Correlation between Serum 25-Hydroxyvitamin D Concentration, Monocyte-to-HDL Ratio and Acute Coronary Syndrome in Men with Chronic Coronary Syndrome—An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Characteristics
2.2. Clinical and Laboratory Data
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Difference in Selected Parameters between Patients with CCS and Patients with ACS
3.3. Differences in Selected Parameters between Patients with CCS and Patients with Different Diagnoses
3.4. Analysis of Covariance for Analysis of Serum 25(OH)D and MHR
3.5. Determinants of Serum 25(OH)D Concentration
3.6. Association between Serum 25(OH)D Concentration and Monocytes, HDL and MHR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Shah, P.K. Inflammation, infection and atherosclerosis. Trends Cardiovasc. Med. 2019, 29, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Pathogenesis and Clinical Significance of In-Stent Restenosis in Patients with Diabetes. Int. J. Environ. Res. Public Health 2021, 18, 11970. [Google Scholar] [CrossRef] [PubMed]
- Cuchel, M.; Rohatgi, A.; Sacks, F.M.; Guyton, J.R. JCL roundtable: High-density lipoprotein function and reverse cholesterol transport. J. Clin. Lipidol. 2018, 12, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur. Heart J. 2017, 38, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.T.; Alter, D.A.; Guo, H.; Koh, M.; Lau, G.; Austin, P.C.; Booth, G.L.; Hogg, W.; Jackevicius, C.A.; Lee, D.S.; et al. High-Density Lipoprotein Cholesterol and Cause-Specific Mortality in Individuals Without Previous Cardiovascular Conditions: The CANHEART Study. J. Am. Coll. Cardiol. 2016, 68, 2073–2083. [Google Scholar] [CrossRef]
- Qiu, C.; Zhao, X.; Zhou, Q.; Zhang, Z. High-density lipoprotein cholesterol efflux capacity is inversely associated with cardiovascular risk: A systematic review and meta-analysis. Lipids Health Dis. 2017, 16, 212. [Google Scholar] [CrossRef]
- Casula, M.; Colpani, O.; Xie, S.; Catapano, A.L.; Baragetti, A. HDL in Atherosclerotic Cardiovascular Disease: In Search of a Role. Cells 2021, 10, 1869. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Guan, H.; Gao, D.; Pan, J.; Wang, Z.; Alam, M.; Lian, J.; Zhou, J. Sex-specific association of monocyte count to high-density lipoprotein ratio with SYNTAX score in patients with suspected stable coronary artery disease. Medicine 2019, 98, e17536. [Google Scholar] [CrossRef]
- Yılmaz, M.; Kayançiçek, H. A New Inflammatory Marker: Elevated Monocyte to HDL Cholesterol Ratio Associated with Smoking. J. Clin. Med. 2018, 7, 76. [Google Scholar] [CrossRef]
- Yakar, H.I.; Kanbay, A. Could monocyte level/HDL cholesterol ratio predict cardiovascular diseases in patients with COPD? Niger. J. Clin. Pract. 2020, 23, 450–455. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Ma, Y.; Li, J.; Lin, M.; Wan, J. Relationship between non-high-density lipoprotein cholesterol/apolipoprotein A-I and monocyte/high-density lipoprotein cholesterol ratio and coronary heart disease. Coron. Artery Dis. 2020, 31, 623–627. [Google Scholar] [CrossRef]
- Manoochehri, H.; Gheitasi, R.; Pourjafar, M.; Amini, R.; Yazdi, A. Investigating the relationship between the severity of coronary artery disease and inflammatory factors of MHR, PHR, NHR, and IL-25. Med. J. Islam. Repub. Iran 2021, 35, 85. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, X.; Wei, Z.; Hua, R.; Huang, Y.; Hao, X.; Yuan, Z.; Zhou, J. MHR and NHR but not LHR were associated with coronary artery disease in patients with chest pain with controlled LDL-C. J. Investig. Med. 2022, 70, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Jin, F.; Liu, H.; Li, Q.; Gao, Y.; Hou, R.; Zhang, Z. Correlation between GPR, MHR and elderly essential hypertension with unstable angina pectoris. J. Cent. South Univ. 2021, 46, 373–378. [Google Scholar] [CrossRef]
