) | 53.8 +/− 17.7 | 48.7 +/− 12.4 | 0.219 |
PENS-Diet (N = 30) | PENS-Diet + L. kefiri (N = 30) | p | |
---|---|---|---|
Weight loss (kg) | 11.2 +/− 4.3 | 16.7 +/− 4.6 | <0.001 |
BMI reduction (kg/m2) | 4.3 +/− 1.8 | 6.2 +/− 1.9 | <0.001 |
Total weight loss (%) | 13.0 +/− 4.4 | 18.2 +/− 3.5 | <0.001 |
Difference in Systolic blood pressure (mmHg) | 14.5 +/− 12.4 | 10.5 +/− 6.6 | 0.126 |
Difference in Diastolic blood pressure (mmHg) | 11.8 +/− 10.5 | 10.2 +/− 20.7 | 0.702 |
Difference in fasting glucose (mg/dL) | 8.5 +/− 8.9 | 15.5 +/− 12.8 | 0.019 |
Difference in A1c (%) | 0.2 +/− 0.6 | 0.5 +/− 0.4 | 0.030 |
Difference in Triglycerides (mg/dL) | 16.5 +/− 13.1 | 59.9 +/− 33.3 | <0.001 |
Difference in total cholesterol (mg/dL) | 5.4 +/− 19.5 | 15.2 +/− 33.6 | 0.174 |
Difference in HDL-cholesterol (mg/dL) | 1.1 +/− 6.4 | −9.1 +/− (−14.9) | 0.01 |
Baseline | Postprocedure | p | |
---|---|---|---|
Systolic blood pressure (mmHg) | 131 +/− 12.7 | 120.5 +/− 8.2 | <0.001 |
Diastolic blood pressure (mmHg) | 82.3 +/− 6.0 | 72.3 +/− 4.7 | 0.012 |
Fasting glucose (mg/dL) | 100.1 +/− 12.4 | 84.6 +/− 6.9 | <0.001 |
A1c (%) | 5.6 +/− 0.6 | 5.1 +/− 0.4 | <0.001 |
Triglycerides (mg/dL) | 125.5 +/− 36.6 | 92.6 +/− 32.7 | <0.001 |
Total cholesterol (mg/dL) | 191.7 +/− 34.0 | 176.5 +/− 45.6 | 0.019 |
HDL-cholesterol (mg/dL) | 48.7 +/− 12.4 | 57.8 +/− 13.3 | 0.002 |
Baseline | Postprocedure | p | |
---|---|---|---|
Systolic blood pressure (mmHg) | 135.5 +/− 11.6 | 121.0 +/− 5.6 | <0.001 |
Diastolic blood pressure (mmHg) | 81.35 +/− 9.4 | 69.7 +/− 7.8 | <0.001 |
Fasting glucose (mg/dL) | 101.4 +/− 26.0 | 92.6 +/− 25.0 | <0.001 |
A1c (%) | 5.5 +/− 0.8 | 5.3 +/− 0.5 | 0.134 |
Triglycerides (mg/dL) | 149.5 +/− 63.3 | 133.0 +/− 52.8 | <0.001 |
Total cholesterol (mg/dL) | 201.3 +/− 49.2 | 195.9 +/− 45.9 | 0.138 |
HDL-cholesterol (mg/dL) | 53.8 +/− 17.7 | 52.7 +/− 14.9 | 0.400 |
PENS-Diet (log GCN/g) (N = 30) | PENS-Diet + L. kefiri (log GCN/g) (N = 30) | p Value | Reference Range (log GCN/g) | |
---|---|---|---|---|
Muconutritive microbiota | 6.6 +/− 1.3 | 6.9 +/− 0.9 | 0.391 | 7.0–9.0 |
Akkermansia muciniphila | 2.8 +/− 1.5 | 2.9 +/− 1.7 | 0.302 | 5.0–8.5 |
Regulatory microbiota | 6.6 +/− 0.9 | 6.8 +/− 0.9 | 0.380 | 6.5–8.5 |
Lactobacillus spp. | 4.6 +/− 1.4 | 4.9 +/− 1.1 | 0.367 | 4.5–7.0 |
Proteolytic microbiota | 7.7 +/− 1.2 | 8.3 +/− 0.9 | 0.137 | 6.5–9.0 |
Escherichia coli | 4.5 +/− 1.6 | 4.7 +/− 1.5 | 0.747 | 4.5–7.0 |
Firmicutes phylum | 8.2 +/− 0.9 | 8.4 +/− 0.7 | 0.381 | 8.5–11.0 |
