Fresh Beef and Lamb Consumption in Relation to Nutrient Intakes and Markers of Nutrition and Health Status among the Population Aged 5–90 Years in Ireland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Sampling and Recruitment
2.3. Dietary Intake Assessment
2.4. Biomarkers of Nutritional and Health Status
2.5. Defining ‘Fresh Beef and Lamb’
2.6. Estimation of ‘Fresh Beef and Lamb’ Intake and Contribution to Energy and Nutrient Intakes
2.7. Association of ‘Fresh Beef and Lamb’ Consumption with Nutrient Intakes, Biochemical Markers of Nutritional Status and Blood Pressure Measurements in Consumers Only
2.8. Statistical Analyses
3. Results
3.1. Consumption of ‘Fresh Beef and Lamb’
3.2. Contribution of ‘Fresh Beef and Lamb’ to Energy and Nutrient Intakes
3.3. Nutrient Intakes in Non/Low and High Consumers of ‘Fresh Beef and Lamb’
3.4. Markers of Nutrition and Health Status among Non/Low and High Consumers of ‘Fresh Beef and Lamb’ (for Adults Only)
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Cocking, C.; Walton, J.; Kehoe, L.; Cashman, K.D.; Flynn, A. The role of meat in the European diet: Current state of knowledge on dietary recommendations, intakes and contribution to energy and nutrient intakes and status. Nutr. Res. Rev. 2020, 33, 181–189. [Google Scholar] [CrossRef]
- Scientific Advisory Committee on Nutrition. Iron and Health; The Stationery Office: London, UK, 2010; p. 360.
- World Cancer Reserach Fund; American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report 2018; World Cancer Research Fund: London, UK, 2018; p. 112. [Google Scholar]
- Micha, R.; Wallace, S.K.; Mozaffarian, D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: A systematic review and meta-analysis. Circulation 2010, 121, 2271–2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micha, R.; Michas, G.; Mozaffarian, D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes—An updated review of the evidence. Curr. Atheroscler. Rep. 2012, 14, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Manson, J.E.; Willett, W.C.; Hu, F.B. Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: Three cohorts of US men and women. JAMA Intern. Med. 2013, 173, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Mattiuzzi, C.; Cervellin, G. Meat consumption and cancer risk: A critical review of published meta-analyses. Crit. Rev. Oncol. Hematol. 2016, 97, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zeng, R.; Huang, J.; Li, X.; Zhang, J.; Ho, J.C.; Zheng, Y. Dietary Protein Sources and Incidence of Breast Cancer: A Dose-Response Meta-Analysis of Prospective Studies. Nutrients 2016, 8, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Brandt, P.A. Red meat, processed meat, and other dietary protein sources and risk of overall and cause-specific mortality in The Netherlands Cohort Study. Eur. J. Epidemiol. 2019, 34, 351–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, F.; Cofnas, N. Should dietary guidelines recommend low red meat intake? Crit. Rev. Food Sci. Nutr. 2020, 60, 2763–2772. [Google Scholar] [CrossRef] [Green Version]
- Papier, K.; Fensom, G.K.; Knuppel, A.; Appleby, P.N.; Tong, T.Y.N.; Schmidt, J.A.; Travis, R.C.; Key, T.J.; Perez-Cornago, A. Meat consumption and risk of 25 common conditions: Outcome-wide analyses in 475,000 men and women in the UK Biobank study. BMC Med. 2021, 19, 53. [Google Scholar] [CrossRef]
- Stanton, A.V.; Leroy, F.; Elliott, C.; Mann, N.; Wall, P.; De Smet, S. 36-fold higher estimate of deaths attributable to red meat intake in GBD 2019: Is this reliable? Lancet 2022, 399, e23–e26. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, N.; Chiu, S.; Williams, P.T.; King, S.M.; Krauss, R.M. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 110, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Fleming, J.A.; Kris-Etherton, P.M.; Petersen, K.S.; Baer, D.J. Effect of varying quantities of lean beef as part of a Mediterranean-style dietary pattern on lipids and lipoproteins: A randomized crossover controlled feeding trial. Am. J. Clin. Nutr. 2021, 113, 1126–1136. [Google Scholar] [CrossRef]
