The Increased Risk of Hypertension Caused by Irrational Dietary Pattern May Be Associated with Th17 Cell in the Middle-Aged and Elderly Rural Residents of Beijing City, Northern China: A 1:1 Matched Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Desgin
2.2. Anthoropometric Measurments
2.3. Questionnarie and Food Consumption Assessment
2.4. CD4+ T-Cell Subset and Inflammatory Cytokines
2.5. Dietary Pattern Analysis
2.6. Stastistical Analysis
3. Results
3.1. General Characteristics
3.2. Comparisons of CD4+ T-Cell Subsets in Participants with and without Hypertension
3.3. Comparisons of Circulating Inflammatory Cytokines in Participants with and without Hypertension
3.4. Identified Dietary Patterns
3.5. Association between Dietary Pattern and On-Site Blood Pressure
3.6. Correlation between Food Consumption and the Subset of CD4+ T Cells
4. Discussion
4.1. Hypertension and CD4+ T Cells
4.2. Irrational Dietary Pattern, CD4+ T Cells and Hypertension
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Turana, Y.; Tengkawan, J.; Chia, Y.C.; Nathaniel, M.; Wang, J.G.; Sukonthasarn, A.; Chen, C.H.; Minh, H.V.; Buranakitjaroen, P.; Shin, J.; et al. Hypertension and stroke in Asia: A comprehensive review from HOPE Asia. J. Clin. Hypertens. 2021, 23, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.L.; Pang, M.; Beard, J. Health system strengthening and hypertension awareness, treatment and control: Data from the China Health and Retirement Longitudinal Study. Bull. World Health Organ. 2014, 92, 29–41. [Google Scholar] [CrossRef]
- Yang, F.; Qian, D.; Liu, X. Socioeconomic disparities in prevalence, awareness, treatment, and control of hypertension over the life course in China. Int. J. Equity Health 2017, 16, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Chen, Z.; Zhang, L.; Wang, X.; Hao, G.; Zhang, Z.; Shao, L.; Tian, Y.; Dong, Y.; Zheng, C.; et al. Status of Hypertension in China: Results From the China Hypertension Survey, 2012–2015. Circulation 2018, 137, 2344–2356. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, X.; Lu, Z.; Tang, J.; Li, Y.; Xu, A.; Liu, S. Cardiovascular Diseases Deaths Attributable to High Sodium Intake in Shandong Province, China. J. Am. Heart Assoc. 2019, 8, e010737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.; Lu, H.; Song, R.; Wu, J.; Xue, M.; Qian, Y.; Wang, W.; Wang, X. Dietary quality is associated with reduced risk of diabetes among adults in Northern China: A cross-sectional study. Br. J. Nutr. 2021, 126, 923–932. [Google Scholar] [CrossRef]
- Xu, X.; Bao, H.; Tian, Z.; Zhu, H.; Zhu, L.; Niu, L.; Yan, T.; Dong, H.; Fang, X.; Zhang, X. Prevalence, awareness, treatment, and control of hypertension in Northern China: A cross-sectional study. BMC Cardiovasc. Disord. 2021, 21, 525. [Google Scholar] [CrossRef]
- Ozemek, C.; Laddu, D.R.; Arena, R.; Lavie, C.J. The role of diet for prevention and management of hypertension. Curr. Opin. Cardiol. 2018, 33, 388–393. [Google Scholar] [CrossRef]
- Wang, D.; He, Y.; Li, Y.; Luan, D.; Yang, X.; Zhai, F.; Ma, G. Dietary patterns and hypertension among Chinese adults: A nationally representative cross-sectional study. BMC Public Health 2011, 11, 925. [Google Scholar] [CrossRef]