- Sucato, V.; Coppola, G.; Testa, G.; Amata, F.; Martello, M.; Siddique, R.; Galassi, A.R.; Novo, G.; Corrado, E. Evaluation of remnant cholesterol levels and Monocyte-to-HDL-cholesterol ratio in South Asian patients with acute coronary syndrome. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2144–2150. [Google Scholar] [CrossRef] [PubMed]
- Karataş, M.B.; Çanga, Y.; Özcan, K.S.; İpek, G.; Güngör, B.; Onuk, T.; Durmuş, G.; Öz, A.; Karaca, M.; Bolca, O. Monocyte to high-density lipoprotein ratio as a new prognostic marker in patients with STEMI undergoing primary percutaneous coronary intervention. Am. J. Emerg. Med. 2016, 34, 240–244. [Google Scholar] [CrossRef]
- Cetin, E.H.O.; Cetin, M.S.; Canpolat, U.; Aydin, S.; Topaloglu, S.; Aras, D.; Aydogdu, S. Monocyte/HDL-cholesterol ratio predicts the definite stent thrombosis after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Biomark. Med. 2015, 9, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Dogan, A.; Oylumlu, M. Increased monocyte-to-HDL cholesterol ratio is related to cardiac syndrome X. Acta Cardiol. 2017, 72, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Çağdaş, M.; Karakoyun, S.; Yesin, M.; Rencüzoğulları, İ.; Karabağ, Y.; Uluganyan, M.; Ozan Gürsoy, M.; Artaç, İ.; İliş, D.; Atalay, E.; et al. The Association between Monocyte HDL-C Ratio and SYNTAX Score and SYNTAX Score II in STEMI Patients Treated with Primary PCI. Acta Cardiol. Sin. 2018, 34, 23–30. [Google Scholar] [CrossRef]
- Gao, J.; Lu, J.; Sha, W.; Xu, B.; Zhang, C.; Wang, H.; Xia, J.; Zhang, H.; Tang, W.; Lei, T. Relationship between the neutrophil to high-density lipoprotein cholesterol ratio and severity of coronary artery disease in patients with stable coronary artery disease. Front. Cardiovasc. Med. 2022, 9, 1015398. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, L.; Mavragani, C.P.; Koutsilieris, M. The Immunomodulatory Properties of Vitamin D. Mediterr. J. Rheumatol. 2022, 33, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Driggin, E.; Madhavan, M.V.; Gupta, A. The role of vitamin D in cardiovascular disease and COVID-19. Rev. Endocr. Metab. Disord. 2022, 23, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Desouza, C.; Chatterjee, R.; Vickery, E.M.; Nelson, J.; Johnson, K.C.; Kashyap, S.R.; Lewis, M.R.; Margolis, K.; Pratley, R.; Rasouli, N.; et al. The effect of vitamin D supplementation on cardiovascular risk in patients with prediabetes: A secondary analysis of the D2d study. J. Diabetes Complicat. 2022, 36, 108230. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Sluyter, J.; Liew, O.W.; Chong, J.P.C.; Waayer, D.; Camargo, C.A.; Richards, A.M.; Scragg, R. Effect of monthly vitamin D supplementation on cardiac biomarkers: A post-hoc analysis of a randomized controlled trial. J. Steroid Biochem. Mol. Biol. 2022, 220, 106093. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C. Molecular endocrinology of vitamin D on the epigenome level. Mol. Cell. Endocrinol. 2017, 453, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Medrano, M.; Carrillo-Cruz, E.; Montero, I.; Perez-Simon, J.A. Vitamin D: Effect on Haematopoiesis and Immune System and Clinical Applications. Int. J. Mol. Sci. 2018, 19, 2663. [Google Scholar] [CrossRef]