- Binnie, M.A.; Barlow, K.; Johnson, V.; Harrison, C. Red meats: Time for a paradigm shift in dietary advice. Meat Sci. 2014, 98, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Wyness, L. The role of red meat in the diet: Nutrition and health benefits. Proc. Nutr. Soc. 2016, 75, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.D.; Hayes, A. Red meat’s role in addressing ‘nutrients of public health concern’. Meat Sci. 2017, 132, 196–203. [Google Scholar] [CrossRef] [PubMed]
- van Rossum, C.T.M.; Buurma-Rethans, E.J.M.; Vennemann, F.B.C.; Brants, H.A.M.; de Boer, E.J.; Ocké, M.C. The Diet of the Dutch. Results of the First Two Years of the Dutch National Food Consumption Survey 2012–2016; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2020; p. 384. [Google Scholar]
- Sui, Z.; Raubenheimer, D.; Rangan, A. Consumption patterns of meat, poultry, and fish after disaggregation of mixed dishes: Secondary analysis of the Australian National Nutrition and Physical Activity Survey 2011–12. BMC Nutr. 2017, 3, 52. [Google Scholar] [CrossRef] [Green Version]
- Bowen, J.; Baird, D.; Syrette, J.; Noakes, M.; Baghurst, K. Consumption of beef/veal/lamb in Australian children: Intake, nutrient contribution and comparison with other meat, poultry and fish categories. Nutr. Diet. 2012, 69, 1–16. [Google Scholar] [CrossRef]
- An, R.; Nickols-Richardson, S.; Alston, R.; Shen, S.; Clarke, C. Total, Fresh, Lean, and Fresh Lean Beef Consumption in Relation to Nutrient Intakes and Diet Quality among U.S. Adults, 2005–2016. Nutrients 2019, 11, 563. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, C.E.; Zanovec, M.; Keast, D.R.; Fulgoni, V.L., 3rd; Nicklas, T.A. Nutrient contribution of total and lean beef in diets of US children and adolescents: National Health and Nutrition Examination Survey 1999–2004. Meat Sci. 2011, 87, 250–256. [Google Scholar] [CrossRef]
- Bates, B.; Lennox, A.; Prentice, A.; Bates, C.; Page, P.; Nicholson, S.; Swan, G. National Diet and Nutrition Survey: Results from Years 1–4 (Combined) of the Rolling Programme (2008/2009–2011/2012); Public Health England: London, UK, 2014; p. 160.
- Derbyshire, E. Associations between Red Meat Intakes and the Micronutrient Intake and Status of UK Females: A Secondary Analysis of the UK National Diet and Nutrition Survey. Nutrients 2017, 9, 768. [Google Scholar] [CrossRef]
- Hobbs-Grimmer, D.A.; Givens, D.I.; Lovegrove, J.A. Associations between red meat, processed red meat and total red and processed red meat consumption, nutritional adequacy and markers of health and cardio-metabolic diseases in British adults: A cross-sectional analysis using data from UK National Diet and Nutrition Survey. Eur. J. Nutr. 2021, 60, 2979–2997. [Google Scholar] [CrossRef]
- Bradlee, M.L.; Singer, M.R.; Moore, L.L. Lean red meat consumption and lipid profiles in adolescent girls. J. Hum. Nutr. 2014, 27, 292–300. [Google Scholar] [CrossRef] [Green Version]
- European Commission. FOOD 2030 Pathways for Action. Healthy, Sustainable and Personalised Nutrition; European Commission: Luxembourg, 2020; p. 4. [Google Scholar]
- Central Statistics Office. Census 2006 Principal Demographic Results; The Stationery Office: Dublin, Ireland, 2007; p. 108. [Google Scholar]
- Central Statistics Office. Census 2002 Principal Demographic Results; The Stationery Office: Dublin, Ireland, 2002; p. 90. [Google Scholar]
- Nelson, M.; Atkinson, M.; Meyer, J. A Photographic Atlas of Food Portion Sizes; Food Standards Agency: London, UK, 1997. [Google Scholar]
- Ministry of Agriculture Fisheries and Food. Food Portion Sizes; The Stationary Office: London, UK, 1997.
- Food Standards Agency. McCance and Widdowson’s the Composition of Foods, 6th ed.; Royal Society of Chemistry: Cambridge, MA, USA, 2002.