- Wang, J.; Lin, X.; Bloomgarden, Z.T.; Ning, G. The Jiangnan diet, a healthy diet pattern for Chinese. J. Diabetes 2020, 12, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Sáez-Almendros, S.; Obrador, B.; Bach-Faig, A.; Serra-Majem, L. Environmental footprints of Mediterranean versus Western dietary patterns: Beyond the health benefits of the Mediterranean diet. Environ. Health Glob. Access Sci. Source 2013, 12, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez, L.; Veronese, N.; Barbagallo, M. Magnesium and Hypertension in Old Age. Nutrients 2020, 13, 139. [Google Scholar] [CrossRef]
- Madhur, M.S.; Elijovich, F.; Alexander, M.R.; Pitzer, A.; Ishimwe, J.; Van Beusecum, J.P.; Patrick, D.M.; Smart, C.D.; Kleyman, T.R.; Kingery, J.; et al. Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? Circ. Res. 2021, 128, 908–933. [Google Scholar] [CrossRef]
- Itani, H.A.; McMaster, W.G., Jr.; Saleh, M.A.; Nazarewicz, R.R.; Mikolajczyk, T.P.; Kaszuba, A.M.; Konior, A.; Prejbisz, A.; Januszewicz, A.; Norlander, A.E.; et al. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans. Hypertension 2016, 68, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Deer, E.; Reeve, K.E.; Amaral, L.; Vaka, V.R.; Franks, M.; Campbell, N.; Fitzgerald, S.; Herrock, O.; Ibrahim, T.; Cornelius, D.; et al. CD4+ T cells cause renal and placental mitochondrial oxidative stress as mechanisms of hypertension in response to placental ischemia. Am. J. Physiol. Ren. Physiol. 2021, 320, F47–F54. [Google Scholar] [CrossRef]
- Agita, A.; Alsagaff, M.T. Inflammation, Immunity, and Hypertension. Acta Med. Indones. 2017, 49, 158–165. [Google Scholar]
- Devkota, S.; Wang, Y.; Musch, M.W.; Leone, V.; Fehlner-Peach, H.; Nadimpalli, A.; Antonopoulos, D.A.; Jabri, B.; Chang, E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/-mice. Nature 2012, 487, 104–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Yosef, N.; Thalhamer, T.; Zhu, C.; Xiao, S.; Kishi, Y.; Regev, A.; Kuchroo, V.K. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013, 496, 513–517. [Google Scholar] [CrossRef] [Green Version]
- Robles-Vera, I.; Toral, M.; de la Visitación, N.; Sánchez, M.; Gómez-Guzmán, M.; Romero, M.; Yang, T.; Izquierdo-Garcia, J.L.; Jiménez, R.; Ruiz-Cabello, J.; et al. Probiotics Prevent Dysbiosis and the Rise in Blood Pressure in Genetic Hypertension: Role of Short-Chain Fatty Acids. Mol. Nutr. Food Res. 2020, 64, e1900616. [Google Scholar] [CrossRef]
- Aleixandre, A.; Miguel, M. Dietary fiber and blood pressure control. Food Funct. 2016, 7, 1864–1871. [Google Scholar] [CrossRef]
- Li, C.; Kang, B.; Zhang, T.; Gu, H.; Song, P.; Chen, J.; Wang, X.; Xu, B.; Zhao, W.; Zhang, J. Dietary Pattern and Dietary Energy from Fat Associated with Sarcopenia in Community-Dwelling Older Chinese People: A Cross-Sectional Study in Three Regions of China. Nutrients 2020, 12, 3689. [Google Scholar] [CrossRef] [PubMed]
- 2018 Chinese Guidelines for Prevention and Treatment of Hypertension-A report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J. Geriatr. Cardiol. JGC 2019, 16, 182–241.
