Association between Different Types of Tea Consumption and Risk of Gynecologic Cancer: A Meta-Analysis of Cohort Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Selection Criteria
2.2. Data Collection and Quality Assessment
2.3. Data Synthesis and Statistical Analysis
3. Results
3.1. Study Selection Process and Inclusion of Studies
3.2. General Characteristics and Quality of the Studies
3.3. Association between Tea Consumption and Gynecologic Cancer Incidence
3.4. Dose-Response Analysis
3.5. Sensitivity Analysis
3.6. Publication Bias
4. Discussion
4.1. Association between Tea Intake and Ovarian Tumor
4.2. Association between Tea Intake and Endometrial Tumor
4.3. Association between Tea Intake and Cervical Tumor
4.4. Analysis of the Mechanism of Tea against Gynecological Tumors
4.5. Advantages and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.N. Natural history of ovarian cancer. Ecancermedicalscience 2014, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Koskas, M.; Amant, F.; Mirza, M.R.; Creutzberg, C.L. Cancer of the corpus uteri: 2021 update. Int. J. Gynaecol. Obstet. 2021, 155, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Ledford, L.R.C.; Lockwood, S. Scope and Epidemiology of Gynecologic Cancers: An Overview. Semin. Oncol. Nurs. 2019, 35, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Emmons, K.M.; Colditz, G.A. Realizing the Potential of Cancer Prevention—The Role of Implementation Science. N. Engl. J. Med. 2017, 376, 986–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmon, B.E.; Boushey, C.J.; Shvetsov, Y.B.; Ettienne, R.; Reedy, J.; Wilkens, L.R.; Le Marchand, L.; Henderson, B.E.; Kolonel, L.N. Associations of key diet-quality indexes with mortality in the Multiethnic Cohort: The Dietary Patterns Methods Project. Am. J. Clin. Nutr. 2015, 101, 587–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reedy, J.; Krebs-Smith, S.M.; Miller, P.E.; Liese, A.D.; Kahle, L.L.; Park, Y.; Subar, A.F. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J. Nutr. 2014, 144, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Kelemen, L.E. Food frequency questionnaires: Not irrelevant yet. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1054. [Google Scholar] [CrossRef] [Green Version]
- Brody, H. Tea. Nature 2019, 566, S1. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Li, X.-B.; Tian, D.-Q.; Fang, X.-P.; Yu, Y.-M.; Zhu, H.-Q.; Ge, Y.-Y.; Ma, G.-Y.; Wang, W.-Y.; Xiao, W.-F.; et al. Antioxidant properties and color parameters of herbal teas in China. Ind. Crop. Prod. 2016, 87, 198–209. [Google Scholar] [CrossRef]
- Sanlier, N.; Atik, I.; Atik, A. A minireview of effects of white tea consumption on diseases. Trends Food Sci. Technol. 2018, 82, 82–88. [Google Scholar] [CrossRef]
- Islam, S.N.; Farooq, S.; Sehgal, A. Effect of consecutive steeping on antioxidant potential of green, oolong and black tea. Int. J. Food Sci. Technol. 2018, 53, 182–187. [Google Scholar] [CrossRef]
- Kim, T.L.; Jeong, G.H.; Yang, J.W.; Lee, K.H.; Kronbichler, A.; van der Vliet, H.J.; Grosso, G.; Galvano, F.; Aune, D.; Kim, J.Y.; et al. Tea Consumption and Risk of Cancer: An Umbrella Review and Meta-Analysis of Observational Studies. Adv. Nutr. 2020, 11, 1437–1452. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, C.; Guo, Y.; Bian, Z.; Shen, Z.; Yang, L.; Chen, Y.; Wei, Y.; Zhang, H.; Qiu, Z.; et al. Association between tea consumption and risk of cancer: A prospective cohort study of 0.5 million Chinese adults. Eur. J. Epidemiol. 