- Holland, B.; Welch, A.; Unwin, I.D.; Buss, D.H.; Paul, A.A.; Southgate, D.A.T. McCance and Widdowson’s the Composition of Foods, 5th ed.; HMSO: London, UK; Royal Society of Chemistry: London, UK, 1995. [Google Scholar]
- Holland, B.; Widdowson, E.M.; Unwin, I.D.; McCance, R.A.; Buss, D.H. Cereal and Cereal Products: Third Supplement to McCance and Widdowson’s the Composition of Foods; HMSO: London, UK; Royal Society of Chemistry: London, UK, 1988. [Google Scholar]
- Holland, B.; Unwin, I.D.; McCance, R.A.; Buss, D.H. Milk Products and Eggs: Fourth Supplement to McCance and Widdowson’s the Composition of Foods; HMSO: London, UK; Royal Society of Chemistry: London, UK, 1989. [Google Scholar]
- Holland, B.; Widdowson, E.M.; Unwin, I.D.; Buss, D.H. Vegetables, Herbs and Spices: Fifth Supplement to McCance and Widdowson’s the Composition of Foods; HMSO: London, UK; Royal Society of Chemistry: London, UK, 1991. [Google Scholar]
- Holland, B.; Unwin, I.D.; Buss, D.H. Fruit and Nuts: First Supplement to the Fifth Edition of McCance and Widdowson’s the Composition of Foods; HMSO: London, UK; Royal Society of Chemistry: London, UK, 1992. [Google Scholar]
- Holland, B.; Brown, J.; Buss, D.H. Fish and Fish Products: Third Supplement to the Fifth Edition of McCance and Widdowson’s the Composition of Foods; HMSO: London, UK; Royal Society of Chemistry: London, UK, 1993. [Google Scholar]
- Chan, W.; Brown, J.; Church, S.M.; Buss, D.H. Miscellaneous Foods. Fourth Supplement to McCance & Widdowson’s the Composition of Foods, 5th ed.; HMSO: London, UK; Royal Society of Chemistry: London, UK; Ministry of Agriculture, Fisheries and Food: London, UK, 1994. [Google Scholar]
- Chan, W.; Brown, J.; Church, S.M.; Buss, D.H. Meat Poultry and Game. Fifth Supplement to McCance & Widdowson’s the Composition of Foods, 5th ed.; HMSO: London, UK; Royal Society of Chemistry: London, UK; Ministry of Agriculture, Fisheries and Food: London, UK, 1995. [Google Scholar]
- Chan, W.; Brown, J.; Church, S.M.; Buss, D.H. Meat Products and Dishes. Sixth Supplement to McCance & Widdowson’s the Composition of Foods, 5th ed.; HMSO: London, UK; Royal Society of Chemistry: London, UK; Ministry of Agriculture, Fisheries and Food: London, UK, 1996. [Google Scholar]
- Holland, B.; Welch, A.; Buss, D.H. Vegetable Dishes: Second Supplement to the Fifth Edition of McCance and Widdowson’s the Composition of Foods; HMSO: London, UK; Royal Society of Chemistry: London, UK, 1996. [Google Scholar]
- Black, L.J.; Walton, J.; Flynn, A.; Cashman, K.D.; Kiely, M. Small Increments in Vitamin D Intake by Irish Adults over a Decade Show That Strategic Initiatives to Fortify the Food Supply Are Needed. J. Nutr. 2015, 145, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; McNulty, B.A.; Tiernery, A.M.; Devlin, N.F.C.; Joyce, T.; Leite, J.C.; Flynn, A.; Walton, J.; Brennan, L.; Gibney, M.J.; et al. Dietary fat intakes in Irish adults in 2011: How much has changed in 10 years? Br. J. Nutr. 2016, 115, 1798–1809. [Google Scholar] [CrossRef] [Green Version]