- Jannasch, F.; Riordan, F.; Andersen, L.F.; Schulze, M.B. Exploratory dietary patterns: A systematic review of methods applied in pan-European studies and of validation studies. Br. J. Nutr. 2018, 120, 601–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Liu, F. Regulation, Communication, and Functional Roles of Adipose Tissue-Resident CD4(+) T Cells in the Control of Metabolic Homeostasis. Front. Immunol. 2018, 9, 1961. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, L.; Li, J.; Xiao, Z.; Chen, B.; Wan, L.; Li, M.; Wu, X.; Hin Cho, C.; Shen, J. CD4(+) T cells in obesity and obesity-associated diseases. Cell. Immunol. 2018, 332, 1–6. [Google Scholar] [CrossRef]
- Schiffrin, E.L. Immune mechanisms in hypertension and vascular injury. Clin. Sci. 2014, 126, 267–274. [Google Scholar] [CrossRef]
- Ferreira, N.S.; Tostes, R.C.; Paradis, P.; Schiffrin, E.L. Aldosterone, Inflammation, Immune System, and Hypertension. Am. J. Hypertens. 2021, 34, 15–27. [Google Scholar] [CrossRef]
- Herrada, A.A.; Contreras, F.J.; Marini, N.P.; Amador, C.A.; González, P.A.; Cortés, C.M.; Riedel, C.A.; Carvajal, C.A.; Figueroa, F.; Michea, L.F.; et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity. J. Immunol. 2010, 184, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Barhoumi, T.; Kasal, D.A.; Li, M.W.; Shbat, L.; Laurant, P.; Neves, M.F.; Paradis, P.; Schiffrin, E.L. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 2011, 57, 469–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasal, D.A.; Barhoumi, T.; Li, M.W.; Yamamoto, N.; Zdanovich, E.; Rehman, A.; Neves, M.F.; Laurant, P.; Paradis, P.; Schiffrin, E.L. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 2012, 59, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Cheng, G.; Ma, N.; Huang, Y.; Lin, Y.; Zhou, Q.; Que, B.; Dong, J.; Zhou, Y.; Nie, S. Circulating Th1, Th2, and Th17 Levels in Hypertensive Patients. Dis. Markers 2017, 2017, 7146290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaowa, S.; Zhou, W.; Yu, L.; Zhou, X.; Liao, K.; Yang, K.; Lu, Z.; Jiang, H.; Chen, X. Effect of Th17 and Treg axis disorder on outcomes of pulmonary arterial hypertension in connective tissue diseases. Mediat. Inflamm. 2014, 2014, 247372. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Nangaku, M.; Miyata, T.; Inagi, R.; Yamada, K.; Kurokawa, K.; Fujita, T. Imbalance of T-cell subsets in angiotensin II-infused hypertensive rats with kidney injury. Hypertension 2003, 42, 31–38. [Google Scholar] [CrossRef]
- Sharabi, A.; Tsokos, M.G.; Ding, Y.; Malek, T.R.; Klatzmann, D.; Tsokos, G.C. Regulatory T cells in the treatment of disease. Nat. Rev. Drug Discov. 2018, 17, 823–844. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Y.; Wei, F.; Ye, L.; Lu, F.; Zhang, H.; Diao, Y.; Song, H.; Qi, Z. Treatment with telmisartan/rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis. Atherosclerosis 2014, 233, 291–299. [Google Scholar] [CrossRef]
