Dietary Zinc Intake and All-Cause and Cardiovascular Mortality in Korean Middle-Aged and Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Dietary Assessment
2.3. Covariates
2.4. Study Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hans, K.B.; Jana, T. Micronutrients in the life cycle: Requirements and sufficient supply. NFS J. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar] [PubMed]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent nf-κb signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocchegiani, E.; Malavolta, M.; Marcellini, F.; Pawelec, G. Zinc, oxidative stress, genetic background and immunosenescence: Implications for healthy ageing. Immun. Ageing 2006, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Rink, L.; Gabriel, P. Zinc and the immune system. Proc. Nutr. Soc. 2000, 59, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Rizzo, N.S.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G.E. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J. Acad. Nutr. Diet. 2013, 113, 1610–1619. [Google Scholar] [CrossRef] [Green Version]
- Lönnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1378s–1383s. [Google Scholar] [CrossRef] [Green Version]
- Wessells, K.R.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [Green Version]
- Kodama, H.; Tanaka, M.; Naito, Y.; Katayama, K.; Moriyama, M. Japan’s practical guidelines for zinc deficiency with a particular focus on taste disorders, inflammatory bowel disease, and liver cirrhosis. Int. J. Mol. Sci. 2020, 21, 2941. [Google Scholar] [CrossRef]
- Bates, C.J.; Hamer, M.; Mishra, G.D. Redox-modulatory vitamins and minerals that prospectively predict mortality in older british people: The national diet and nutrition survey of people aged 65 years and over. Br. J. Nutr. 2011, 105, 123–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.H.; Folsom, A.R.; Jacobs, D.R., Jr. Iron, zinc, and alcohol consumption and mortality from cardiovascular diseases: The iowa women’s health study. Am. J. Clin. Nutr. 2005, 81, 787–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leone, N.; Courbon, D.; Ducimetiere, P.; Zureik, M. Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 2006, 17, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Chu, A.; Zhen, S.; Taylor, A.W.; Dai, Y.; Riley, M.; Samman, S. Association between dietary zinc intake and mortality among chinese adults: Findings from 10-year follow-up in the jiangsu nutrition study. Eur. J. Nutr. 2018, 57, 2839–2846. [Google Scholar] [CrossRef]