- Walton, J.; Kehoe, L.; McNulty, B.A.; Nugent, A.P.; Flynn, A. Intakes and sources of dietary sugars in a representative sample of Irish adults (18–90 y). Proc. Nutr. Soc. 2017, 76, E65. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, E.; Giltinan, M.; Kehoe, L.; Nugent, A.P.; McNulty, B.A.; Flynn, A.; Walton, J. Sodium and Potassium Intakes and Their Ratio in Adults (18–90 y): Findings from the Irish National Adult Nutrition Survey. Nutrients 2020, 12, 938. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.D.; Muldowney, S.; McNulty, B.; Nugent, A.; FitzGerald, A.P.; Kiely, M.; Walton, J.; Gibney, M.J.; Flynn, A. Vitamin D status of Irish adults: Findings from the National Adult Nutrition Survey. Br. J. Nutr. 2013, 109, 1248–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, S.M.; Gibney, M.J.; Nugent, A.P.; McNulty, H.; Molloy, A.M.; Scott, J.M.; Flynn, A.; Strain, J.; Ward, M.; Walton, J.; et al. Impact of voluntary fortification and supplement use on dietary intakes and biomarker status of folate and vitamin B-12 in Irish adults. Am. J. Clin. Nutr. 2015, 101, 1163–1172. [Google Scholar] [CrossRef] [Green Version]
- Moore Heslin, A.; O’Donnell, A.; Buffini, M.; Nugent, A.P.; Walton, J.; Flynn, A.; McNulty, B.A. Risk of Iron Overload in Obesity and Implications in Metabolic Health. Nutrients 2021, 13, 1539. [Google Scholar] [CrossRef]
- Iwahori, T.; Ueshima, H.; Torii, S.; Saito, Y.; Kondo, K.; Tanaka-Mizuno, S.; Arima, H.; Miura, K. Diurnal variation of urinary sodium-to-potassium ratio in free-living Japanese individuals. Hypertens. Res. 2017, 40, 658–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosgrove, M.; Flynn, A.; Kiely, M. Impact of disaggregation of composite foods on estimates of intakes of meat and meat products in Irish adults. Public Health Nutr. 2007, 8, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs-Smith, S.M.; Kott, P.S.; Guenther, P.M. Mean proportion and population proportion: Two answers to the same question? J. Am. Diet. Assoc. 1989, 89, 671–676. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. A Global Brief on Hypertension Silent Killer, Global Public Health Crisis; World Health Organization: Geneva, Switzerland, 2013; p. 40. [Google Scholar]
- British Cardiac Society; British Hyperlipidaemia Association; British Hypertension Society; British Diabetic Association. Joint British recommendations on prevention of coronary heart disease in clinical practice. Heart 1998, 80 (Suppl. 2), S1–S29. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011; p. 1133. [Google Scholar]
- EFSA Panel on Dietetic Products Nutrition and Allergies. Scientific Opinion on Dietary Reference Values for cobalamin (vitamin B12). EFSA J. 2015, 13, 4150. [Google Scholar] [CrossRef] [Green Version]
- Devalia, V.; Hamilton, M.S.; Molloy, A.M.; British Committee for Standards in Haematology. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br. J. Haematol. 2014, 166, 496–513. [Google Scholar] [CrossRef]
- World Health Organization. Assessing the Iron Status of Populations; World Health Organization: Geneva, Switzerland; Centers for Disease Control and Prevention: Geneva, Switzerland, 2007; p. 108.
- World Health Organization. Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations. Vitamin and Mineral Nutrition Information System; World Health Organization: Geneva, Switzerland, 2011; p. 6. [Google Scholar]
- World Health Organization. Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012; p. 49. [Google Scholar]