- Colotta, F.; Jansson, B.; Bonelli, F. Modulation of inflammatory and immune responses by vitamin D. J. Autoimmun. 2017, 85, 78–97. [Google Scholar] [CrossRef]
- Tay, H.M.; Yeap, W.H.; Dalan, R.; Wong, S.C.; Hou, H.W. Increased monocyte-platelet aggregates and monocyte-endothelial adhesion in healthy individuals with vitamin D deficiency. FASEB J. 2020, 34, 11133–11142. [Google Scholar] [CrossRef]
- Small, A.G.; Harvey, S.; Kaur, J.; Putty, T.; Quach, A.; Munawara, U.; Perveen, K.; McPhee, A.; Hii, C.S.; Ferrante, A. Vitamin D upregulates the macrophage complement receptor immunoglobulin in innate immunity to microbial pathogens. Commun. Biol. 2021, 4, 401. [Google Scholar] [CrossRef]
- Tishkoff, D.X.; Nibbelink, K.A.; Holmberg, K.H.; Dandu, L.; Simpson, R.U. Functional vitamin D receptor (VDR) in the t-tubules of cardiac myocytes: VDR knockout cardiomyocyte contractility. Endocrinology 2008, 149, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Merke, J.; Milde, P.; Lewicka, S.; Hügel, U.; Klaus, G.; Mangelsdorf, D.J.; Haussler, M.R.; Rauterberg, E.W.; Ritz, E. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J. Clin. Investig. 1989, 83, 1903–1915. [Google Scholar] [CrossRef]
- Somjen, D.; Weisman, Y.; Kohen, F.; Gayer, B.; Limor, R.; Sharon, O.; Jaccard, N.; Knoll, E.; Stern, N. 25-hydroxyvitamin D3-1alpha-hydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds. Circulation 2005, 111, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
- Melguizo-Rodríguez, L.; Costela-Ruiz, V.J.; García-Recio, E.; de Luna-Bertos, E.; Ruiz, C.; Illescas-Montes, R. Role of Vitamin D in the Metabolic Syndrome. Nutrients 2021, 13, 830. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ojeda, F.J.; Anguita-Ruiz, A.; Leis, R.; Aguilera, C.M. Genetic Factors and Molecular Mechanisms of Vitamin D and Obesity Relationship. Ann. Nutr. Metab. 2018, 73, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Sanz, R.; Mazzei, L.; Santino, N.; Ingrasia, M.; Manucha, W. La interacción vitamina D-mitocondria podría modular el camino de señalización involucrado en el desarrollo de la hipertensión: Una visión integrativa translacional. Clin. Investig. Arterioscler. 2020, 32, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Nuzzo, V.; Gatti, A.; Zuccoli, A.; Savastano, S.; Di Somma, C.; Pivonello, R.; Orio, F.; Colao, A. Hypovitaminosis D: A novel risk factor for coronary heart disease in type 2 diabetes? Endocrine 2016, 51, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Latic, N.; Erben, R.G. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int. J. Mol. Sci. 2020, 21, 6483. [Google Scholar] [CrossRef]
- Kim, D.-H.; Meza, C.A.; Clarke, H.; Kim, J.-S.; Hickner, R.C. Vitamin D and Endothelial Function. Nutrients 2020, 12, 575. [Google Scholar] [CrossRef]
- Ismail, H.M.; Algrafi, A.S.; Amoudi, O.; Ahmed, S.; Al-Thagfan, S.S.; Shora, H.; Aljohani, M.; Almutairi, M.; Alharbi, F.; Alhejaili, A.; et al. Vitamin D and Its Metabolites Deficiency in Acute Coronary Syndrome Patients Undergoing Coronary Angiography: A Case-Control Study. Vasc. Health Risk Manag. 2021, 17, 471–480. [Google Scholar] [CrossRef]