Lactobacillus spp. | 4.6 +/− 1.4 | 4.9 +/− 1.1 | 0.367 | 4.5–7.0 |
Faecalibacterium spp. | 6.2 +/− 1.2 | 6.4 +/− 0.9 | 0.650 | 7.0–9.0 |
Roseburia spp. | 6.2 +/− 1.3 | 6.7 +/− 1.0 | 0.114 | 6.5–8.5 |
Bacillus spp. | 2.0 +/− 0.9 | 2.0 +/− 0.7 | 0.962 | 0–4.0 |
Staphylococcus spp. | 3.1 +/− 0.6 | 3.0 +/− 0.6 | 0.232 | 2.5–5.0 |
Veillonella spp. | 4.6 +/− 0.6 | 4.4 +/− 0.8 | 0.275 | 4.5–7.0 |
Clostridium (Cocc) | 7.8 +/− 1.0 | 8.0 +/− 0.8 | 0.380 | 7.0–9.0 |
Clostridium (Perf) | 3.8 +/− 0.9 | 3.9 +/− 0.8 | 0.508 | 0–5.0 |
Enterococcus spp. | 5.8 +/− 1.0 | 6.0 +/− 0.8 | 0.669 | 6.0–8.5 |
Bacteroidetes phylum | 7.8 +/− 1.0 | 7.6 +/− 1.2 | 0.695 | 8.0–11.0 |
Prevotella spp. | 5.7 +/− 2.0 | 6.0 +/− 2.2 | 0.470 | 5.0–8.5 |
Bacteroides spp. | 7.3 +/− 1.1 | 7.1 +/− 1.3 | 0.617 | 7.5–9.0 |
Firmicutes/Bacteroidetes | 1.1 +/− 0.2 | 1.1 +/− 0.2 | 0.181 | 0.1–0.3 |
Proteobacteria phylum | 5.4 +/− 1.5 | 5.3 +/− 1.3 | 0.821 | 3.0–7.0 |
Escherichia coli | 4.5 +/− 1.6 | 4.7 +/− 1.5 | 0.747 | 4.5–7.0 |
Pseudomonas spp. | 1.7 +/− 0.9 | 1.5 +/− 0.7 | 0.296 | 0–4.0 |
Campylobacter spp. | 1.3 +/− 1.0 | 1.6 +/− 1.3 | 0.274 | 0–3.5 |
Helicobacter spp. | 2.2 +/− 1.1 | 2.1 +/− 1.1 | 0.738 | 0–3.5 |
Fusobacteria phylum | 2.8 +/− 1.2 | 3.1 +/− 1.2 | 0.508 | 0–4.5 |
Fusobacterium nucleatum | 2.8 +/− 1.2 | 3.1 +/− 1.2 | 0.508 | 0–4.5 |
Actinobacteria phylum | 4.3 +/− 1.7 | 4.5 +/− 1.7 | 0.801 | 6.5–9.0 |
Bifidobacterium spp. | 3.8 +/− 1.7 | 3.9 +/− 1.5 | 0.837 | 5.5–7.5 |
Verrucomicrobia phylum | 3.0 +/− 1.2 | 3.2 +/− 1.6 | 0.284 | 5.5–9.0 |
Akkermansia muciniphila | 2.8 +/− 1.5 | 2.9 +/− 1.7 | 0.302 | 5.0–8.5 |
Baseline (log GCN/g) | Postprocedure (log GCN/g) | p Value | Reference Range (log GCN/g) | |
---|---|---|---|---|
Muconutritive microbiota | 6.6 +/− 1.3 | 6.8 +/− 1.3 | 0.06 | 7.0–9.0 |
Akkermansia muciniphila | 2.8 +/− 1.5 | 3.2 +/− 2.1 | 0.002 | 5.0–8.5 |
Regulatory microbiota | 6.6 +/− 0.9 | 6.6 +/− 1.4 | 0.265 | 6.5–8.5 |
Lactobacillus spp. | 4.6 +/− 1.4 | 5.3 +/− 1.0 | 0.003 | 4.5–7.0 |
Proteolytic microbiota | 7.7 +/− 1.2 | 8.0 +/− 1.0 | 0.065 | 6.5–9.0 |
Escherichia coli | 4.5 +/− 1.6 | 4.3 +/− 1.2 | 0.386 | 4.5–7.0 |
Firmicutes phylum | 8.2 +/−0.9 | 8.1 +/− 1.1 | 0.549 | 8.5–11.0 |
Lactobacillus spp. | 4.6 +/− 1.4 | 5.3 +/− 1.0 | 0.003 | 4.5–7.0 |
Faecalibacterium spp. | 6.2 +/− 1.2 | 6.3 +/− 1.1 | 0.140 | 7.0–9.0 |
Roseburia spp. | 6.2 +/− 1.3 | 6.3 +/− 1.3 | 0.164 | 6.5–8.5 |
Bacillus spp. | 2.0 +/− 0.9 | 2.1 +/− 0.8 | 0.187 | 0–4.0 |