- Fagerland, M.W. T-tests, non-parametric tests, and large studies—A paradox of statistical practice? BMC Med. Res. Methodol. 2012, 12, 78. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, C.; Arcella, D.; Piccinelli, R.; Sette, S.; Le Donne, C. The Italian National Food Consumption Survey INRAN-SCAI 2005–06: Main results in terms of food consumption. Public Health Nutr. 2009, 12, 2504–2532. [Google Scholar] [CrossRef] [Green Version]
- Holman, B.W.B.; Fowler, S.M.; Hopkins, D.L. Red meat (beef and sheep) products for an ageing population: A review. Int. J. Food Sci. 2020, 55, 919–934. [Google Scholar] [CrossRef]
- Murphy, D. Exploring evidence of lost and forgotten Irish food traditions in Irish cookbooks 1980–2015. Folk Life 2021, 59, 161–181. [Google Scholar] [CrossRef]
- Tschanz, L.; Kaelin, I.; Wróbel, A.; Rohrmann, S.; Sych, J. Characterisation of meat consumption across socio-demographic, lifestyle and anthropometric groups in Switzerland: Results from the National Nutrition Survey menuCH. Public Health Nutr. 2022, 25, 3096–3106. [Google Scholar] [CrossRef] [PubMed]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef]
- De Smet, S.; Vossen, E. Meat: The balance between nutrition and health. A review. Meat Sci. 2016, 120, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Richi, E.B.; Baumer, B.; Conrad, B.; Darioli, R.; Schmid, A.; Keller, U. Health Risks Associated with Meat Consumption: A Review of Epidemiological Studies. Int. J. Vitam. Nutr. Res. 2015, 85, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Vatanparast, H.; Islam, N.; Shafiee, M.; Ramdath, D.D. Increasing Plant-Based Meat Alternatives and Decreasing Red and Processed Meat in the Diet Differentially Affect the Diet Quality and Nutrient Intakes of Canadians. Nutrients 2020, 12, 2034. [Google Scholar] [CrossRef] [PubMed]
- Kouvari, M.; Tyrovolas, S.; Panagiotakos, D.B. Red meat consumption and healthy ageing: A review. Maturitas 2016, 84, 17–24. [Google Scholar] [CrossRef]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Scollan, N.D.; Price, E.M.; Morgan, S.A.; Huws, S.A.; Shingfield, K.J. Can we improve the nutritional quality of meat? Proc. Nutr. Soc. 2017, 76, 603–618. [Google Scholar] [CrossRef] [Green Version]
- Meale, S.J.; Chaves, A.V.; He, M.L.; McAllister, T.A. Dose-response of supplementing marine algae (Schizochytrium spp.) on production performance, fatty acid profiles, and wool parameters of growing lambs. J. Anim. Sci. 2014, 92, 2202–2213. [Google Scholar] [CrossRef] [Green Version]
- Duffy, S.K.; O’Doherty, J.V.; Rajauria, G.; Clarke, L.C.; Cashman, K.D.; Hayes, A.; O’Grady, M.N.; Kerry, J.P.; Kelly, A.K. Cholecalciferol supplementation of heifer diets increases beef vitamin D concentration and improves beef tenderness. Meat Sci. 2017, 134, 103–110. [Google Scholar] [CrossRef]
5–12 Years (n 594) | 13–17 Years (n 441) | 18–64 Years (n 1274) | 65–90 Years (n 226) | WCBA 18–50 Years (n 487) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beef and Lamb | Beef | Lamb | Beef and Lamb | Beef | Lamb | Beef and Lamb | Beef | Lamb | Beef and Lamb | Beef | Lamb | Beef and Lamb | Beef | Lamb | |
All | |||||||||||||||
Mean (g) | 19.2 a | 16.6 a | 2.6 a | 32.8 b,c | 28.3 b,c | 4.5 a,b,c | 42.7 d | 36.3 d | 6.4 b,d | 40.8 b,d,e | 28.2 b,d,e | 12.6 e | 27.0 c | 23.7 c,e | 3.3 a,c |
