Prevalence of Sarcopenic Obesity and Factors Influencing Body Composition in Persons with Spinal Cord Injury in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Setting
2.2. Data Collection
2.3. Outcome Measurements
2.4. Criteria for Defining Sarcopenia, Obesity, and Sarcopenic Obesity
2.5. Sample Size Calculation
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
3.1. Participants
3.2. Lean Tissue and Fat Mass
3.3. Prevalence of Sarcopenia and Obesity
3.4. Factors Influencing Lean Tissue and Fat Mass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weaver, F.M.; Collins, E.G.; Kurichi, J.; Miskevics, S.; Smith, B.; Rajan, S.; Gater, D. Prevalence of obesity and high blood pressure in veterans with spinal cord injuries and disorders: A retrospective review. Am. J. Phys. Med. Rehabil. 2007, 86, 22–29. [Google Scholar] [CrossRef]
- Gupta, N.; White, K.T.; Sandford, P.R. Body mass index in spinal cord injury—A retrospective study. Spinal Cord 2006, 44, 92–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMillan, D.W.; Nash, M.S.; Gater, D.R.; Valderrábano, R.J. Neurogenic obesity and skeletal pathology in spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2021, 27, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Raguindin, P.F.; Bertolo, A.; Zeh, R.M.; Fränkl, G.; Itodo, O.A.; Capossela, S.; Bally, L.; Minder, B.; Brach, M.; Eriks-Hoogland, I.; et al. Body composition according to spinal cord injury level: A systematic review and meta-analysis. J. Clin. Med. 2021, 10, 3911. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Pelletier, C.A.; Miyatani, M.; Giangregorio, L.; Craven, B.C. Sarcopenic obesity in adults with spinal cord injury: A cross-sectional study. Arch. Phys. Med. Rehabil. 2016, 97, 1931–1937. [Google Scholar] [CrossRef]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Sarcopenic obesity and risk of cardiovascular disease and mortality: A population-based cohort study of older men. J. Am. Geriatr. Soc. 2014, 62, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, R.N.; Wayne, S.J.; Waters, D.L.; Janssen, I.; Gallagher, D.; Morley, J.E. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 2004, 12, 1995–2004. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S.; Kudo, M.; Shiraishi, A. Sarcopenic obesity is associated with activities of daily living and home discharge in post-acute rehabilitation. J. Am. Med. Dir. Assoc. 2020, 21, 1475–1480. [Google Scholar] [CrossRef]
- Dionyssiotis, Y.; Skarantavos, G.; Petropoulou, K.; Galanos, A.; Rapidi, C.A.; Lyritis, G.P. Application of current sarcopenia definitions in spinal cord injury. J. Musculoskelet. Neuronal. Interact. 2019, 19, 21–29. [Google Scholar] [PubMed]