2019, 34, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Kim, E.; Gao, Y.; Rankin, G.O.; Li, B.; Chen, Y.C. Theaflavin-3, 3′-digallate induces apoptosis and G2 cell cycle arrest through the Akt/MDM2/p53 pathway in cisplatin-resistant ovarian cancer A2780/CP70 cells. Int. J. Oncol. 2016, 48, 2657–2665. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Rankin, G.O.; Tu, Y.; Chen, Y.C. Theaflavin-3, 3’-digallate decreases human ovarian carcinoma OVCAR-3 cell-induced angiogenesis via Akt and Notch-1 pathways, not via MAPK pathways. Int. J. Oncol. 2016, 48, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Wang, F.; Rankin, G.O.; Rojanasakul, Y.; Tu, Y.; Chen, Y.C. Inhibitory effect of black tea pigments, theaflavin-3/3’-gallate against cisplatin-resistant ovarian cancer cells by inducing apoptosis and G1 cell cycle arrest. Int. J. Oncol. 2017, 51, 1508–1520. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Li, J.; Rankin, G.O.; Rojanasakul, Y.; Tu, Y.; Chen, Y.C. Synergistic effect of black tea polyphenol, theaflavin-3,3’-digallate with cisplatin against cisplatin resistant human ovarian cancer cells. J. Funct. Foods 2018, 46, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Man, G.C.W.; Chan, T.H.; Kwong, J.; Wang, C.C. A prodrug of green tea polyphenol (–)-epigallocatechin-3-gallate (Pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer. Cancer Lett. 2018, 412, 10–20. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, L.; Wang, L.; Shi, Y.; Zhu, H.; Tang, N.; Wang, B. The association of tea consumption with ovarian cancer risk: A metaanalysis. Am. J. Obstet. Gynecol. 2007, 197, e591–e594. [Google Scholar] [CrossRef]
- Huang, B.; Qian, Y.; Xie, S.; Ye, X.; Chen, H.; Chen, Z.; Zhang, L.; Xu, J.; Hu, H.; Ma, S.; et al. Ticagrelor inhibits the NLRP3 inflammasome to protect against inflammatory disease independent of the P2Y(12) signaling pathway. Cell Mol. Immunol. 2021, 18, 1278–1289. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Xu, Q.; Lu, J.; Wang, P.; Zhang, H.W.; Zhou, L.; Ma, X.Q.; Zhou, Y.H. Tea consumption and the incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Eur. J. Cancer Prev. 2015, 24, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Kaushiva, A.; Xi, Y.; Wang, T.; Li, N. Non-herbal tea consumption and ovarian cancer risk: A systematic review and meta-analysis of observational epidemiologic studies with indirect comparison and dose-response analysis. Carcinogenesis 2018, 39, 808–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, X.; Wang, J.; Pan, S.; Lu, C. Tea consumption and the risk of ovarian cancer: A meta-analysis of epidemiological studies. Oncotarget 2017, 8, 37796–37806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [Green Version]
- Huguet, A.; Hayden, J.A.; Stinson, J.; McGrath, P.J.; Chambers, C.T.; Tougas, M.E.; Wozney, L. Judging the quality of evidence in reviews of prognostic factor research: Adapting the GRADE framework. Syst. Rev. 2013, 2, 71. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Doyle, T.J.; Kushi, L.H.; Sellers, T.A.; Hong, C.P.; Folsom, A.R. Tea consumption and cancer incidence in a prospective cohort study of postmenopausal women. Am. J. Epidemiol. 1996, 144, 175–182. [Google Scholar] [CrossRef]