Mean (g/10 MJ) | 0.028 a | 0.024 a | 0.004 a | 0.039 b | 0.034 b | 0.005 a,b | 0.050 c | 0.043 c | 0.008 b,c | 0.058 c,d | 0.040 b,c,d | 0.018 d | 0.038 b,e | 0.033 b,e | 0.004 a,b |
SD (g) | 18.6 | 16.7 | 6.7 | 32.1 | 29.6 | 11.9 | 42.6 | 40.0 | 17.2 | 39.7 | 33.7 | 23.7 | 28.8 | 28.0 | 10.8 |
Median (g) | 14.7 | 13.2 | 0.0 | 25.1 | 21.4 | 0.0 | 33.5 | 26.7 | 0.0 | 32.5 | 20.1 | 0.0 | 20.3 | 16.0 | 0.0 |
IQR (g) | 6.1–27.3 | 3.7–24.6 | 0.0–0.0 | 11.5–45.0 | 8.9–38.8 | 0.0–0.0 | 5.4–63.6 | 0.0–56.3 | 0.0–0.0 | 0.0–61.6 | 0.0–46.0 | 0.0–22.3 | 0.0–82.4 | 0.0–80.6 | 0.0–29.7 |
P97.5 (g) | 64.4 | 55.7 | 21.6 | 111 | 103 | 40.7 | 151 | 136 | 61.5 | 149 | 114 | 73.7 | 100 | 100 | 37.5 |
Consumers (%) | 84.2 | 78.8 | 18.9 | 84.4 | 83.0 | 19.5 | 76.0 | 70.2 | 16.2 | 72.6 | 59.3 | 30.1 | 67.8 | 62.8 | 10.9 |
Boys/men | |||||||||||||||
Mean (g) | 20.3 | 17.7 | 2.6 | 40.2 | 34.9 | 5.2 | 55.7 | 47.1 | 8.6 | 44.7 | 31.9 | 12.8 | - | - | - |
Mean (g/10 MJ) | 0.028 | 0.024 | 0.003 | 0.043 | 0.037 | 0.005 | 0.058 | 0.049 | 0.009 | 0.056 | 0.040 | 0.016 | |||
SD (g) | 20.6 | 17.8 | 7.6 | 36.5 | 34.8 | 12.3 | 48.6 | 46.1 | 21.0 | 40.2 | 34.4 | 24.5 | - | - | - |
Median (g) | 14.6 | 13.6 | 0.0 | 31.6 | 26.7 | 0.0 | 46.9 | 37.2 | 0.0 | 39.5 | 25.4 | 0.0 | - | - | - |
IQR (g) | 6.1–29.3 | 3.6–26.3 | 0.0–0.0 | 15.5–58.7 | 12.0–46.8 | 0.0–0.0 | 19.4–79.6 | 5.7–70.1 | 0.0–0.0 | 0.0–66.6 | 0.0–51.7 | 0.0–26.3 | |||
P97.5 (g) | 68.6 | 61.9 | 23.6 | 129 | 119 | 47.8 | 176 | 166 | 74.2 | 157 | 114 | 69.1 | |||
Consumers (%) | 83.2 | 77.7 | 17.9 | 88.8 | 87.9 | 21.0 | 82.2 | 75.7 | 18.6 | 73.6 | 62.3 | 29.2 | - | - | - |
Girls/women | |||||||||||||||
Mean (g) | 18.1 | 15.6 | 2.5 | 25.1 * | 21.4 * | 3.7 | 29.7 * | 25.6 * | 4.1 * | 37.3 | 25.0 | 12.4 | - | - | - |
Mean (g/10 MJ) | 0.027 | 0.023 | 0.004 | 0.035 | 0.030 | 0.005 | 0.042 * | 0.037 * | 0.006 | 0.059 | 0.039 | 0.020 | |||
SD (g) | 16.4 | 15.5 | 5.8 | 24.6 | 21.0 | 11.4 | 30.6 | 29.1 | 12.0 | 39.2 | 32.9 | 23.1 | - | - | - |
Median (g) | 14.8 | 12.9 | 0.0 | 19.1 | 16.4 | 0.0 | 23.2 | 17.5 | 0.0 | 27.1 | 13.3 | 0.0 | |||
IQR (g) | 6.1–25.4 | 3.8–23.6 | 0.0–0.0 | 7.1–38.3 | 5.6–31.4 | 0.0–0.0 | 0.0–46.9 | 0.0–41.4 | 0.0–0.0 | 0.0–58.1 | 0.0–41.6 | 0.0–19.8 | - | - | - |
P97.5 (g) | 56.5 | 51.3 | 20.3 | 83.6 | 77.2 | 39.4 | 106 | 103 | 41.5 | 145 | 145 | 79.8 | |||
Consumers (%) | 85.1 | 79.9 | 19.8 | 79.7 | 77.9 | 18.0 | 69.8 | 64.7 | 13.8 | 71.7 | 56.7 | 30.8 | - | - | - |
% Contribution | |||||
---|---|---|---|---|---|
5–12 Years (n 500) | 13–17 Years (n 372) | 18–64 Years (n 968) | 65–90 Years (n 164) | WCBA 18–50 Years (n 330) | |
Energy | 4.7 | 6.5 | 8.2 | 9.5 | 7.3 |
Protein | 11.5 | 15.2 | 18.8 | 20.1 | 16.9 |
Total fat | 7.0 | 9.2 | 11.5 | 13.8 | 10.0 |
Saturated fat | 6.9 | 9.6 | 13.0 | 15.7 | 11.3 |
MUFA | 8.7 | 10.7 | 13.2 | 15.5 | 11.4 |
PUFA | 4.0 | 4.8 | 5.4 | 7.6 | 4.7 |
Carbohydrate | 1.5 | 2.0 | 2.3 | 2.4 | 2.4 |
Total sugars | 1.0 | 1.5 | 1.8 | 1.7 | 1.8 |
Free sugars | 0.3 | 0.7 | 1.0 | 0.6 | 0.9 |
Dietary fibre | 2.0 | 2.9 | 3.1 | 3.1 | 3.0 |
Salt | 5.9 | 7.1 | 8.6 | 8.0 | 8.6 |
Vitamin A | 7.4 | 7.4 | 7.6 | 9.6 | 7.4 |
Vitamin D | 12.4 | 16.2 | 14.0 | 10.1 | 13.1 |
Vitamin K | 4.2 | 5.5 | 6.0 | 4.8 | 5.4 |
Niacin | 9.4 | 12.5 | 15.0 | 18.0 | 13.5 |
Vitamin B6 | 6.4 | 8.8 | 10.6 | 12.2 | 9.7 |
Vitamin B12 | 15.0 | 21.9 | 29.9 | 29.5 | 27.8 |