- Garg, S.K.; Delaney, C.; Toubai, T.; Ghosh, A.; Reddy, P.; Banerjee, R.; Yung, R. Aging is associated with increased regulatory T-cell function. Aging Cell 2014, 13, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, D.E.; Peruchetti, D.B.; Souza, M.C.; das Graças Henriques, M.G.; Pinheiro, A.A.S.; Caruso-Neves, C. A high salt diet induces tubular damage associated with a pro-inflammatory and pro-fibrotic response in a hypertension-independent manner. Biochimica et biophysica acta. Mol. Basis Dis. 2020, 1866, 165907. [Google Scholar] [CrossRef]
- Endo, Y.; Asou, H.K.; Matsugae, N.; Hirahara, K.; Shinoda, K.; Tumes, D.J.; Tokuyama, H.; Yokote, K.; Nakayama, T. Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1. Cell Rep. 2015, 12, 1042–1055. [Google Scholar] [CrossRef] [Green Version]
- Siracusa, F.; Schaltenberg, N.; Villablanca, E.J.; Huber, S.; Gagliani, N. Dietary Habits and Intestinal Immunity: From Food Intake to CD4(+) T (H) Cells. Front. Immunol. 2018, 9, 3177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mucida, D.; Park, Y.; Kim, G.; Turovskaya, O.; Scott, I.; Kronenberg, M.; Cheroutre, H. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007, 317, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Hamzaoui, A.; Berraïes, A.; Hamdi, B.; Kaabachi, W.; Ammar, J.; Hamzaoui, K. Vitamin D reduces the differentiation and expansion of Th17 cells in young asthmatic children. Immunobiology 2014, 219, 873–879. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Control Group | Case Group | |
---|---|---|---|
N = 56 | N = 56 | p Value | |
Male (n, %) | 22 (39.3) | 22 (39.3) | 1.000 |
Age (y) | 63 (57, 66) | 63 (56.5, 66) | 0.527 |
BMI (kg/m2) | 26.0 (24.2, 28.1) | 27.4 (24.7, 29.1) | 0.411 |
WC (cm) | 90 (84, 96) | 92.5 (85, 98.5) | 0.646 |
HC (cm) | 97 (94, 103) | 98.0 (95, 101.5) | 0.851 |
HGS (kg) | 26.8 (23.2, 33.6) | 26.5 (22.0, 36.6) | 0.971 |
Daily exercise level (n, %) | 0.844 | ||
Light | 38 (67.9) | 36 (64.3) | |
Moderate | 6 (10.7) | 8 (14.3) | |
Heavy | 12 (21.4) | 12 (21.4) | |
Daily salt consumption (n, %) | 0.040 | ||
Light | 13 (23.2) | 24 (42.9) | |
Moderate | 21 (37.5) | 11 (19.6) | |
Heavy | 22 (39.3) | 21 (37.5) | |
Daily fat consumption (n, %) | 0.066 | ||
Light | 10 (17.9) | 21 (37.5) | |
Moderate | 26 (46.4) | 19 (33.9) | |
Heavy | 20 (35.7) | 16 (28.6) | |
Current smoker (n, %) | 11 (19.6) | 7 (12.5) | 0.303 |
Current drinker (n, %) | 15 (26.8) | 11 (19.6) | 0.371 |
One-site SBP | 134.3 (124.8, 149.3) | 142.0 (127.5, 152.0) | 0.365 |
One-site DBP | 75.8 (70.5, 83.5) | 80.3 (70.8, 88.0) | 0.390 |
Antihypertensive drug use | 21 (37.5) | 36 (64.3) | 0.005 |