- de Oliveira Otto, M.C.; Alonso, A.; Lee, D.H.; Delclos, G.L.; Bertoni, A.G.; Jiang, R.; Lima, J.A.; Symanski, E.; Jacobs, D.R., Jr.; Nettleton, J.A. Dietary intakes of zinc and heme iron from red meat, but not from other sources, are associated with greater risk of metabolic syndrome and cardiovascular disease. J. Nutr. 2012, 142, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Han, B.G. Cohort profile: The korean genome and epidemiology study (koges) consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef]
- Eshak, E.S.; Iso, H.; Yamagishi, K.; Maruyama, K.; Umesawa, M.; Tamakoshi, A. Associations between copper and zinc intakes from diet and mortality from cardiovascular disease in a large population-based prospective cohort study. J. Nutr. Biochem. 2018, 56, 126–132. [Google Scholar] [CrossRef]
- Joo, Y.S.; Kim, H.W.; Lee, S.; Nam, K.H.; Yun, H.R.; Jhee, J.H.; Han, S.H.; Yoo, T.H.; Kang, S.W.; Park, J.T. Dietary zinc intake and incident chronic kidney disease. Clin. Nutr. 2021, 40, 1039–1045. [Google Scholar] [CrossRef]
- Fernández-Cao, J.C.; Warthon-Medina, M.; Moran, V.H.; Arija, V.; Doepking, C.; Serra-Majem, L.; Lowe, N.M. Zinc intake and status and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Nutrients 2019, 11, 1027. [Google Scholar] [CrossRef]
- Soinio, M.; Marniemi, J.; Laakso, M.; Pyörälä, K.; Lehto, S.; Rönnemaa, T. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care 2007, 30, 523–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilz, S.; Dobnig, H.; Winklhofer-Roob, B.M.; Renner, W.; Seelhorst, U.; Wellnitz, B.; Boehm, B.O.; März, W. Low serum zinc concentrations predict mortality in patients referred to coronary angiography. Br. J. Nutr. 2009, 101, 1534–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.; Liu, X.; Pan, Z. Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1120–1132. [Google Scholar] [CrossRef] [Green Version]
- Frangos, T.; Maret, W. Zinc and cadmium in the aetiology and pathogenesis of osteoarthritis and rheumatoid arthritis. Nutrients 2020, 13, 53. [Google Scholar] [CrossRef]
- Tabatabaeizadeh, S.A. Zinc supplementation and COVID-19 mortality: A meta-analysis. Eur. J. Med. Res. 2022, 27, 70. [Google Scholar] [CrossRef] [PubMed]
- de Benoist, B.; Darnton-Hill, I.; Davidsson, L.; Fontaine, O.; Hotz, C. Conclusions of the joint who/unicef/iaea/izincg interagency meeting on zinc status indicators. Food Nutr. Bull. 2007, 28, S480–S484. [Google Scholar] [CrossRef] [Green Version]
- Milton, A.H.; Vashum, K.P.; McEvoy, M.; Hussain, S.; McElduff, P.; Byles, J.; Attia, J. Prospective study of dietary zinc intake and risk of cardiovascular disease in women. Nutrients 2018, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Kim, S.; Joung, H. Evidence-based approaches for establishing the 2015 dietary reference intakes for koreans. Nutr. Res. Pract. 2018, 12, 459–468. [Google Scholar] [CrossRef]
- Sasaki, S. Dietary reference intakes (dris) in japan. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. 2), 420–444. [Google Scholar]