Total folate | 3.0 | 4.2 | 4.3 | 3.9 | 4.0 |
Iron | 7.1 | 10.1 | 12.3 | 12.9 | 10.5 |
Zinc | 18.1 | 23.4 | 27.4 | 27.3 | 24.6 |
Potassium | 6.1 | 8.3 | 5.4 | 5.7 | 4.9 |
5–12 Years | 13–17 Years | 18–64 Years | 65–90 Years | WCBA (18–50 Years) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Non/Low Consumers | High Consumers | Non/Low Consumers | High Consumers | Non/Low Consumers | High Consumers | Non/Low Consumers | High Consumers | Non/Low Consumers | High Consumers | |
(n 197) | (n 198) | (n 146) | (n 147) | (n 423) | (n 424) | (n 75) | (n 75) | (n 162) | (n 162) | |
Fresh beef and lamb (g/d) | 3.3 | 38.8 * | 6.2 | 66.0 * | 4.9 | 87.7 * | 2.5 | 86.4 * | 0.3 | 60.8 * |
Consumers (%) | 47.7 | 100 | 52.7 | 100 | 27.7 | 100 | 17.0 | 100 | 3.0 | 100 |
Mean daily nutrient intakes (food sources only) | ||||||||||
Energy (kcal) | 1636 | 1734 | 1861 | 2158 * | 1919 | 2106 * | 1624 | 1778 | 1634 | 1843 * |
Protein (%TE) | 12.9 | 14.5 * | 13.9 | 15.5 * | 16.4 | 18.0 * | 17.3 | 18.6 | 16.4 | 16.9 |
Total fat (%TE) | 33.1 | 34.5 * | 35.2 | 36.4 | 33.2 | 34.5 | 33.8 | 35.6 | 33.6 | 35.3 |
Saturated fat (%TE) | 13.9 | 14.5 | 14.0 | 14.9 | 12.7 | 13.7 | 13.3 | 15.1 | 12.9 | 13.9 |
MUFA (%TE) | 10.6 | 11.5 | 12.5 | 13.1 | 12.0 | 12.7 | 11.8 | 12.5 | 12.2 | 12.9 |
PUFA (%TE) | 4.7 | 4.7 | 5.9 | 5.6 | 6.3 | 5.8 | 6.3 | 5.5 | 6.4 | 6.3 |
Carbohydrate (%TE) | 53.5 | 50.6 | 50.1 | 47.6 * | 44.3 | 40.6 * | 44.5 | 42.2 | 44.6 | 41.8 * |
Total sugars (%TE) | 24.6 | 23.1 | 21.1 | 20.0 | 17.4 | 15.9 * | 18.2 | 16.6 | 17.5 | 16.9 |
Free sugars (%TE) | 17.2 | 15.5 | 14.4 | 13.9 | 9.0 | 8.5 | 7.9 | 7.5 | 9.1 | 9.2 |
Dietary fibre (g/10 MJ) | 11.4 | 11.6 | 18.9 | 18.4 | 24.2 | 21.4 * | 27.0 | 24.9 | 24.5 | 21.9 |
Salt (g/10 MJ) | 72.7 | 74.9 | 76.7 | 75.6 | 61.8 | 64.9 | 51.4 | 56.0 | 52.9 | 57.4 |
Vitamin A (µg/10 MJ) | 871 | 1089 | 914 | 1023 | 877 | 1093 | 1099 | 1410 | 837 | 993 |
Vitamin D (µg/10 MJ) | 3.7 | 3.7 | 3.7 | 3.6 | 3.8 | 3.9 | 4.2 | 4.7 | 3.1 | 3.3 |
Vitamin K (µg/10 MJ) | 130 | 135 | 134 | 137 | 178 | 161 | 201 | 166 | 177 | 172 |
Niacin (mg/10 MJ) | 39.0 | 42.2 * | 27.7 | 26.8 | 39.3 | 45.4 | 33.1 | 36.0 | 33.0 | 37.1 |
Vitamin B6 (mg/10 MJ) | 2.8 | 2.9 | 3.8 | 3.3 | 2.5 | 2.9 | 2.3 | 2.7 | 2.0 | 2.3 * |
Vitamin B12 (µg/10 MJ) | 5.7 | 6.8 * | 5.9 | 6.4 | 3.6 | 5.8 | 4.0 | 6.2 | 2.9 | 4.4 * |
Total folate (µg/10 MJ) | 318 | 318 | 346 | 315 | 311 | 320 | 293 | 343 | 251 | 267 |
Iron (mg/10 MJ) | 13.0 | 13.8 | 16.8 | 13.9 | 11.8 | 12.9 | 10.1 | 11.4 | 10.4 | 11.2 |
Zinc (mg/10 MJ) | 8.3 | 10.7 * | 9.7 | 11.3 * | 8.0 | 11.7 * | 7.4 | 10.9* | 6.8 | 9.4 * |
Potassium (mg/10 MJ) | 3034 | 3523 * | 3209 | 3242 | 3650 | 3674 | 4031 | 3970 | 3699 | 3640 |
18–64 Years | 65–90 Years | WCBA 18–50 Years | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Non/Low Consumers | High Consumers | Non/Low Consumers | High Consumers | Non/Low Consumers | High Consumers | |||||||
n | Mean | n | Mean | n | Mean | n | Mean | n | Mean | n | Mean | |
Systolic BP (mmHg) | 376 | 123 | 369 | 122 | 63 | 139 | 59 | 140 | 144 | 112 | 145 | 113 |
Diastolic BP (mmHg) | 376 | 77.5 | 369 | 77.8 | 63 | 81.4 | 59 | 81.4 | 144 | 75.0 | 145 | 75.3 |
Serum total cholesterol (mmol/L) | 330 | 5.0 | 324 | 4.9 | 42 | 5.0 | 51 | 5.0 | 121 | 4.9 | 123 | 4.8 |
Serum triglycerides (mmol/L) | 330 | 1.3 | 324 | 1.3 | 42 | 1.4 | 51 | 1.3 | 121 | 1.1 | 123 | 1.0 |