- Gater, D.R. Obesity after spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 2007, 18, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Spungen, A.M.; Adkins, R.H.; Stewart, C.A.; Wang, J.; Pierson, R.N.; Waters, R.L.; Bauman, W.A. Factors influencing body composition in persons with spinal cord injury: A cross-sectional study. J. Appl. Physiol. 2003, 95, 2398–2407. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.C.; Boirie, Y.; Busetto, L.; Cederholm, T.; Dicker, D.; Toplak, H.; Van Gossum, A.; Yumuk, V.; Vettor, R. Sarcopenic obesity: Time to meet the challenge. Clin. Nutr. 2018, 37, 1787–1793. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Lim, J.; Mekary, R.A.; Rattani, A.; Dewan, M.C.; Sharif, S.Y.; Osorio-Fonseca, E.; Park, K.B. Traumatic spinal injury: Global epidemiology and worldwide volume. World Neurosurg. 2018, 113, e345–e363. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, N.; Suda, K.; Kudo, D.; Sakai, H.; Nakagawa, Y.; Mikami, Y.; Suzuki, S.; Tokioka, T.; Tokuhiro, A.; Takei, H.; et al. A nationwide survey on the incidence and characteristics of traumatic spinal cord injury in Japan in 2018. Spinal Cord 2021, 59, 626–634. [Google Scholar] [CrossRef]
- Inukai, Y.; Takahashi, K.; Wang, D.H.; Kira, S. Assessment of total and segmental body composition in spinal cord-injured athletes in Okayama prefecture of Japan. Acta Med. Okayama 2006, 60, 99–106. [Google Scholar]
- Miyahara, K.; Wang, D.H.; Mori, K.; Takahashi, K.; Miyatake, N.; Wang, B.L.; Takigawa, T.; Takaki, J.; Ogino, K. Effect of sports activity on bone mineral density in wheelchair athletes. J. Bone Miner. Metab. 2008, 26, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, Y.; Mizuguchi, M.; Yaginuma, T.; Kusaka, M.; Yoshida, H.; Yokoyama, K.; Kasahara, Y.; Hosoya, T. Serum leptin, abdominal obesity and the metabolic syndrome in individuals with chronic spinal cord injury. Spinal Cord 2008, 46, 494–499. [Google Scholar] [CrossRef]
- Inayama, T.; Higuchi, Y.; Tsunoda, N.; Uchiyama, H.; Sakuma, H. Associations between abdominal visceral fat and surrogate measures of obesity in Japanese men with spinal cord injury. Spinal Cord 2014, 52, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.T.; Leonard, G.R.; Cepela, D.J. Classifications in brief: American Spinal Injury Association (ASIA) impairment scale. Clin. Orthop. Relat. Res. 2017, 475, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr. Pract. 2016, 22 (Suppl. 3), 1–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, M.S.; Groah, S.L.; Gater, D.R.; Dyson-Hudson, T.A.; Lieberman, J.A.; Myers, J.; Sabharwal, S.; Taylor, A.J. Identification and management of cardiometabolic risk after spinal cord injury. J. Spinal Cord Med. 2019, 42, 643–677. [Google Scholar] [CrossRef]
- Examination Committee of Criteria for ‘Obesity Disease’ in Japan. New criteria for ‘obesity disease’ in Japan. Circ. J. 2002, 66, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zúñiga, C.; Arai, H.; Boirie, Y.; Chen, L.K.; Fielding, R.A.; Martin, F.C.; Michel, J.P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef]
- Shiraishi, A.; Yoshimura, Y.; Wakabayashi, H.; Tsuji, Y. Prevalence of stroke-related sarcopenia and its association with poor oral status in post-acute stroke patients: Implications for oral sarcopenia. Clin. Nutr. 2018, 37, 204–207. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey (NHNS) Japan; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2019. [Google Scholar]