- Lee, S.R. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid. Med. Cell. Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Yan, F.; Yin, J.; Pan, R.; Shi, W.; Qi, Z.; Fang, Y.; Huang, Y.; Li, S.; Luo, Y.; et al. Synergistic interaction between zinc and reactive oxygen species amplifies ischemic brain injury in rats. Stroke 2018, 49, 2200–2210. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, S.M.; Samman, S. The effect of increasing dietary zinc on the activity of superoxide dismutase and zinc concentration in erythrocytes of healthy female subjects. Eur. J. Clin. Nutr. 1993, 47, 327–332. [Google Scholar] [PubMed]
- Joung, H.; Nam, G.; Yoon, S.; Lee, J.; Shim, J.E.; Paik, H.Y. Bioavailable zinc intake of korean adults in relation to the phytate content of korean foods. J. Food Compos. Anal. 2004, 17, 713–724. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a gatekeeper of immune function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resnicow, K.; Odom, E.; Wang, T.; Dudley, W.N.; Mitchell, D.; Vaughan, R.; Jackson, A.; Baranowski, T. Validation of three food frequency questionnaires and 24-hour recalls with serum carotenoid levels in a sample of african-american adults. Am. J. Epidemiol. 2000, 152, 1072–1080. [Google Scholar] [CrossRef]
- Hess, S.Y.; Peerson, J.M.; King, J.C.; Brown, K.H. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr. Bull. 2007, 28, S403–S429. [Google Scholar] [CrossRef] [PubMed]
Variables | Alive | Total Death | CVD Death | Cancer Death | P1 | P2 | P3 |
---|---|---|---|---|---|---|---|
N | 137,614 | 5436 | 985 | 2355 | |||
Sex (men) | 47,640 (34.6) | 3304 (60.8) | 558 (56.7) | 1405 (59.7) | <0.001 | <0.001 | <0.001 |
Age (years) | 53.5 ± 8.5 | 62.8 ± 9.3 | 64.9 ± 9.2 | 61.4 ± 8.7 | <0.001 | <0.001 | <0.001 |
Body mass index (kg/m2) | 24.0 ± 2.9 | 23.9 ± 3.2 | 24.1 ± 3.3 | 24.0 ± 3.1 | 0.03 | 0.31 | 0.97 |
WC (cm) | 81.2 ± 8.6 | 84.1 ± 9.0 | 84.8 ± 9.2 | 83.9 ± 8.6 | <0.001 | <0.001 | <0.001 |
SBP (mmHg) | 122.5 ± 15.3 | 127.2 ± 17.2 | 130.6 ± 18.1 | 125.8 ± 16.2 | <0.001 | <0.001 | <0.001 |
DBP (mmHg) | 76.2 ± 10.0 | 77.5 ± 10.4 | 78.8 ± 10.9 | 77.5 ± 10.2 | <0.001 | <0.001 | <0.001 |
Glucose (mg/dL) | 95.3 ± 20.6 | 104.3 ± 34.5 | 105.0 ± 34.8 | 102.2 ± 31.1 | <0.001 | <0.001 | <0.001 |
HbA1c (%) | 5.7 ± 0.7 | 6.0 ± 1.2 | 6.1 ± 1.1 | 6.0 ± 1.0 | <0.001 | <0.001 | <0.001 |
TC (mg/dL) | 197.6 ± 35.5 | 191.3 ± 39.0 | 194.8 ± 39.0 | 190.3 ± 37.4 | <0.001 | 0.03 | <0.001 |
HDL-C (mg/dL) | 52.8 ± 13.0 | 48.4 ± 13.2 | 47.0 ± 11.7 | 49.0 ± 13.2 | <0.001 | <0.001 | <0.001 |
Triglycerides(mg/dL) | 128.9 ± 90.1 | 144.1 ± 107.5 | 148.9 ± 94.9 | 136.3 ± 93.7 | <0.001 | <0.001 | <0.001 |
Smoking status, n (%) | <0.001 | <0.001 | <0.001 | ||||