- Cassidy, A.; Huang, T.; Rice, M.S.; Rimm, E.B.; Tworoger, S.S. Intake of dietary flavonoids and risk of epithelial ovarian cancer. Am. J. Clin. Nutr. 2014, 100, 1344–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashibe, M.; Galeone, C.; Buys, S.S.; Gren, L.; Boffetta, P.; Zhang, Z.F.; La Vecchia, C. Coffee, tea, caffeine intake, and the risk of cancer in the PLCO cohort. Br. J. Cancer 2015, 113, 809–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthur, R.; Kirsh, V.A.; Rohan, T.E. Associations of coffee, tea and caffeine intake with risk of breast, endometrial and ovarian cancer among Canadian women. Cancer Epidemiol. 2018, 56, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Weiderpass, E.; Sandin, S.; Lof, M.; Oh, J.K.; Inoue, M.; Shimazu, T.; Tsugane, S.; Adami, H.O. Endometrial Cancer in Relation to Coffee, Tea, and Caffeine Consumption: A Prospective Cohort Study Among Middle-Aged Women in Sweden. Nutr. Cancer 2014, 66, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Dunneram, Y.; Greenwood, D.C.; Cade, J.E. Diet and risk of breast, endometrial and ovarian cancer: UK Women’s Cohort Study. Br. J. Nutr. 2019, 122, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Braem, M.G.M.; Onland-Moret, N.C.; Schouten, L.J.; Tjønneland, A.; Hansen, L.; Dahm, C.C.; Overvad, K.; Lukanova, A.; Dossus, L.; Floegel, A.; et al. Coffee and tea consumption and the risk of ovarian cancer: A prospective cohort study and updated meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1172–1181. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.C.; Wolk, A. Tea consumption and ovarian cancer risk in a population-based cohort. Arch. Intern. Med. 2005, 165, 2683–2686. [Google Scholar] [CrossRef] [Green Version]
- Silvera, S.A.N.; Jain, M.; Howe, G.R.; Miller, A.B.; Rohan, T.E. Intake of coffee and tea and risk of ovarian cancer: A prospective cohort study. Nutr. Cancer 2007, 58, 22–27. [Google Scholar] [CrossRef]
- Steevens, J.; Schouten, L.J.; Verhage, B.A.J.; Goldbohm, R.A.; Van Den Brandt, P.A. Tea and coffee drinking and ovarian cancer risk: Results from the Netherlands Cohort Study and a meta-analysis. Nutr. Cancer 2007, 97, 1291–1294. [Google Scholar] [CrossRef]
- Tworoger, S.S.; Gertig, D.M.; Gates, M.A.; Hecht, J.L.; Hankinson, S.E. Caffeine, alcohol, smoking, and the risk of incident epithelial ovarian cancer. Cancer 2008, 112, 1169–1177. [Google Scholar] [CrossRef]
- Gates, M.A.; Tworoger, S.S.; Hecht, J.L.; De Vivo, I.; Rosner, B.; Hankinson, S.E. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int. J. Cancer 2007, 121, 2225–2232. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, T.; Inoue, M.; Sasazuki, S.; Iwasaki, M.; Kurahashi, N.; Yamaji, T.; Tsugane, S. Coffee consumption and risk of endometrial cancer: A prospective study in Japan. Int. J. Cancer 2008, 123, 2406–2410. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.; Sturgeon, S.R.; Luisi, N.; Bertone-Johnson, E.; Balasubramanian, R.; Reeves, K.W. Caffeinated coffee, decaffeinated coffee and endometrial cancer risk: A prospective cohort study among US postmenopausal women. Nutrients 2011, 3, 937–950. [Google Scholar] [CrossRef] [Green Version]
- Je, Y.; Hankinson, S.E.; Tworoger, S.S.; De Vivo, I.; Giovannucci, E. A prospective cohort study of coffee consumption and risk of endometrial cancer over a 26-year follow-up. Cancer Epidemiol. Biomark. Prev. 2011, 20, 2487–2495. [Google Scholar] [CrossRef] [Green Version]
- Uccella, S.; Mariani, A.; Wang, A.H.; Vierkant, R.A.; Cliby, W.A.; Robien, K.; Anderson, K.E.; Cerhan, J.R. Intake of coffee, caffeine and other methylxanthines and risk of Type i vs. Type II endometrial cancer. Br. J. Cancer 2013, 109, 1908–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, T.O.; Crowe, F.; Cairns, B.J.; Reeves, G.K.; Beral, V. Tea and coffee and risk of endometrial cancer: Cohort study and meta-analysis. Am. J. Clin. Nutr. 2015, 101, 570–578. [Google Scholar] [CrossRef] [Green Version]