- Matsushita, T.; Nishioka, S.; Taguchi, S.; Yamanouchi, A.; Nakashima, R.; Wakabayashi, H. Sarcopenic obesity and activities of daily living in stroke rehabilitation patients: A cross-sectional study. Healthcare 2020, 8, 255. [Google Scholar] [CrossRef]
- Fujioka, S.; Matsuzawa, Y.; Tokunaga, K.; Tarui, S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 1987, 36, 54–59. [Google Scholar] [CrossRef]
- Kobayashi, H.; Nakamura, T.; Miyaoka, K.; Nishida, M.; Funahashi, T.; Yamashita, S.; Matsuzawa, Y. Visceral fat accumulation contributes to insulin resistance, small-sized low-density lipoprotein, and progression of coronary artery disease in middle-aged non-obese Japanese men. Jpn. Circ. J. 2001, 65, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.; Sumrell, R.M.; Sima, A.; Cifu, D.X.; Gorgey, A.S. Waist circumference cutoff identifying risks of obesity, metabolic syndrome, and cardiovascular disease in men with spinal cord injury. PLoS ONE 2020, 15, e0236752. [Google Scholar] [CrossRef]
- Sumrell, R.M.; Nightingale, T.E.; McCauley, L.S.; Gorgey, A.S. Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury. PLoS ONE 2018, 13, e0203049. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Mather, K.J.; Gater, D.R. Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury. Metabolism 2011, 60, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Schorr, M.; Dichtel, L.E.; Gerweck, A.V.; Valera, R.D.; Torriani, M.; Miller, K.K.; Bredella, M.A. Sex differences in body composition and association with cardiometabolic risk. Biol. Sex. Differ. 2018, 9, 28. [Google Scholar] [CrossRef]
- Sowers, M.; Zheng, H.; Tomey, K.; Karvonen-Gutierrez, C.; Jannausch, M.; Li, X.; Yosef, M.; Symons, J. Changes in body composition in women over six years at midlife: Ovarian and chronological aging. J. Clin. Endocrinol. Metab. 2007, 92, 895–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.H.; Lee, B.S.; Choi, H.S.; Kang, M.S.; Kim, B.R.; Han, Z.A.; Lee, H.J. Comparison of fat mass percentage and body mass index in Koreans with spinal cord injury according to the severity and duration of motor paralysis. Ann. Rehabil. Med. 2015, 39, 384–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; de Groot, S.; Romviel, S.; Achterberg, W.; van Orsouw, L.; Janssen, T.W.J. Changes in body composition during and after inpatient rehabilitation in people with recent spinal cord injury. Spinal Cord Ser. Cases 2021, 7, 88. [Google Scholar] [CrossRef]
- Farkas, G.J.; Gorgey, A.S.; Dolbow, D.R.; Berg, A.S.; Gater, D.R. Caloric intake relative to total daily energy expenditure using a spinal cord injury-specific correction factor: An analysis by level of injury. Am. J. Phys. Med. Rehabil. 2019, 98, 947–952. [Google Scholar] [CrossRef]