Never smoker | 100,083 (72.7) | 2704 (49.7) | 515 (52.3) | 1165 (49.5) | |||
Former smoker | 20,476 (14.9) | 1409 (25.9) | 225 (22.8) | 608 (25.8) | |||
Current smoker | 17,055 (12.4) | 1323 (24.3) | 245 (24.9) | 582 (24.7) | |||
Alcohol intake, n (%) | <0.001 | <0.001 | <0.001 | ||||
Never drinker | 70,007 (50.9) | 2365 (43.51) | 458 (46.5) | 1002 (42.6) | |||
Former drinker | 5221 (3.8) | 564 (10.4) | 88 (8.9) | 243 (10.3) | |||
Current drinker | 62,386 (45.3) | 2507 (46.1) | 439 (44.6) | 1110 (47.1) | |||
Regular exercise (Yes) | 69,640 (50.6) | 2089 (28.4) | 327 (33.2) | 1000 (42.5) | <0.001 | <0.001 | <0.001 |
Hypertension, n (%) | 22,996 (16.7) | 1411 (26.0) | 324 (32.9) | 530 (22.5) | <0.001 | <0.001 | <0.001 |
Diabetes, n (%) | 9526 (6.9) | 838 (15.4) | 153 (15.5) | 321 (13.6) | <0.001 | <0.001 | <0.001 |
Dyslipidemia, n (%) | 78,211 (56.8) | 3008 (55.3) | 591 (60.0) | 1252 (53.2) | 0.03 | 0.05 | <0.001 |
CKD, n (%) | 3290 (2.4) | 602 (11.1) | 149 (15.1) | 173 (7.4) | <0.001 | <0.001 | <0.001 |
Residential area, n (%) | <0.001 | <0.001 | <0.001 | ||||
Urban | 120,808 (87.8) | 3548 (65.3) | 565 (57.4) | 1721 (73.1) | |||
Rural | 16,806 (12.2) | 1888 (34.7) | 420 (42.6) | 634 (26.9) | |||
Total energy (kcal/day) | 1739.6 ± 542.0 | 1637.2 ± 531.7 | 1607.5 ± 558.6 | 1677.9 ± 516.8 | <0.001 | <0.001 | <0.001 |
Carbohydrate (g/day) | 310.1 ± 89.8 | 297.7 ± 87.0 | 293.6 ± 88.4 | 303.5 ± 85.8 | <0.001 | <0.001 | <0.001 |
Fat (g/day) | 27.5 ± 17.2 | 23.6 ± 16.9 | 22.7 ± 19.4 | 24.8 ± 16.1 | <0.001 | <0.001 | <0.001 |
Protein (g/day) | 58.7 ± 24.8 | 53.3 ± 24.9 | 51.7 ± 28.4 | 55.3 ± 24.5 | <0.001 | <0.001 | <0.001 |
Calcium (mg/day) | 439.9 ± 259.7 | 384.6 ± 245.1 | 364.5 ± 243.3 | 405.4 ± 247.8 | <0.001 | <0.001 | <0.001 |
Phosphorus (mg/day) | 884.7 ± 350.2 | 810.3 ± 346.7 | 785.7 ± 370.8 | 841.3 ± 336.9 | <0.001 | <0.001 | <0.001 |
Iron (mg/day) | 9.9 ± 4.9 | 8.8 ± 4.7 | 8.2 ± 4.5 | 9.3 ± 4.7 | <0.001 | <0.001 | <0.001 |
All | Warranty Period (0.5%) | n | Person Time (Years) | Events, n (%) | Incidence per 1000 Person-Years (95% CI) |
---|---|---|---|---|---|
All-cause mortality | |||||
≤5.60 | 2.419 | 32,992 | 338,516.06 | 1801(0.05) | 5.32 (4.54–6.11) |
5.60–7.98 | 3.169 | 55,029 | 560,702.29 | 1997 (0.04) | 3.56 (3.06–4.06) |
>7.98 | 3.414 | 55,029 | 562,418.91 | 1638 (0.03) | 2.91 (2.46–3.36) |
Cancer mortality | |||||
≤5.60 | 4.501 | 32,992 | 343,158.26 | 683 (0.02) | 1.99 (1.51–2.47) |
5.60–10.08 | 5.086 | 85,044 | 872,887.87 | 1333 (0.02) | 1.53 (1.27–1.79) |
>10.08 | 5.253 | 25,014 | 258,246 | 339 (0.01) | 1.31 (0.86–1.76) |
CVD mortality | |||||
≤5.12 | 6.334 | 22,985 | 240,241.34 | 278 (0.01) | 1.16 (0.72–1.60) |
5.12–7.28 | 9.17 | 50,025 | 517,831.53 | 370 (0.01) | 0.72 (0.48–0.95) |