- Paul, P.; Koh, W.P.; Jin, A.; Michel, A.; Waterboer, T.; Pawlita, M.; Wang, R.; Yuan, J.M.; Butler, L.M. Soy and tea intake on cervical cancer risk: The Singapore Chinese Health Study. Cancer Causes Control 2019, 30, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 2009, 9, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Erba, D.; Riso, P.; Foti, P.; Frigerio, F.; Criscuoli, F.; Testolin, G. Black tea extract supplementation decreases oxidative damage in Jurkat T cells. Arch. Biochem. Biophys. 2003, 416, 196–201. [Google Scholar] [CrossRef]
- Feng, Q.; Torii, Y.; Uchida, K.; Nakamura, Y.; Hara, Y.; Osawa, T. Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 1A1 in cell cultures. J. Agric. Food Chem. 2002, 50, 213–220. [Google Scholar] [CrossRef]
- Gupta, S.; Saha, B.; Giri, A.K. Comparative antimutagenic and anticlastogenic effects of green tea and black tea: A review. Mutat. Res. 2002, 512, 37–65. [Google Scholar] [CrossRef] [PubMed]
- Apostolides, Z.; Balentine, D.A.; Harbowy, M.E.; Weisburger, J.H. Inhibition of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) mutagenicity by black and green tea extracts and polyphenols. Mutat. Res. 1996, 359, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, H.; Zhou, J.G.; Ma, Y.; Wu, T.; Ma, H. Green tea, black tea consumption and risk of endometrial cancer: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2016, 293, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Butler, L.M.; Wu, A.H. Green and black tea in relation to gynecologic cancers. Mol. Nutr. Food. Res. 2011, 55, 931–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melamed, A.; Robinson, J.N. Case-control studies can be useful but have many limitations: Study design: Case-control studies. Bjog 2019, 126, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.V.; Suresh, K.; Suresh, G. Design and data analysis case-controlled study in clinical research. Ann. Indian Acad. Neurol. 2013, 16, 483–487. [Google Scholar] [CrossRef]
- Austin, H.; Hill, H.A.; Flanders, W.D.; Greenberg, R.S. Limitations in the application of case-control methodology. Epidemiol. Rev. 1994, 16, 65–76. [Google Scholar] [CrossRef]
- Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human papillomavirus and cervical cancer. Lancet 2013, 382, 889–899. [Google Scholar] [CrossRef]
- Fei, T.; Fei, J.; Huang, F.; Xie, T.; Xu, J.; Zhou, Y.; Yang, P. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans. Exp. Gerontol. 2017, 97, 89–96. [Google Scholar] [CrossRef]
- Gutierrez-Orozco, F.; Stephens, B.R.; Neilson, A.P.; Green, R.; Ferruzzi, M.G.; Bomser, J.A. Green and black tea inhibit cytokine-induced IL-8 production and secretion in AGS gastric cancer cells via inhibition of NF-κB activity. Planta Med. 2010, 76, 1659–1665. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Zhang, Y.; Wan, X.; Li, J.; Liu, K.; Wang, F.; Liu, K.; Liu, Q.; Yang, C.; et al. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr. Mol. Med. 2012, 12, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.S.; Imran, A.; Sharif, M.K.; Ahmad, R.S.; Xiao, H.; Imran, M.; Rsool, H.A. Black tea polyphenols: A mechanistic treatise. Crit. Rev. Food Sci. Nutr. 2014, 54, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Rawat, A.K.; Bhagat, R.M.; Singh, B.R. Black tea: Phytochemicals, cancer chemoprevention, and clinical studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 1394–1410. [Google Scholar] [CrossRef]