T2Ds (n, %) | 14 (25.0) | 14 (25.0) | 1.000 |
CKD (n, %) | 5 (8.9) | 5 (8.9) | 1.000 |
Gout (n, %) | 2 (3.6) | 2 (3.6) | 1.000 |
Hyperlipidemia (n, %) | 19 (33.9) | 18 (32.1) | 0.841 |
CD4+ Subsets | Frequency (%) | Absolute Number (1000/mL) | ||||
---|---|---|---|---|---|---|
Control Group | Case Group | p Value | Control Group | Case Group | p Value | |
Th0 | 32.0 | 27.3 | 0.009 | 280.5 | 210.6 | 0.195 |
(21.4, 40.9) | (17.9, 34.5) | (161.3, 375.3) | (136.4, 353.8) | |||
Th1 | 20.6 | 24.5 | 0.001 | 171.3 | 220.6 | 0.020 |
(15.7, 23.7) | (20.5, 28.6) | (119.9, 238.7) | (128.4, 303.3) | |||
Th2 | 14.4 | 15.5 | 0.438 | 122.0 | 123.0 | 0.607 |
(11.6, 17.8) | (12.2, 18.7) | (88.1, 159.3) | (80.3, 197.0) | |||
Th17 | 13.7 | 15.2 | 0.687 | 118.8 | 133.5 | 0.448 |
(11.7, 18.4) | (13.0, 17.4) | (99.0, 163.9) | (93.8, 176.0) | |||
Th1/17 | 17.1 | 16.9 | 0.955 | 122.7 | 138.8 | 0.448 |
(13.1, 22.1) | (13.0, 21.7) | (101.4, 178.3) | (100.2, 208.3) | |||
Th1 (IFN-γ) | 18.9 | 21.1 | 0.023 | 147.0 | 174.4 | 0.112 |
(13.4, 25.3) | (17.2, 26.9) | (106.7, 203.6) | (125.4, 259.0) | |||
Th2 (IL-4) | 1.6 | 1.5 | 0.664 | 12.0 | 11.5 | 0.695 |
(1.1, 2.3) | (0.7, 2.5) | (8.4, 20.5) | (5.6, 21.5) | |||
Th17 (IL-17A) | 1.4 | 1.7 | 0.027 | 10.4 | 12.7 | 0.091 |
(1.1, 1.7) | (1.1, 2.3) | (7.7, 16.4) | (8.5, 21.2) | |||
Th1/17(IFN-γ/IL-17A) | 0.3 | 0.4 | 0.003 | 1.9 | 2.4 | 0.017 |
(0.1, 0.3) | (0.2, 0.6) | (1.0, 3.2) | (1.3, 5.4) | |||
Treg | 2.6 | 4.0 | <0.001 | 21.7 | 32.6 | <0.001 |
(1.9, 3.7) | (3.0, 4.7) | (18.1, 29.1) | (25.0, 40.9) |
Inflammatory Cytokines | Control Group | Case Group | p Value |
---|---|---|---|
IL-6 (pg/mL) | 1.8 (0.9, 3.9) | 1.0 (0.4, 2.2) | 0.034 |
IL-10 (pg/mL) | 10.5 (8.8, 12.6) | 10.6 (7.9, 12.7) | 0.660 |
IL-17A (pg/mL) | 7.4 (5.3, 9.4) | 8.2 (6.3, 10.3) | 0.033 |
Food Group | DP1 | DP2 | DP3 | DP4 | DP5 |
---|---|---|---|---|---|
Refined rice | 0.19 | 0.32 | −0.03 | −0.18 | 0.16 |
Refined wheat | 0.65 | −0.15 | −0.11 | 0.16 | −0.05 |
Fried cereal | 0.01 | −0.02 | −0.04 | 0.75 | 0.15 |
Coarse cereal | −0.02 | 0.23 | −0.07 | −0.28 | 0.40 |
Tuber | −0.21 | 0.56 | 0.05 | 0.02 | 0.11 |
Soybean | −0.13 | 0.70 | −0.01 | 0.21 | 0.08 |
Legume | −0.02 | 0.76 | −0.01 | 0.17 | <0.01 |
Vegetables | 0.18 | 0.43 | 0.09 | −0.20 | 0.42 |
Mushroom and fungi | −0.05 | 0.26 | −0.05 | −0.04 | −0.05 |
Pickles | 0.19 | 0.11 | −0.08 | −0.02 | 0.37 |
Fermented food | 0.06 | 0.30 | −0.23 | 0.37 | 0.14 |
Fruit | −0.02 | 0.07 | 0.89 | 0.02 | −0.06 |
Milk | −0.13 | 0.09 | <0.01 | −0.02 | −0.20 |
Meat | 0.78 | 0.01 | 0.10 | 0.10 | −0.02 |
Poultry | 0.76 | −0.01 | −0.05 | 0.04 | 0.22 |
Processed meat | −0.07 | −0.07 | 0.86 | 0.02 | 0.13 |
Animal viscera | −0.09 | −0.07 | 0.19 | 0.04 | 0.62 |
Fish and seafood | 0.05 | 0.28 | 0.01 | −0.15 | −0.32 |