- Neto, F.R.; Lopes, G.H. Body composition modifications in people with chronic spinal cord injury after supervised physical activity. J. Spinal Cord Med. 2011, 34, 586–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karelis, A.D.; Carvalho, L.P.; Castillo, M.J.; Gagnon, D.H.; Aubertin-Leheudre, M. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J. Rehabil. Med. 2017, 49, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Asselin, P.; Cirnigliaro, C.M.; Kornfeld, S.; Knezevic, S.; Lackow, R.; Elliott, M.; Bauman, W.A.; Spungen, A.M. Effect of exoskeletal-assisted walking on soft tissue body composition in persons with spinal cord injury. Arch. Phys. Med. Rehabil. 2021, 102, 196–202. [Google Scholar] [CrossRef]
- Yoshiike, N.; Matsumura, Y.; Zaman, M.M.; Yamaguchi, M. Descriptive epidemiology of body mass index in Japanese adults in a representative sample from the National Nutrition Survey 1990–1994. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Laughton, G.E.; Buchholz, A.C.; Martin Ginis, K.A.; Goy, R.E. Lowering body mass index cutoffs better identifies obese persons with spinal cord injury. Spinal Cord 2009, 47, 757–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, A.C.; Bugaresti, J.M. A review of body mass index and waist circumference as markers of obesity and coronary heart disease risk in persons with chronic spinal cord injury. Spinal Cord 2005, 43, 513–518. [Google Scholar] [CrossRef] [PubMed]
n | |||
Traumatic (n = 77) | |||
Motor vehicle accidents | 16 | (21%) | |
Falling from high heights | 28 | (36%) | |
Falling on a level surface | 20 | (26%) | |
Sports | 1 | (1%) | |
Others | 12 | (16%) | |
Non-traumatic (n = 20) | |||
Spinal cord infarction | 11 | (55%) | |
Spinal epidural hematoma | 4 | (20%) | |
Spinal epidural abscess | 1 | (5%) | |
Transverse myelitis | 4 | (20%) | |
Values are presented as n (%). |
Entire Patients n = 97 | Tetraplegia n = 59 | Paraplegia n = 38 | p | Motor-Complete n = 31 | Motor-Incomplete n = 66 | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex, male | 77 | (79%) | 46 | (78%) | 31 | (82%) | 0.668 | c | 25 | (81%) | 52 | (79%) | 0.833 | c | |
Age (years) | 64.0 | (55–73) | 66.0 | (57.0–75.0) | 62.5 | (54.1–71.9) | 0.532 | b | 60.2 | ±13.5 | 62.9 | ±11.7 | 0.315 | a | |
Age at onset (years) | 56.5 | ±15.3 | 62.0 | (52.5–71.5) | 56.0 | (45.6–66.4) | 0.353 | b | 52.0 | (42.0–62.0) | 62.5 | (52.4–72.6) | 0.005 | b * | |
Duration after injury (years) | 0.8 | (0–5.26) | 1.2 | (0–6.0) | 0.8 | (0–4.5) | 0.737 | b | 4.4 | (0–11.9) | 0.3 | (0–3.0) | <0.001 | b * | |
Etiology of injury | |||||||||||||||
Traumatic | 77 | (79%) | 56 | (95%) | 21 | (55%) | <0.001 | c * | 24 | (77%) | 53 | (80%) | 0.743 | c | |
Non-traumatic | 20 | (21%) | 3 | (5%) | 17 | (45%) | 7 | (23%) | 13 | (20%) | |||||
% Tetraplegia | 59 | (61%) | NA | NA | 17 | (55%) | 42 | (64%) | 0.408 | c | |||||
% AIS A/B | 31 | (32%) | 17 | (29%) | 14 | (37%) | 0.408 | c | NA | NA | |||||
% Walker | 50 | (52%) | 29 | (49%) | 21 | (55%) | 0.557 | c | 3 | (10%) | 47 | (71%) | <0.001 | c * | |
% Absence of dysphagia | 92 | (95%) | 54 | (92%) | 38 | (100%) | 0.078 | c | 29 | (94%) | 63 | (95%) | 0.515 | c | |
Anthropometrics | |||||||||||||||