- Yan, C.; Yang, J.; Shen, L.; Chen, X. Inhibitory effect of Epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression. Arch. Gynecol. Obstet. 2012, 285, 459–467. [Google Scholar] [CrossRef]
- Huh, S.W.; Bae, S.M.; Kim, Y.W.; Lee, J.M.; Namkoong, S.E.; Lee, I.P.; Kim, S.H.; Kim, C.K.; Ahn, W.S. Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecol. Oncol. 2004, 94, 760–768. [Google Scholar] [CrossRef]
- Qin, J.; Fu, M.; Wang, J.; Huang, F.; Liu, H.; Huangfu, M.; Yu, D.; Liu, H.; Li, X.; Guan, X.; et al. PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin-3-gallate in ovarian cancer. Oncol. Rep. 2020, 43, 1885–1896. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Yu, M.C. Tea, hormone-related cancers and endogenous hormone levels. Mol. Nutr. Food Res. 2006, 50, 160–169. [Google Scholar] [CrossRef]
- Fuhrman, B.J.; Pfeiffer, R.M.; Wu, A.H.; Xu, X.; Keefer, L.K.; Veenstra, T.D.; Ziegler, R.G. Green tea intake is associated with urinary estrogen profiles in Japanese-American women. Nutr. J. 2013, 12, 25. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cheng, H.; Mu, Y.; Xu, A.; Ma, B.; Wang, F.; Xu, P. Occurrence, accumulation, and risk assessment of trace metals in tea (Camellia sinensis): A national reconnaissance. Sci. Total. Environ. 2021, 792, 148354. [Google Scholar] [CrossRef]
- Lung, S.C.; Hsiao, P.K.; Chiang, K.M. Fluoride concentrations in three types of commercially packed tea drinks in Taiwan. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nurs. 2019, 35, 151–156. [Google Scholar] [CrossRef] [PubMed]
Study | Country | Tea Intake | Type of Tea | Outcome | RR (95% CI) |
---|---|---|---|---|---|
Zheng (1996) [30] | USA | ≥2 cups/day vs. never/monthly | non-herbal tea | Ovarian cancer | 0.98 (0.50, 1.90) |
Cervical cancer | 0.44 (0.10, 1.82) | ||||
Larsson (2005) [37] | Sweden | ≥2 cups/day vs. never/seldom | black tea | Ovarian cancer | 0.54 (0.31, 0.91) |
Silvera (2007) [38] | Canada | ≥4 cups/day vs. none | any tea | Ovarian cancer | 1.07 (0.64, 1.79) |
Steevens (2007) [39] | Netherlands | ≥5 cups/day vs. <1 cup/day | black tea | Ovarian cancer | 0.59 (0.36, 0.97) |
Tworoger (2008) [40] | USA | 2+ cups/day vs. ≤1 cup/week | any tea | Ovarian cancer | 0.96 (0.70, 1.30) |
Braem (2012) [36] | 10 European countries | Quintile 5 vs. no take | any tea | Ovarian cancer | 1.07 (0.78, 1.46) |
Cassidy (2014) [31] | USA | >1/day vs. <1/week | black tea | Ovarian cancer | 0.69 (0.52, 0.93) |
Hashibe (2015) [32] | USA | ≥1 cups/day vs. <1 cup/day | any tea | Ovarian cancer | 0.87 (0.60, 1.26) |
Endometrial cancer | 1.24 (0.95, 1.63) | ||||
Arthur (2018) [33] | Canada | >3 cups/day vs. none | any tea | Ovarian cancer | 1.55 (0.70, 3.44) |
Endometrial cancer | 1.49 (0.80, 2.78) | ||||
Dunneram (2019) [35] | UK | 260 g/day vs. none | tea | Ovarian cancer Ovarian cancer | 0.98 (0.90, 1.07) |
herbal tea | 0.93 (0.75, 1.16) | ||||
tea | Endometrial cancer Endometrial cancer | 1.02 (0.93, 1.11) | |||
herbal tea | 0.89 (0.71, 1.12) | ||||
Shimazu (2008) [42] | Japan | 5 or more cups/day vs. ≤4 days/week | green tea | Endometrial cancer | 0.75 (0.44, 1.30) |
Giri (2011) [43] | USA | ≥4 cups/day vs. non-daily | any tea | Endometrial cancer | 1.10 (0.61, 1.97) |
Je (2011) [44] | USA | 2 cups/day vs. <1 cup/month | any tea | Endometrial cancer | 1.06 (0.77, 1.46) |