>7.28 | 10.581 | 70,040 | 722,143.01 | 337 (0) | 0.47 (0.31–0.63) |
Men | |||||
All-cause mortality | |||||
≤5.60 | 1.663 | 8943 | 90,617.46 | 953 (0.11) | 10.52 (8.40–12.63) |
5.60–7.23 | 2.244 | 13,500 | 137,222.9 | 882 (0.07) | 6.43 (5.08–7.78) |
>7.23 | 2.337 | 28,501 | 289,015.36 | 1469 (0.05) | 5.08 (4.26–5.91) |
Cancer mortality | |||||
≤5.80 | 2.412 | 10,444 | 108,564.47 | 416 (0.04) | 3.832 (2.647–5.017) |
5.80–9.78 | 3.83 | 28,500 | 292,679.04 | 737 (0.03) | 2.518 (1.936–3.100) |
>9.78 | 3.915 | 12,000 | 123,558.58 | 252 (0.02) | 2.040 (1.232–2.847) |
CVD mortality | |||||
≤5.39 | 5.251 | 7443 | 78,401.15 | 142 (0.02) | 1.81 (0.85–2.78) |
5.39–7.23 | 7 | 15,000 | 156,001.42 | 182 (0.01) | 1.17 (0.62–1.71) |
>7.23 | 7.666 | 28,501 | 294,245.34 | 234 (0.01) | 0.80 (0.47–1.12) |
Women | |||||
All-cause mortality | |||||
≤5.48 | 3.418 | 22,098 | 227,610.93 | 804 (0.04) | 3.53 (2.75–4.32) |
5.48–7.99 | 4.334 | 37,503 | 383,470.95 | 824 (0.02) | 2.15 (1.68–2.62) |
>7.99 | 5.249 | 32,505 | 333,699.67 | 504 (0.02) | 1.51 (1.09–1.93) |
Cancer mortality | |||||
≤6.29 | 6 | 34,598 | 358,738.58 | 428 (0.01) | 1.19 (0.83–1.56) |
6.29–10.44 | 7.169 | 45,007 | 461,418.94 | 427 (0.01) | 0.93 (0.64–1.21) |
>10.44 | 7.915 | 12,501 | 129,332.53 | 95 (0.01) | 0.74 (0.26–1.21) |
CVD mortality | |||||
≤5.11 | 7.5 | 17,098 | 178,237.08 | 162 (0.01) | 0.91 (0.46–1.36) |
5.11–7.99 | 11.165 | 42,503 | 437,925.76 | 192 (0) | 0.44 (0.24–0.64) |
>7.99 | 13.496 | 32,505 | 335,405.14 | 73 (0) | 0.22 (0.06–0.38) |
All | Men | Women | |||
---|---|---|---|---|---|
All-Cause Mortality | HR (95% CI) | HR (95% CI) | HR (95% CI) | ||
Unadjusted | |||||
≤5.60 | 1.80 (1.68–1.93) | ≤5.60 | 2.04 (1.88–2.21) | ≤5.48 | 2.31 (2.06–2.58) |
5.60–7.98 | 1.22 (1.14–1.30) | 5.60–7.23 | 1.25 (1.15–1.36) | 5.48–7.99 | 1.42 (1.27–1.59) |
>7.98 | Ref | >7.23 | Ref | >7.99 | Ref |
Model 1 | |||||
≤5.60 | 1.34 (1.25–1.43) | ≤5.60 | 1.36 (1.25–1.48) | ≤5.48 | 1.33 (1.18–1.49) |
5.60–7.98 | 1.08 (1.01–1.15) | 5.60–7.23 | 1.03 (0.95–1.12) | 5.48–7.99 | 1.15 (1.03–1.28) |
>7.98 | Ref | >7.23 | Ref | >7.99 | Ref |
Model 2 | |||||
≤5.60 | 1.12 (1.01–1.24) | ≤5.60 | 1.12 (1.00–1.27) | ≤5.48 | 1.18 (0.99–1.41) |
5.60–7.98 | 1.00 (0.92–1.08) | 5.60–7.23 | 0.95 (0.86–1.04) | 5.48–7.99 | 1.10 (0.96–1.25) |
>7.98 | Ref | >7.23 | Ref | >7.99 | Ref |
Model 3 | |||||
≤5.60 | 1.13 (1.01–1.25) | ≤5.60 | 1.15 (1.02–1.29) | ≤5.48 | 1.16 (0.98–1.38) |
5.60–7.98 | 1.00 (0.93–1.08) | 5.60–7.23 | 0.95 (0.86–1.05) | 5.48–7.99 | 1.09 (0.96–1.25) |
>7.98 | Ref | >7.23 | Ref | >7.99 | Ref |
Cancer mortality | |||||
Unadjusted | |||||
≤5.60 | 1.50 (1.32–1.71) | ≤5.80 | 1.86 (1.59–2.18) | ≤6.29 | 1.62 (1.29–2.02) |
5.60–10.08 | 1.17 (1.04–1.31) | 5.80–9.78 | 1.23 (1.07–1.42) | 6.29–10.44 | 1.27 (1.01–1.58) |