Staphylococcus spp. | 3.1 +/− 0.6 | 2.9 +/− 0.5 | 0.140 | 2.5–5.0 |
Veillonella spp. | 4.6 +/− 0.6 | 4.5 +/− 1.0 | 0.186 | 4.5–7.0 |
Clostridium (Cocc) | 7.8 +/− 1.0 | 7.8 +/− 0.9 | 0.850 | 7.0–9.0 |
Clostridium (Perf) | 3.8 +/− 0.9 | 4.1 +/− 1.2 | 0.029 | 0–5.0 |
Enterococcus spp. | 5.8 +/− 1.0 | 6.0 +/− 1.8 | 0.117 | 6.0–8.5 |
Bacteroidetes phylum | 7.8 +/− 1.0 | 8.0 +/− 1.2 | 0.066 | 8.0–11.0 |
Prevotella spp. | 5.7 +/− 2.0 | 5.9 +/− 1.8 | 0.111 | 5.0–8.5 |
Bacteroides spp. | 7.3 +/− 1.1 | 7.4 +/− 1.0 | 0.710 | 7.5–9.0 |
Firmicutes/Bacteroidetes | 1.1 +/− 0.2 | 1.0 +/− 0.1 | 0.059 | 0.1–0.3 |
Proteobacteria phylum | 5.4 +/− 1.5 | 5.5 +/− 1.5 | 0.306 | 3.0–7.0 |
Escherichia coli | 4.5 +/− 1.6 | 4.3 +/− 1.2 | 0.386 | 4.5–7.0 |
Pseudomonas spp. | 1.7 +/− 0.9 | 1.4 +/− 0.6 | 0.029 | 0–4.0 |
Campylobacter spp. | 1.3 +/− 1.0 | 1.5 +/− 1.3 | 0.163 | 0–3.5 |
Helicobacter spp. | 2.2 +/− 1.1 | 2.3 +/− 1.0 | 0.120 | 0–3.5 |
Fusobacteria phylum | 2.8 +/− 1.2 | 2.7 +/− 1.1 | 0.418 | 0–4.5 |
Fusobacterium nucleatum | 2.8 +/− 1.2 | 2.7 +/− 1.1 | 0.418 | 0–4.5 |
Actinobacteria phylum | 4.3 +/− 1.7 | 4.4 +/− 2.3 | 0.806 | 6.5–9.0 |
Bifidobacterium spp. | 3.8 +/− 1.7 | 3.9 +/− 2.0 | 0.831 | 5.5–7.5 |
Verrucomicrobia phylum | 3.0 +/− 1.2 | 3.5 +/− 2.3 | 0.002 | 5.5–9.0 |
Akkermansia muciniphila | 2.8 +/− 1.5 | 3.2 +/− 2.1 | 0.002 | 5.0–8.5 |
Baseline (log GCN/g) | Postprocedure (log GCN/g) | p Value | Reference Range (log GCN/g) | |
---|---|---|---|---|
Muconutritive microbiota | 6.9 +/− 0.9 | 7.6 +/− 0.9 | 0.000 | 7.0–9.0 |
Akkermansia muciniphila | 2.9 +/− 1.7 | 4.9 +/− 1.9 | 0.000 | 5.0–8.5 |
Regulatory microbiota | 6.8 +/− 0.9 | 7.6 +/− 1.2 | 0.000 | 6.5–8.5 |
Lactobacillus spp. | 4.9 +/− 1.1 | 6.2 +/− 1.3 | 0.000 | 4.5–7.0 |
Proteolytic microbiota | 8.3 +/− 0.9 | 8.4 +/− 1.1 | 0.190 | 6.5–9.0 |
Escherichia coli | 4.7 +/− 1.5 | 4.4 +/− 1.4 | 0.057 | 4.5–7.0 |
Firmicutes phylum | 8.4 +/− 0.7 | 8.1 +/− 0.8 | 0.011 | 8.5–11.0 |
Lactobacillus spp. | 4.9 +/− 1.1 | 6.2 +/− 1.3 | 0.000 | 4.5–7.0 |
Faecalibacterium spp. | 6.4 +/− 0.9 | 6.3 +/− 1.2 | 0.388 | 7.0–9.0 |
Roseburia spp. | 6.7 +/− 1.0 | 6.3 +/− 1.3 | 0.019 | 6.5–8.5 |
Bacillus spp. | 2.0 +/− 0.7 | 1.8 +/− 0.6 | 0.201 | 0–4.0 |
Staphylococcus spp. | 3.0 +/− 0.6 | 3.0 +/− 0.5 | 0.600 | 2.5–5.0 |
Veillonella spp. | 4.4 +/− 0.8 | 4.4 +/− 0.8 | 0.333 | 4.5–7.0 |
Clostridium (Cocc) | 8.0 +/− 0.8 | 8.1 +/− 0.9 | 0.303 | 7.0–9.0 |
Clostridium (Perf) | 3.9 +/− 0.8 | 4.0 +/− 0.9 | 0.435 | 0–5.0 |
Enterococcus spp. | 6.0 +/− 0.8 | 6. 2 +/− 1.0 | 0.372 | 6.0–8.5 |