Uccella (2013) [45] | USA | 5+ cups a week vs. never or once per month | non-herbal tea | Type Ⅰ endometrial cancer | 0.95 (0.74, 1.22) |
Type Ⅱ endometrial cancer | 1.26 (0.65, 2.43) | ||||
Weiderpass (2014) [34] | Sweden | >1 cup/day vs. 0 cup/day | black tea | Type Ⅰ endometrial cancer | 0.71 (0.38, 1.33) |
Yang (2015) [46] | UK | ≥5 cups/day vs. <1 cup/day | any tea | Endometrial cancer | 1.01 (0.95, 1.08) |
Paul (2019) [47] | Singapore | tea drinkers vs. non-tea drinkers | green tea | Cervical cancer | 0.97 (0.76, 1.22) |
black tea | 1.19 (0.93, 1.51) | ||||
Li (2019) [14] | China | daily >4.0 g vs. less than weekly | any tea | Cervical cancer | 1.06 (0.74, 1.51) |
Gates (2007) [41] | USA | 2+/day vs ≤1/week | non-herbal tea | Ovarian cancer | 0.63 (0.40, 0.99) |
Categories | Numbers of Studies | Numbers of Effect Measures | RR and 95% CI | p Value | P for Heterogeneity | I2 (%) |
---|---|---|---|---|---|---|
Ovarian cancer | ||||||
Tea type | ||||||
Non-herbal tea | 5 | 5 | 0.67 (0.55, 0.81) | <0.001 | 0.706 | 0.0 |
Black tea | 3 | 3 | 0.64 (0.51, 0.80) | <0.001 | 0.690 | 0.0 |
Herbal tea | 1 | 1 | 0.93 (0.75, 1.16) | 0.514 | N/A | N/A |
Tea (generally) | 6 | 6 | 0.99 (0.91, 1.06) | 0.704 | 0.837 | 0.0 |
Geographic location | ||||||
North America | 6 | 6 | 0.88 (0.74, 1.06) | 0.175 | 0.348 | 10.6 |
Europe | 4 | 4 | 0.84 (0.64, 1.10) | 0.196 | 0.032 | 65.8 |
Endometrial cancer | ||||||
Tea type | ||||||
Non-herbal tea | 3 | 4 | 0.92 (0.75, 1.12) | 0.394 | 0.544 | 0.0 |
Black tea | 1 | 1 | 0.71 (0.38, 1.33) | 0.284 | N/A | N/A |
Green tea | 1 | 1 | 0.75 (0.44, 1.30) | 0.298 | N/A | N/A |
Herbal tea | 1 | 1 | 0.89 (0.71, 1.12) | 0.316 | N/A | N/A |
Tea (generally) | 6 | 6 | 1.02 (0.98, 1.08) | 0.338 | 0.607 | 0.0 |
Geographic location | ||||||
North America | 5 | 6 | 1.10 (0.95, 1.27) | 0.196 | 0.669 | 0.0 |
Europe | 3 | 3 | 1.01 (0.96, 1.07) | 0.679 | 0.532 | 0.0 |
Asia | 1 | 1 | 0.75 (0.44, 1.29) | 0.298 | N/A | N/A |
Cervical cancer | ||||||
Tea type | ||||||
Non-herbal tea | 2 | 3 | 1.06 (0.90, 1.25) | 0.504 | 0.243 | 29.2 |
Black tea | 1 | 1 | 1.19 (0.93, 1.52) | 0.159 | N/A | N/A |
Green tea | 1 | 1 | 0.97 (0.77, 1.23) | 0.801 | N/A | N/A |
Tea (generally) | 1 | 1 | 1.06 (0.74, 1.51) | 0.749 | N/A | N/A |
Geographic location | ||||||
North America | 1 | 1 | 0.44 (0.10, 1.88) | 0.267 | N/A | N/A |
Asia | 2 | 3 | 1.07 (0.92, 1.25) | 0.389 | 0.496 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, F.; Chen, K.; Zhong, J.; Tang, S.; Xu, S.; Lu, W.; Wu, Y.; Xia, D. Association between Different Types of Tea Consumption and Risk of Gynecologic Cancer: A Meta-Analysis of Cohort Studies. Nutrients 2023, 15, 403. https://doi.org/10.3390/nu15020403
Zheng F, Chen K, Zhong J, Tang S, Xu S, Lu W, Wu Y, Xia D. Association between Different Types of Tea Consumption and Risk of Gynecologic Cancer: A Meta-Analysis of Cohort Studies. Nutrients. 2023; 15(2):403. https://doi.org/10.3390/nu15020403
Chicago/Turabian StyleZheng, Fang, Kelie Chen, Jiamin Zhong, Song Tang, Sinan Xu, Weiguo Lu, Yihua Wu, and Dajing Xia. 2023. "Association between Different Types of Tea Consumption and Risk of Gynecologic Cancer: A Meta-Analysis of Cohort Studies" Nutrients 15, no. 2: 403. https://doi.org/10.3390/nu15020403
APA StyleZheng, F., Chen, K., Zhong, J., Tang, S., Xu, S., Lu, W., Wu, Y., & Xia, D. (2023). Association between Different Types of Tea Consumption and Risk of Gynecologic Cancer: A Meta-Analysis of Cohort Studies. Nutrients, 15(2), 403. https://doi.org/10.3390/nu15020403