Serum direct HDL cholesterol (mmol/L) | 327 | 1.5 | 321 | 1.6 | 41 | 1.7 | 51 | 1.7 | 120 | 1.7 | 123 | 1.7 |
Calculated LDL cholesterol (mmol/L) | 323 | 2.8 | 316 | 2.8 | 41 | 2.7 | 51 | 2.8 | 119 | 2.7 | 123 | 2.7 |
Serum 25-hydroxyvitamin D (nmol/L) | 274 | 57.6 | 267 | 60.7 | 29 | 53.5 | 34 | 50.3 | 101 | 56.1 | 105 | 60.4 |
Serum vitamin B12 (pmol/L) | 289 | 300 | 266 | 317 | 35 | 294 | 44 | 316 | 103 | 284 | 100 | 286 |
Serum ferritin (ng/mL) | 306 | 108 | 283 | 126 | 35 | 160 | 41 | 153 | 113 | 56.7 | 103 | 53.7 |
Haemoglobin (g/dL) | 300 | 14.3 | 278 | 14.4 | 37 | 14.1 | 42 | 13.9 | 112 | 13.3 | 102 | 13.4 |
Urinary sodium (mmol/L) | 322 | 95.1 | 317 | 102 | 42 | 83.0 | 54 | 88.0 | 123 | 91.6 | 126 | 105 |
Urinary potassium (mmol/L) | 318 | 45.6 | 317 | 46.7 | 44 | 36.6 | 54 | 39.0 | 121 | 42.7 | 126 | 45.4 |
Urinary Na:K ratio | 317 | 2.0 | 315 | 2.1 | 42 | 2.0 | 54 | 2.1 | 121 | 2.1 | 125 | 2.4 |
n | % | n | % | n | % | n | % | n | % | n | % | |
Systolic BP ≥ 140 mmHg [54] | 376 | 12.5 | 369 | 13.8 | 63 | 44.4 | 59 | 54.2 | 144 | 1.4 | 145 | 4.8 |
Diastolic BP ≥ 9 0 mmHg [54] | 376 | 11.4 | 369 | 13.6 | 63 | 19.0 | 59 | 20.3 | 144 | 6.3 | 145 | 8.3 |
Serum total cholesterol > 5.2 mmol/L [55] | 330 | 37.6 | 324 | 34.0 | 42 | 40.5 | 51 | 43.1 | 121 | 34.7 | 123 | 26.8 |
Serum 25-hydroxyvitamin D < 50 nmol/L [56] | 274 | 43.1 | 267 | 40.1 | 29 | 51.7 | 34 | 50.0 | 101 | 47.5 | 105 | 44.8 |
Serum vitamin B12 < 148 pmol/L [57,58] | 289 | 2.8 | 266 | 1.9 | 35 | 5.7 | 44 | 0.0 | 103 | 3.9 | 100 | 3.0 |
Serum ferritin < 15µg/L [3,59,60] | 306 | 7.5 | 283 | 3.5 | 35 | 0.0 | 49 | 2.4 | 113 | 15.0 | 103 | 8.7 |
Haemoglobin < 13 g/dL (men) and <12 g/dL (women) [3] | 300 | 4.3 | 278 | 3.6 | 37 | 8.1 | 42 | 9.5 | 112 | 5.4 | 102 | 7.8 |
Urinary Na:K ratio > 1 [61] | 317 | 70.7 | 315 | 76.2 | 42 | 73.8 | 54 | 75.9 | 121 | 73.6 | 125 | 79.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kehoe, L.; O’Sullivan, E.; Cocking, C.; McNulty, B.A.; Nugent, A.P.; Cashman, K.D.; Flynn, A.; Walton, J. Fresh Beef and Lamb Consumption in Relation to Nutrient Intakes and Markers of Nutrition and Health Status among the Population Aged 5–90 Years in Ireland. Nutrients 2023, 15, 313. https://doi.org/10.3390/nu15020313
Kehoe L, O’Sullivan E, Cocking C, McNulty BA, Nugent AP, Cashman KD, Flynn A, Walton J. Fresh Beef and Lamb Consumption in Relation to Nutrient Intakes and Markers of Nutrition and Health Status among the Population Aged 5–90 Years in Ireland. Nutrients. 2023; 15(2):313. https://doi.org/10.3390/nu15020313
Chicago/Turabian StyleKehoe, Laura, Emma O’Sullivan, Chris Cocking, Breige A. McNulty, Anne P. Nugent, Kevin D. Cashman, Albert Flynn, and Janette Walton. 2023. "Fresh Beef and Lamb Consumption in Relation to Nutrient Intakes and Markers of Nutrition and Health Status among the Population Aged 5–90 Years in Ireland" Nutrients 15, no. 2: 313. https://doi.org/10.3390/nu15020313
APA StyleKehoe, L., O’Sullivan, E., Cocking, C., McNulty, B. A., Nugent, A. P., Cashman, K. D., Flynn, A., & Walton, J. (2023). Fresh Beef and Lamb Consumption in Relation to Nutrient Intakes and Markers of Nutrition and Health Status among the Population Aged 5–90 Years in Ireland. Nutrients, 15(2), 313. https://doi.org/10.3390/nu15020313