Bacteroidetes phylum | 7.6 +/− 1.2 | 9.2 +/− 1.6 | 0.000 | 8.0–11.0 |
Prevotella spp. | 6.0 +/−2.2 | 7.4 +/− 2.4 | 0.000 | 5.0–8.5 |
Bacteroides spp. | 7.1 +/− 1.3 | 7.5 +/− 1.4 | 0.012 | 7.5–9.0 |
Firmicutes/Bacteroidetes | 1.1 +/− 0.2 | 0.8 +/− 0.2 | 0.007 | 0.1–0.3 |
Proteobacteria phylum | 5.3 +/− 1.3 | 4.9 +/− 1.1 | 0.022 | 3.0–7.0 |
Escherichia coli | 4.7 +/− 1.5 | 4.4 +/− 1.4 | 0.057 | 4.5–7.0 |
Pseudomonas spp. | 1.5 +/− 0.7 | 1.3 +/− 0.8 | 0.177 | 0–4.0 |
Campylobacter spp. | 1.6 +/− 1.3 | 1.3 +/− 1.0 | 0.095 | 0–3.5 |
Helicobacter spp. | 2.1 +/− 1.1 | 1.9 +/− 0.8 | 0.200 | 0–3.5 |
Fusobacteria phylum | 3.1 +/− 1.2 | 3.0 +/− 1.2 | 0550 | 0–4.5 |
Fusobacterium nucleatum | 3.1 +/− 1.2 | 3.0 +/− 1.2 | 0.550 | 0–4.5 |
Actinobacteria phylum | 4.5 +/− 1.7 | 6.1 +/− 1.3 | 0.000 | 6.5–9.0 |
Bifidobacterium spp. | 3.9 +/− 1.5 | 5.3 +/− 1.1 | 0.000 | 5.5–7.5 |
Verrucomicrobia phylum | 3.2 +/− 1.6 | 5.2 +/− 2.0 | 0.000 | 5.5–9.0 |
Akkermansia muciniphila | 2.9 +/− 1.7 | 4.9 +/− 1.9 | 0.000 | 5.0–8.5 |
PENS-Diet (log GCN/g) | PENS-Diet + L. kefiri (log GCN/g) | p Value | |
---|---|---|---|
Muconutritive microbiota | 0.2 +/− 0.01 | 0.7 +/− 0.01 | 0.000 |
Akkermansia muciniphila | 0.4 +/− 0.6 | 2.0 +/− 0.4 | 0.000 |
Lactobacillus spp. | 0.7 +/− 0.4 | 1.3 +/− 0.2 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Tovar, J.; Llavero, C.; Fernandez-Contreras, M.-E. Effect of Lactobacillus kefiri, in Conjunction with PENS T6 and a Hypocaloric Diet, on Weight Loss, Hypertension and Laboratory Glycemic and Lipid Profile. Nutrients 2023, 15, 4549. https://doi.org/10.3390/nu15214549
Ruiz-Tovar J, Llavero C, Fernandez-Contreras M-E. Effect of Lactobacillus kefiri, in Conjunction with PENS T6 and a Hypocaloric Diet, on Weight Loss, Hypertension and Laboratory Glycemic and Lipid Profile. Nutrients. 2023; 15(21):4549. https://doi.org/10.3390/nu15214549
Chicago/Turabian StyleRuiz-Tovar, Jaime, Carolina Llavero, and Maria-Encarnacion Fernandez-Contreras. 2023. "Effect of Lactobacillus kefiri, in Conjunction with PENS T6 and a Hypocaloric Diet, on Weight Loss, Hypertension and Laboratory Glycemic and Lipid Profile" Nutrients 15, no. 21: 4549. https://doi.org/10.3390/nu15214549
APA StyleRuiz-Tovar, J., Llavero, C., & Fernandez-Contreras, M. -E. (2023). Effect of Lactobacillus kefiri, in Conjunction with PENS T6 and a Hypocaloric Diet, on Weight Loss, Hypertension and Laboratory Glycemic and Lipid Profile. Nutrients, 15(21), 4549. https://doi.org/10.3390/nu15214549