- Timmis, A.; Townsend, N.; Gale, C.P.; Torbica, A.; Lettino, M.; Petersen, S.E.; Mossialos, E.A.; Maggioni, A.P.; Kazakiewicz, D.; May, H.T.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur. Heart J. 2020, 41, 12–85. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Paleczny, J.; Junka, A.; Dąbrowski, M.; Jankowski, P. Investigation of the Associations of Novel Inflammatory Biomarkers-Systemic Inflammatory Index (SII) and Systemic Inflammatory Response Index (SIRI)-With the Severity of Coronary Artery Disease and Acute Coronary Syndrome Occurrence. Int. J. Mol. Sci. 2022, 23, 9553. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Dąbrowski, M.; Jankowski, P. The Association between Serum Vitamin D Concentration and New Inflammatory Biomarkers-Systemic Inflammatory Index (SII) and Systemic Inflammatory Response (SIRI)-In Patients with Ischemic Heart Disease. Nutrients 2022, 14, 4212. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on Methods for Evaluating Tobacco Control Policies. IARC Handbooks on Cancer Prevention, Tobacco Control: Methods for Evaluating Tobacco Control Policies: [Represents the Views and Opinions of an IARC Working Group on Methods for Evaluating Tobacco Control Policies which Met in Lyon, France, 12–19 March 2007]; International Agency for Research on Cancer: Lyon, France, 2008; Volume 12, ISBN 978-92-832-3012-0. [Google Scholar]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; de Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, G.S.; Palatini, P.; Parati, G.; O’Brien, E.; Januszewicz, A.; Lurbe, E.; Persu, A.; Mancia, G.; Kreutz, R. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J. Hypertens. 2021, 39, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Sahota, O. Understanding vitamin D deficiency. Age Ageing 2014, 43, 589–591. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, F.; Rotundo, S.; Armili, S.; Mimmi, S.; Lucia, F.; Montenegro, N.; Antico, G.C.; Cerra, A.; Gaetano, M.; Galato, F.; et al. Serum 25-hydroxyvitamin D measurement: Comparative evaluation of three automated immunoassays. Pract. Lab. Med. 2021, 26, e00251. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Engelsen, O. The relationship between ultraviolet radiation exposure and vitamin D status. Nutrients 2010, 2, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Akboga, M.K.; Balci, K.G.; Maden, O.; Ertem, A.G.; Kirbas, O.; Yayla, C.; Acar, B.; Aras, D.; Kisacik, H.; Aydogdu, S. Usefulness of monocyte to HDL-cholesterol ratio to predict high SYNTAX score in patients with stable coronary artery disease. Biomark. Med. 2016, 10, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhao, D.; Zhang, Y.; Zhai, Y.; Ye, M.; Wang, X.; Zheng, L.; Wang, L. Prognostic Utility of Monocyte to High-Density Lipoprotein Ratio in Patients With Acute Coronary Syndrome: A Meta-Analysis. Am. J. Med. Sci. 2020, 359, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Kundi, H.; Kiziltunc, E.; Cetin, M.; Cicekcioglu, H.; Cetin, Z.G.; Cicek, G.; Ornek, E. Zusammenhang des Monozyten-/HDL-C-Quotienten mit dem SYNTAX-Score bei Patienten mit stabiler koronarer Herzkrankheit. Herz 2016, 41, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Zhernakova, N.I.; Bunova, S.S.; Agarkov, N.M.; Lebedev, D.T.; Aksenov, V.V. Vitamin D Deficiency as an Independent Predictor of Myocardial Infarction in the Elderly. Arch. Razi Inst. 2021, 76, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Uguz, B.; Oztas, S.; Zengin, I.; Topal, D.; Tiryakioglu, S.K.; Yilmaztepe, M.A.; Karakus, A. Relationship between vitamin D deficiency and thrombus load in patients with ST-elevation myocardial infarction. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 7015–7023. [Google Scholar] [CrossRef]