Height (cm) | 165.4 | ±8.4 | 165.2 | ±8.4 | 165.6 | ±8.4 | 0.818 | a | 164.7 | ±7.5 | 165.7 | ±8.8 | 0.580 | a | |
Weight (kg) | 62.3 | (54.7–69.9) | 59.0 | (51.9–66.1) | 66.8 | (58.9–74.7) | 0.002 | b * | 62.0 | (56.4–67.7) | 63.0 | (53.4–72.5) | 0.484 | b | |
BMI (kg/m²) | 22.8 | (20.1–25.6) | 21.8 | (19.4–24.2) | 24.4 | (22.4–26.4) | <0.001 | b * | 22.0 | (19.0–24.9) | 23.1 | (20.5–25.7) | 0.419 | b | |
Females n = 20 | Males n = 77 | p | Non-walkers n = 47 | Walkers n = 50 | p | ||||||||||
Sex, male | NA | NA | 36 | (77%) | 41 | (82%) | 0.511 | c | |||||||
Age (years) | 69.0 | (60.9–77.1) | 64.0 | (54.8–73.3) | 0.126 | b | 63.0 | (53.0–73.0) | 64.5 | (56.3–72.8) | 0.623 | b | |||
Age at onset (years) | 63.5 | (53.8–73.2) | 57.0 | (47.8–66.3) | 0.116 | b | 54.0 | (42.0–66.0) | 61.5 | (51.8–71.3) | 0.059 | b | |||
Duration after injury (years) | 1.0 | (0–5.0) | 0.8 | (0–5.6) | 0.786 | b | 3.9 | (0–9.7) | 0.3 | (0–1.5) | 0.002 | b * | |||
Etiology of injury | |||||||||||||||
Traumatic | 17 | (85%) | 60 | (78%) | 0.362 | c | 38 | (81%) | 39 | (78%) | 0.729 | c | |||
Non-traumatic | 3 | (15%) | 17 | (22%) | 9 | (19%) | 11 | (22%) | |||||||
% Tetraplegia | 13 | (65%) | 46 | (60%) | 0.668 | c | 30 | (64%) | 29 | (58%) | 0.557 | c | |||
% AIS A/B | 6 | (30%) | 25 | (32%) | 0.833 | c | 28 | (60%) | 3 | (6%) | <0.001 | c * | |||
% Walker | 9 | (45%) | 41 | (53%) | 0.511 | c | NA | NA | |||||||
% Absence of dysphagia | 19 | (95%) | 73 | (95%) | 0.727 | c | 43 | (91%) | 49 | (98%) | 0.162 | c | |||
Anthropometrics | |||||||||||||||
Height (cm) | 154.5 | ±6.3 | 168.2 | ±6.2 | <0.001 | a * | 165.1 | ±9.0 | 165.7 | ±7.8 | 0.721 | a | |||
Weight (kg) | 55.5 | (47.5–63.5) | 63.5 | (55.6–71.4) | 0.011 | b * | 59.0 | (52.0–66.1) | 65.3 | (56.7–73.8) | 0.044 | b * | |||
BMI (kg/m²) | 23.3 | (19.7–26.8) | 22.8 | (20.4–25.3) | 0.402 | b | 22.0 | (18.6–25.4) | 23.6 | (21.5–25.8) | 0.057 | b |
Entire Patients n = 97 | Tetraplegia n = 59 | Paraplegia n = 38 | p | Motor-Complete n = 31 | Motor-Incomplete n = 66 | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lean mass indices | |||||||||||||||
Whole-body lean mass (kg) | 42.3 | ±8.5 | 40.1 | ±7.5 | 45.6 | ±9.1 | 0.002 | a * | 39.1 | ±7.1 | 43.8 | ±8.8 | 0.012 | a * | |
% Whole-body lean mass | 66.5 | ±7.2 | 66.7 | ±7.5 | 66.3 | ±6.8 | 0.809 | a | 63.8 | ±6.7 | 67.8 | ±7.1 | 0.010 | a * | |
Trunk lean mass (kg) | 22.5 | ±4.3 | 21.2 | ±3.6 | 24.5 | ±4.5 | <0.001 | a * | 21.4 | ±3.6 | 23.0 | ±4.5 | 0.092 | a | |
Arm lean mass (kg) | 4.7 | (3.7–5.6) | 4.3 | ±1.0 | 5.8 | ±1.5 | <0.001 | a * | 4.9 | ±1.6 | 4.9 | ±1.4 | 0.917 | a | |
Leg lean mass (kg) | 11.4 | (8.95–13.8) | 11.3 | (8.8–13.7) | 11.4 | (8.8–14.0) | 0.825 | b | 9.5 | ±2.4 | 12.5 | ±3.2 | <0.001 | a * | |
ASM (kg/m²) | 5.9 | ±1.2 | 5.9 | (5.0–6.8) | 5.8 | (5.2–6.5) | 0.049 | b * | 5.3 | ±1.0 | 6.3 | ±1.2 | <0.001 | a * | |
Adiposity indices | |||||||||||||||
Whole-body fat mass (kg) | 18.8 | (14.8–22.9) | 17.1 | (13.6–20.7) | 20.9 | (17.1–24.7) | 0.020 | b * | 19.2 | (14.8–23.5) | 18.4 | (14.2–22.6) | 0.225 | b | |