>10.08 | Ref | >9.78 | Ref | >10.44 | Ref |
Model 1 | |||||
≤5.60 | 1.17 (1.02–1.34) | ≤5.80 | 1.22 (1.04–1.43) | ≤6.29 | 1.15 (0.91–1.44) |
5.60–10.08 | 1.07 (0.95–1.21) | 5.80–9.78 | 1.07 (0.93–1.24) | 6.29–10.44 | 1.14 (0.91–1.42) |
>10.08 | Ref | >9.78 | Ref | >10.44 | Ref |
Model 2 | |||||
≤5.60 | 1.08 (0.88–1.31) | ≤5.80 | 1.06 (0.84–1.35) | ≤6.29 | 1.20 (0.87–1.66) |
5.60–10.08 | 1.05 (0.91–1.21) | 5.80–9.78 | 1.03 (0.86–1.22) | 6.29–10.44 | 1.19 (0.92–1.53) |
>10.08 | Ref | >9.78 | Ref | >10.44 | Ref |
Model 3 | |||||
≤5.60 | 1.09 (0.90–1.33) | ≤5.80 | 1.08 (0.85–1.38) | ≤6.29 | 1.20 (0.87–1.65) |
5.60–10.08 | 1.06 (0.92–1.22) | 5.80–9.78 | 1.03 (0.87–1.23) | 6.29–10.44 | 1.19 (0.92–1.54) |
>10.08 | Ref | >9.78 | Ref | >10.44 | Ref |
CVD mortality | |||||
Unadjusted | |||||
≤5.12 | 2.42 (2.07–2.84) | ≤5.39 | 2.21 (1.79–2.72) | ≤5.11 | 4.10 (3.11–5.40) |
5.12–7.28 | 1.52 (1.31–1.76) | 5.39–7.23 | 1.45 (1.19–1.76) | 5.11–7.99 | 2.01 (1.53–2.63) |
>7.28 | Ref | >7.23 | Ref | >7.99 | Ref |
Model 1 | |||||
≤5.12 | 1.50 (1.27–1.78) | ≤5.39 | 1.40 (1.13–1.74) | ≤5.11 | 1.69 (1.26–2.25) |
5.12–7.28 | 1.22 (1.05–1.42) | 5.39–7.23 | 1.19 (0.98–1.44) | 5.11–7.99 | 1.40 (1.07–1.84) |
>7.28 | Ref | >7.23 | Ref | >7.99 | Ref |
Model 2 | |||||
≤5.12 | 1.43 (1.12–1.83) | ≤5.39 | 1.37 (1.01–1.85) | ≤5.11 | 1.70 (1.11–2.62) |
5.12–7.28 | 1.22 (1.02–1.46) | 5.39–7.23 | 1.21 (0.96–1.52) | 5.11–7.99 | 1.44 (1.04–1.99) |
>7.28 | Ref | >7.23 | Ref | >7.99 | Ref |
Model 3 | |||||
≤5.12 | 1.42 (1.11–1.81) | ≤5.39 | 1.38 (1.02–1.87) | ≤5.11 | 1.66 (1.08–2.56) |
5.12–7.28 | 1.21 (1.01–1.45) | 5.39–7.23 | 1.21 (0.96–1.53) | 5.11–7.99 | 1.43 (1.03–1.98) |
>7.28 | Ref | >7.23 | Ref | >7.99 | Ref |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, Y.-J.; Lee, H.S.; Park, G.; Yang, J.; Kim, H.-M.; Lee, J.-W. Dietary Zinc Intake and All-Cause and Cardiovascular Mortality in Korean Middle-Aged and Older Adults. Nutrients 2023, 15, 358. https://doi.org/10.3390/nu15020358
Kwon Y-J, Lee HS, Park G, Yang J, Kim H-M, Lee J-W. Dietary Zinc Intake and All-Cause and Cardiovascular Mortality in Korean Middle-Aged and Older Adults. Nutrients. 2023; 15(2):358. https://doi.org/10.3390/nu15020358
Chicago/Turabian StyleKwon, Yu-Jin, Hye Sun Lee, Goeun Park, Juyeon Yang, Hyung-Mi Kim, and Ji-Won Lee. 2023. "Dietary Zinc Intake and All-Cause and Cardiovascular Mortality in Korean Middle-Aged and Older Adults" Nutrients 15, no. 2: 358. https://doi.org/10.3390/nu15020358
APA StyleKwon, Y. -J., Lee, H. S., Park, G., Yang, J., Kim, H. -M., & Lee, J. -W. (2023). Dietary Zinc Intake and All-Cause and Cardiovascular Mortality in Korean Middle-Aged and Older Adults. Nutrients, 15(2), 358. https://doi.org/10.3390/nu15020358