- Verdoia, M.; Viglione, F.; Boggio, A.; Stefani, D.; Panarotto, N.; Malabaila, A.; Rolla, R.; Soldà, P.L.; Stecco, A.; Carriero, A.; et al. Relationship between vitamin D and cholesterol levels in STEMI patients undergoing primary percutaneous coronary intervention. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 957–964. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, J.; Liu, D.; Wang, Y.; Jamilian, P.; Gaman, M.-A.; Prabahar, K.; Fan, J. The effect of vitamin D on the lipid profile as a risk factor for coronary heart disease in postmenopausal women: A meta-analysis and systematic review of randomized controlled trials. Exp. Gerontol. 2022, 161, 111709. [Google Scholar] [CrossRef]
- Scragg, R.; Stewart, A.W.; Waayer, D.; Lawes, C.M.M.; Toop, L.; Sluyter, J.; Murphy, J.; Khaw, K.-T.; Camargo, C.A. Effect of Monthly High-Dose Vitamin D Supplementation on Cardiovascular Disease in the Vitamin D Assessment Study: A Randomized Clinical Trial. JAMA Cardiol. 2017, 2, 608–616. [Google Scholar] [CrossRef]
- Grandi, N.C.; Breitling, L.P.; Brenner, H. Vitamin D and cardiovascular disease: Systematic review and meta-analysis of prospective studies. Prev. Med. 2010, 51, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, L.A.; Khan, F.; Struthers, A.D.; Armitage, J.; Barchetta, I.; Bressendorff, I.; Cavallo, M.G.; Clarke, R.; Dalan, R.; Dreyer, G.; et al. Effect of Vitamin D Supplementation on Markers of Vascular Function: A Systematic Review and Individual Participant Meta-Analysis. J. Am. Heart Assoc. 2018, 7, e008273. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Parekh, D.; Westphal, S.; Preiser, J.-C.; Berghold, A.; Riedl, R.; Eller, P.; Schellongowski, P.; Thickett, D.; Meybohm, P. Effect of high-dose vitamin D3 on 28-day mortality in adult critically ill patients with severe vitamin D deficiency: A study protocol of a multicentre, placebo-controlled double-blind phase III RCT (the VITDALIZE study). BMJ Open 2019, 9, e031083. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.; Islam, N.; Ganji, V.; Zughaier, S.M. Serum 25-Hydroxyvitamin D Is Inversely Associated with Monocyte Percentage to HDL Cholesterol Ratio among Young Healthy Adults in Qatar. Nutrients 2020, 13, 127. [Google Scholar] [CrossRef] [PubMed]
- Gannagé-Yared, M.-H.; Chedid, R.; Khalife, S.; Azzi, E.; Zoghbi, F.; Halaby, G. Vitamin D in relation to metabolic risk factors, insulin sensitivity and adiponectin in a young Middle-Eastern population. Eur. J. Endocrinol. 2009, 160, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Sabico, S.; Wani, K.; Grant, W.B.; Al-Daghri, N.M. Improved HDL Cholesterol through Vitamin D Status Correction Substantially Lowers 10-Year Atherosclerotic Cardiovascular Disease Risk Score in Vitamin D-Deficient Arab Adults. Nutrients 2023, 15, 551. [Google Scholar] [CrossRef] [PubMed]
- Elmi, C.; Fan, M.M.; Le, M.; Cheng, G.; Khalighi, K. Association of serum 25-Hydroxy Vitamin D level with lipid, lipoprotein, and apolipoprotein level. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Wani, K.; Sabico, S.; Garbis, S.D.; Chrousos, G.P.; Amer, O.E.; Ansari, M.G.A.; Al-Saleh, Y.; Aljohani, N.J.; Al-Attas, O.S.; et al. Sex-specific expression of apolipoprotein levels following replenishment of vitamin D. J. Steroid Biochem. Mol. Biol. 2018, 180, 129–136. [Google Scholar] [CrossRef]