% Body fat | 30.1 | ±7.6 | 29.9 | ±7.8 | 30.4 | ±7.3 | 0.758 | a | 32.9 | ±7.2 | 28.8 | ±7.5 | 0.012 | a * | |
Trunk fat mass (kg) | 9.1 | (6.8–11.5) | 8.8 | ±3.4 | 10.8 | ±5.3 | 0.023 | a * | 9.1 | (6.6–11.6) | 9.1 | (7.0–11.2) | 0.178 | b | |
Arm fat mass (kg) | 2.2 | (1.6–2.7) | 2.1 | (1.6–2.6) | 2.5 | (1.9–3.1) | 0.054 | b | 2.2 | (1.6–2.8) | 2.2 | (1.7–2.7) | 0.676 | b | |
Leg fat mass (kg) | 5.9 | (4.6–7.3) | 5.9 | ±2.6 | 6.6 | ±2.3 | 0.172 | a | 6.5 | (4.9–8.2) | 5.7 | (4.4–7.0) | 0.171 | b | |
VAT (cm²) | 123.4 | (87.5–159.3) | 111.5 | (84.6–138.4) | 142.3 | (102.4–182.2) | 0.034 | b * | 133.8 | (95.0–172.6) | 115.3 | (79.9–150.6) | 0.103 | b | |
Females n = 20 | Males n = 77 | p | Non-Walkers n = 47 | Walkers n = 50 | p | ||||||||||
Lean mass indices | |||||||||||||||
Whole-body lean mass (kg) | 33.2 | ±4.7 | 44.6 | ±7.7 | <0.001 | a * | 39.4 | ±8.0 | 45.0 | ±8.2 | <0.001 | a * | |||
% Whole-body lean mass | 57.6 | ±4.6 | 68.8 | ±5.8 | <0.001 | a * | 64.4 | ±7.3 | 68.6 | ±6.6 | 0.003 | a * | |||
Trunk lean mass (kg) | 18.0 | ±2.5 | 23.6 | ±3.9 | <0.001 | a * | 21.4 | ±4.2 | 23.5 | ±4.2 | 0.016 | a * | |||
Arm lean mass (kg) | 3.3 | (2.6–4.1) | 4.9 | (4.1–5.7) | <0.001 | b * | 4.7 | ±1.5 | 5.0 | ±1.4 | 0.253 | a | |||
Leg lean mass (kg) | 8.6 | ±1.6 | 12.3 | ±3.1 | <0.001 | a * | 9.5 | (7.7–11.2) | 12.7 | (10.7–14.7) | <0.001 | b * | |||
ASM (kg/m²) | 5.1 | ±0.8 | 6.2 | ±1.2 | <0.001 | a * | 5.2 | (4.6–5.9) | 6.5 | (5.8–7.2) | <0.001 | b * | |||
Adiposity indices | |||||||||||||||
Whole-body fat mass (kg) | 22.7 | (17.9–27.5) | 18.0 | (14.4–21.7) | 0.003 | b * | 18.7 | (13.2–24.2) | 19.2 | (15.6–22.7) | 0.525 | b | |||
% Body fat | 39.5 | ±4.8 | 27.7 | ±6.2 | <0.001 | a * | 32.3 | ±7.8 | 28.0 | ±6.9 | 0.005 | a * | |||
Trunk fat mass (kg) | 10.5 | (8.0–12.9) | 8.8 | (6.7–11.0) | 0.005 | b * | 8.9 | (6.2–11.6) | 9.3 | (7.2–11.4) | 0.453 | b | |||
Arm fat mass (kg) | 2.6 | (1.6–3.6) | 2.1 | (1.7–2.6) | 0.004 | b * | 2.2 | (1.5–2.9) | 2.2 | (1.8–2.6) | 0.665 | b | |||
Leg fat mass (kg) | 7.3 | (5.7–8.8) | 5.6 | (4.3–6.9) | <0.001 | b * | 6.0 | (4.2–7.8) | 5.8 | (4.6–7.0) | 0.341 | b | |||
VAT (cm²) | 130.4 | ±54.0 | 122.9 | ±49.9 | 0.561 | a | 131.2 | ±55.7 | 118.1 | ±44.8 | 0.206 | a |
Threshold | Entire (n = 97) | Male (n = 77) | Female (n = 20) | ||||||
---|---|---|---|---|---|---|---|---|---|
Sarcopenia guidelines | |||||||||
AWGS recommendation | |||||||||
ASM | Male: <7.0 kg/m² | 74 | (76%) | 60 | (78%) | 14 | (70%) | ||
Female: <5.4 kg/m² | |||||||||
Obesity guidelines | |||||||||
AACE recommendation | |||||||||
%BF | Male: >25% | 66 | (68%) | 49 | (64%) | 17 | (85%) | ||
Female: >35% | |||||||||
Japanese guidelines | |||||||||
VAT | ≥100 cm² | 62 | (64%) | 49 | (64%) | 13 | (65%) | ||
BMI | ≥25 kg/m² | 28 | (29%) | 21 | (27%) | 7 | (35%) | ||
SCI-specific threshold | |||||||||
%BF | Male: >22% | 82 | (85%) | 65 | (84%) | 17 | (85%) | ||
Female: >35% | |||||||||
BMI | >22.5 kg/m² | 50 | (52%) | 40 | (52%) | 10 | (50%) | ||
>22 kg/m² | 56 | (58%) | 43 | (56%) | 13 | (65%) | |||