Eggs | 0.01 | 0.31 | 0.11 | 0.52 | −0.03 |
Nuts | 0.06 | 0.39 | 0.12 | −0.29 | −0.21 |
Snacks | −0.01 | 0.19 | 0.01 | 0.16 | 0.48 |
Alcoholic beverage | 0.73 | −0.09 | −0.05 | −0.09 | −0.04 |
Soft drink | 0.15 | −0.15 | 0.06 | 0.57 | −0.07 |
Water | −0.32 | −0.30 | −0.12 | −0.02 | 0.45 |
Explained variance | 10.90% | 10.12% | 7.12% | 6.97% | 6.39% |
DP | Model | On-Site SBP | On-Site DBP | ||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p Value | β | 95% CI | p Value | ||||
DP1 | 1 | 3.96 | 0.25 | 7.66 | 0.037 | 2.29 | −0.43 | 5.00 | 0.098 |
2 | 5.38 | 0.73 | 10.03 | 0.024 | 3.47 | −0.15 | 7.09 | 0.060 | |
DP2 | 1 | 1.08 | −2.70 | 4.86 | 0.572 | 0.89 | −1.85 | 3.63 | 0.521 |
2 | 1.27 | −2.53 | 5.06 | 0.510 | 0.59 | −2.35 | 3.52 | 0.692 | |
DP3 | 1 | −0.21 | −3.99 | 3.57 | 0.912 | −0.53 | −3.27 | 2.22 | 0.704 |
2 | −1.04 | −5.17 | 3.08 | 0.617 | −0.64 | −3.82 | 2.55 | 0.693 | |
DP4 | 1 | −1.99 | −5.75 | 1.78 | 0.297 | 0.08 | −2.67 | 2.82 | 0.957 |
2 | −3.76 | −7.52 | 0.01 | 0.051 | −0.62 | −3.59 | 2.34 | 0.678 | |
DP5 | 1 | −0.52 | −4.29 | 3.27 | 0.788 | −0.27 | −3.01 | 2.48 | 0.847 |
2 | 0.17 | −3.51 | 3.84 | 0.929 | 0.00 | −2.84 | 2.84 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Li, Y.; Wang, N.; Ge, Z.; Shi, Z.; Wang, J.; Ding, B.; Bi, Y.; Wang, Y.; Wang, Y.; et al. The Increased Risk of Hypertension Caused by Irrational Dietary Pattern May Be Associated with Th17 Cell in the Middle-Aged and Elderly Rural Residents of Beijing City, Northern China: A 1:1 Matched Case-Control Study. Nutrients 2023, 15, 290. https://doi.org/10.3390/nu15020290
Li C, Li Y, Wang N, Ge Z, Shi Z, Wang J, Ding B, Bi Y, Wang Y, Wang Y, et al. The Increased Risk of Hypertension Caused by Irrational Dietary Pattern May Be Associated with Th17 Cell in the Middle-Aged and Elderly Rural Residents of Beijing City, Northern China: A 1:1 Matched Case-Control Study. Nutrients. 2023; 15(2):290. https://doi.org/10.3390/nu15020290
Chicago/Turabian StyleLi, Cheng, Yaru Li, Nan Wang, Zhiwen Ge, Zhengli Shi, Jia Wang, Bingjie Ding, Yanxia Bi, Yuxia Wang, Yisi Wang, and et al. 2023. "The Increased Risk of Hypertension Caused by Irrational Dietary Pattern May Be Associated with Th17 Cell in the Middle-Aged and Elderly Rural Residents of Beijing City, Northern China: A 1:1 Matched Case-Control Study" Nutrients 15, no. 2: 290. https://doi.org/10.3390/nu15020290
APA StyleLi, C., Li, Y., Wang, N., Ge, Z., Shi, Z., Wang, J., Ding, B., Bi, Y., Wang, Y., Wang, Y., & Hong, Z. (2023). The Increased Risk of Hypertension Caused by Irrational Dietary Pattern May Be Associated with Th17 Cell in the Middle-Aged and Elderly Rural Residents of Beijing City, Northern China: A 1:1 Matched Case-Control Study. Nutrients, 15(2), 290. https://doi.org/10.3390/nu15020290