- Mancuso, E.; Mannino, G.C.; Fuoco, A.; Leo, A.; Citraro, R.; Averta, C.; Spiga, R.; Russo, E.; de Sarro, G.; Andreozzi, F.; et al. HDL (High-Density Lipoprotein) and ApoA-1 (Apolipoprotein A-1) Potentially Modulate Pancreatic α-Cell Glucagon Secretion. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2941–2952. [Google Scholar] [CrossRef]
- Radkhah, N.; Shabbidar, S.; Zarezadeh, M.; Safaeiyan, A.; Barzegar, A. Effects of vitamin D supplementation on apolipoprotein A1 and B100 levels in adults: Systematic review and meta-analysis of controlled clinical trials. J. Cardiovasc. Thorac. Res. 2021, 13, 190–197. [Google Scholar] [CrossRef]
- Arora, J.; Wang, J.; Weaver, V.; Zhang, Y.; Cantorna, M.T. Novel insight into the role of the vitamin D receptor in the development and function of the immune system. J. Steroid Biochem. Mol. Biol. 2022, 219, 106084. [Google Scholar] [CrossRef]
- Li, X.-Y.; Qin, T.; Zhang, P.-F.; Yan, W.-J.; Lei, L.-L.; Kuang, J.-Y.; Li, H.-D.; Zhang, W.-C.; Lu, X.-T.; Sun, Y.-Y. Weak UVB Irradiation Promotes Macrophage M2 Polarization and Stabilizes Atherosclerosis. J. Cardiovasc. Transl. Res. 2022, 15, 855–864. [Google Scholar] [CrossRef]
- Kumar, S.; Nanduri, R.; Bhagyaraj, E.; Kalra, R.; Ahuja, N.; Chacko, A.P.; Tiwari, D.; Sethi, K.; Saini, A.; Chandra, V.; et al. Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation. Autophagy 2021, 17, 2273–2289. [Google Scholar] [CrossRef]
- de Matteis, C.; Crudele, L.; Cariello, M.; Battaglia, S.; Piazzolla, G.; Suppressa, P.; Sabbà, C.; Piccinin, E.; Moschetta, A. Monocyte-to-HDL Ratio (MHR) Predicts Vitamin D Deficiency in Healthy and Metabolic Women: A Cross-Sectional Study in 1048 Subjects. Nutrients 2022, 14, 347. [Google Scholar] [CrossRef]
- Zhao, X.; Deng, C.; Li, Z.; Jia, Y.; Chen, S. Monocyte/High-Density Lipoprotein Cholesterol Ratio Predicts Vitamin D Deficiency in Male Patients with Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2022, 15, 2455–2466. [Google Scholar] [CrossRef]
Variable | Values |
---|---|
Age (years) | 63.3 (30.9–93.3) |
BMI (kg/m2) | 27.7 (16.1–47.4) |
BMI classification (<25 kg/m2/25–29.9 kg/m2/>30 kg/m2) | 93/173/109 |
Cause of hospitalization (CCS/ACS) | 206/198 |
Previous MI (yes/no) | 168/236 |
CASSS (0/1/2/3) | 72/115/118/99 |
Total cholesterol (mg/dL) | 167 (70–334) |
High-density lipoprotein (mg/dL) | 44.6 (14.6–113.2) |
Low-density lipoprotein (mg/dL) | 94.1 (22.3–257.9) |
Triglycerides (mg/dL) | 112 (37–457) |
Hyperlipidemia (yes/no) | 234/170 |
Hypertension (yes/no) | 331/73 |
Smoking (active/former smoker/no) | 138/53/213 |
Type 2 diabetes mellitus (yes/pre-diabetes/no) | 139/17/248 |
Monocytes (thousand cells/µL) | 0.74 (0.30–1.76) |
MHR | 0.02 (0.01–0.07) |
Serum 25(OH)D (ng/mL) | 15.6 (4.0–46.9) |
Examination date (May–October/November–April) | 106/298 |
Variable | ACS | CCS | p-Value |
---|---|---|---|
N | 198 | 206 | - |
Age (years) | 61.9 (33.6–88.4) | 64.3 (30.9–93.3) | <0.001 |
BMI (kg/m2) | 27.3 (16.9–44.6) | 27.8 (16.1–47.4) | 0.30 |
Previous MI (no/yes) | 106/92 | 130/76 | 0.05 |
CASSS (0/1/2/3) | 10/72/61/55 | 62/43/57/44 | <0.001 |
Total cholesterol (mg/dL) | 170 (70–334) | 163.8 (96.0–327.3) | 0.25 |
High-density lipoprotein (mg/dL) | 42.5 (19.5–92.9) | 46.0 (14.6–113.2) | <0.001 |
Low-density lipoprotein (mg/dL) | 100 (24–244) | 86.2 (22.3–257.9) | 0.014 |
Triglycerides (mg/dL) | 112 (43–457) | 113.0 (37.1–438.3) | 0.52 |
Hyperlipidemia (no/yes) | 79/119 | 91/115 | 0.38 |
Hypertension (no/yes) | 29/169 | 44/162 | 0.08 |
Smoking (no/ex-smokers/yes) | 94/16/88 | 119/37/50 | <0.001 |
Type 2 diabetes mellitus (yes/pre-diabetes/no) | 130/7/60 | 116/10/79 | 0.15 |