Sarcopenic obesity | |||||||||
ASM and %BF | Male: ASM < 7.0 kg/m², %BF > 25% Female: ASM < 5.4 kg/m², %BF > 35% | 49 | (51%) | 38 | (49%) | 11 | (55%) | ||
Male: ASM < 7.0 kg/m², %BF > 22% Female: ASM < 5.4 kg/m², %BF > 35% | 62 | (64%) | 51 | (66%) | 11 | (55%) | |||
ASM and BMI | Male: ASM < 7.0 kg/m², BMI ≥ 25 kg/m² Female: ASM < 5.4 kg/m², BMI ≥ 25 kg/m² | 11 | (11%) | 8 | (10%) | 3 | (15%) | ||
ASM and VAT | Male: ASM < 7.0 kg/m², VAT ≥ 100 cm² Female: ASM < 5.4 kg/m², VAT ≥ 100 cm² | 43 | (44%) | 36 | (47%) | 7 | (35%) |
ASM | %BF | Whole-Body Lean Mass | Whole-Body Fat Mass | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Standardized Coefficient | Standardized Coefficient | Standardized Coefficient | Standardized Coefficient | ||||||||||||||
Factors | β | p | VIF | β | p | VIF | β | p | VIF | β | p | VIF | |||||
Sex (female/male) | 0.34 | <0.001 | * | 1.05 | −0.63 | <0.001 | * | 1.05 | 0.50 | <0.001 | * | 1.05 | −0.28 | 0.006 | * | 1.05 | |
Age | −0.11 | 0.211 | 1.12 | 0.03 | 0.746 | 1.12 | −0.22 | 0.005 | * | 1.12 | −0.08 | 0.425 | 1.12 | ||||
Duration of injury | −0.15 | 0.081 | 1.21 | 0.10 | 0.247 | 1.21 | −0.08 | 0.303 | 1.21 | 0.02 | 0.868 | 1.21 | |||||
Lesion level (tetraplegia/paraplegia) | 0.25 | 0.007 | * | 1.37 | 0.10 | 0.279 | 1.37 | 0.31 | <0.001 | * | 1.37 | 0.28 | 0.018 | * | 1.37 | ||
Severity (complete/incomplete) | 0.20 | 0.043 | * | 1.58 | −0.17 | 0.077 | 1.58 | 0.20 | 0.031 | * | 1.58 | −0.01 | 0.959 | 1.58 | |||
Ability to walk (non-walkers/ walkers) | 0.29 | 0.006 | * | 1.63 | −0.13 | 0.181 | 1.63 | 0.16 | 0.081 | 1.63 | −0.11 | 0.372 | 1.63 | ||||
Dysphagia (absent/present) | 0.03 | 0.716 | 1.13 | −0.07 | 0.409 | 1.13 | 0.08 | 0.292 | 1.13 | −0.04 | 0.726 | 1.13 | |||||
Etiology (traumatic/non-traumatic) | −0.02 | 0.865 | 1.40 | −0.11 | 0.198 | 1.40 | 0.00 | 0.988 | 1.40 | −0.13 | 0.275 | 1.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishimoto, R.; Mutsuzaki, H.; Shimizu, Y.; Kishimoto, H.; Takeuchi, R.; Hada, Y. Prevalence of Sarcopenic Obesity and Factors Influencing Body Composition in Persons with Spinal Cord Injury in Japan. Nutrients 2023, 15, 473. https://doi.org/10.3390/nu15020473
Ishimoto R, Mutsuzaki H, Shimizu Y, Kishimoto H, Takeuchi R, Hada Y. Prevalence of Sarcopenic Obesity and Factors Influencing Body Composition in Persons with Spinal Cord Injury in Japan. Nutrients. 2023; 15(2):473. https://doi.org/10.3390/nu15020473
Chicago/Turabian StyleIshimoto, Ryu, Hirotaka Mutsuzaki, Yukiyo Shimizu, Hiroshi Kishimoto, Ryoko Takeuchi, and Yasushi Hada. 2023. "Prevalence of Sarcopenic Obesity and Factors Influencing Body Composition in Persons with Spinal Cord Injury in Japan" Nutrients 15, no. 2: 473. https://doi.org/10.3390/nu15020473
APA StyleIshimoto, R., Mutsuzaki, H., Shimizu, Y., Kishimoto, H., Takeuchi, R., & Hada, Y. (2023). Prevalence of Sarcopenic Obesity and Factors Influencing Body Composition in Persons with Spinal Cord Injury in Japan. Nutrients, 15(2), 473. https://doi.org/10.3390/nu15020473