Monocytes (thousand cells/µL) | 0.76 (0.31–1.65) | 0.73 (0.30–1.76) | 0.27 |
MHR | 0.018 (0.01–0.07) | 0.015 (0.01–0.06) | <0.001 |
Serum 25(OH)D (ng/mL) | 14.2 (4.0–42.9) | 16.8 (4.1–46.9) | 0.010 |
Examination date (May–October/November–April) | 55/143 | 51/155 | 0.49 |
Variable | CCS | STEMI | NSTEMI | UA | p-Value |
---|---|---|---|---|---|
N | 206 | 107 | 59 | 32 | - |
Age (years) | 64.3 (30.9–93.3) | 59.8 (36.3–88.4) | 61.5 (38.0–86.4) | 66.5 (33.6–80.8) | <0.001 |
BMI (kg/m2) | 27.8 (16.1–47.4) | 27.0 (16.9–44.6) | 27.9 (20.8–36.1) | 26.4 (22.2–34.6) | 0.24 |
Previous MI (no/yes) | 130/76 | 60/47 | 26/33 | 20.12 | 0.06 |
CASSS (0/1/2/3) | 62/43/57/44 | 3/50/31/23 | 5/17/19/18 | 2/5/11/14 | <0.001 |
Total cholesterol (mg/dL) | 164 (96–327) | 180 (98–320) | 165 (70–334) | 144 (81– 303) | 0.002 |
High-density lipoprotein (mg/dL) | 46.0 (14.6–113) | 44.3 (20.5–92.9) | 39.3 (22.8–73.2) | 42.8 (19.5–65.8) | <0.001 |
Low-density lipoprotein (mg/dL) | 86.2 (22.3–258) | 107 (38.2–214) | 96.4 (23.5–244) | 75.5 (32.9–228) | <0.001 |
Triglycerides (mg/dL) | 113 (37–438) | 108 (55–368) | 115 (44–457) | 109 (43–252) | 0.49 |
Hyperlipidemia (no/yes) | 91/115 | 35/72 | 23/36 | 21/11 | 0.008 |
Hypertension (no/yes) | 44/162 | 20/87 | 8/51 | 1/31 | 0.07 |
Smoking (no/ex-smokers/yes) | 119/37/50 | 45/7/55 | 27/3/29 | 22/6/4 | <0.001 |
Type 2 diabetes mellitus (yes/pre-diabetes/no) | 116/10/79 | 75/3/28 | 37/4/18 | 18/0/14 | 0.15 |
Monocytes (thousand cells/µL) | 0.73 (0.30–1.76) | 0.80 (0.31–1.63) | 0.68 (0.40–1.65) | 0.76 (0.31–1.54) | 0.06 |
MHR | 0.015 (0.01–0.06) | 0.018 (0.01–0.06) | 0.017 (0.01–0.05) | 0.018 (0.01–0.07) | 0.009 |
Serum 25(OH)D (ng/mL) | 16.8 (4.1–46.9) | 14.1 (4.0–42.9) | 14.0 (5.0–37.6) | 17.6 (4.3–36.7) | 0.035 |
Examination date (May–October/November–April) | 51/155 | 28/79 | 17/42 | 10/22 | 0.84 |
Determinants | β (SE) | p-Value |
---|---|---|
Age | 0.13 (0.05) | 0.009 |
BMI | 0.07 (0.05) | 0.15 |
Examination date (May–October/November–April) | −0.19 (0.05) | <0.001 |
Determinants | β (SE) | p-Value |
---|---|---|
Age | −0.05 (0.05) | 0.31 |
BMI | 0.14 (0.05) | 0.006 |
Examination date (May–October/November–April) | 0.08 (0.05) | 0.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Dąbrowski, M.; Kochman, W. Correlation between Serum 25-Hydroxyvitamin D Concentration, Monocyte-to-HDL Ratio and Acute Coronary Syndrome in Men with Chronic Coronary Syndrome—An Observational Study. Nutrients 2023, 15, 4487. https://doi.org/10.3390/nu15204487
Dziedzic EA, Gąsior JS, Tuzimek A, Dąbrowski M, Kochman W. Correlation between Serum 25-Hydroxyvitamin D Concentration, Monocyte-to-HDL Ratio and Acute Coronary Syndrome in Men with Chronic Coronary Syndrome—An Observational Study. Nutrients. 2023; 15(20):4487. https://doi.org/10.3390/nu15204487
Chicago/Turabian StyleDziedzic, Ewelina A., Jakub S. Gąsior, Agnieszka Tuzimek, Marek Dąbrowski, and Wacław Kochman. 2023. "Correlation between Serum 25-Hydroxyvitamin D Concentration, Monocyte-to-HDL Ratio and Acute Coronary Syndrome in Men with Chronic Coronary Syndrome—An Observational Study" Nutrients 15, no. 20: 4487. https://doi.org/10.3390/nu15204487
APA StyleDziedzic, E. A., Gąsior, J. S., Tuzimek, A., Dąbrowski, M., & Kochman, W. (2023). Correlation between Serum 25-Hydroxyvitamin D Concentration, Monocyte-to-HDL Ratio and Acute Coronary Syndrome in Men with Chronic Coronary Syndrome—An Observational Study. Nutrients, 15(20), 4487. https://doi.org/10.3390/nu15204487