Methods over Materials: The Need for Sport-Specific Equations to Accurately Predict Fat Mass Using Bioimpedance Analysis or Anthropometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
- -
- -
- Anthropometric measurements obtained according to the International Society for the Advancement of Kinanthropometry (ISAK) protocol and included in the last ISAK manual [20].
- -
- BIA performed using foot-to-hand technology at a 50 kHz frequency.
- -
- Generalized predictive equations developed and validated on subjects from normal healthy populations.
- -
- Athletic predictive equations developed and validated in samples including athletes from different sports.
- -
- Sport-specific predictive equations developed and validated in futsal players.
- -
- Dissertation or conference papers.
- -
- Predictive equations developed for adolescents and elderly subjects.
2.2. Bioelectrical Impedance Analysis (BIA)
2.3. Surface Anthropometry
2.4. Dual Energy X-ray Absorptiometry (DXA)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of body composition in athletes: A narrative review of available methods with special reference to quantitative and qualitative bioimpedance analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.; Raymond-Pope, C.J. New frontiers of body composition in sport. Int. J. Sports Med. 2021, 42, 588–601. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Semprini, G.; Judice, P.B.; Messina, G.; Toselli, S. Anthropometry, physical and movement features, and repeated-sprint ability in soccer players. Int. J. Sports Med. 2019, 40, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Matias, C.N.; Campa, F.; Cerullo, G.; D’Antona, G.; Giro, R.; Faleiro, J.; Reis, J.F.; Monteiro, C.P.; Valamatos, M.J.; Teixeira, F.J. Bioelectrical impedance vector analysis discriminates aerobic power in futsal players: The role of body composition. Biology 2022, 11, 505. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.F.; Matias, C.N.; Campa, F.; Morgado, J.P.; Franco, P.; Quaresma, P.; Almeida, N.; Curto, D.; Toselli, S.; Monteiro, C.P. Bioimpedance vector patterns changes in response to swimming training: An ecological approach. Int. J. Environ. Res. Public Health 2020, 17, 4851. [Google Scholar] [CrossRef]
- Silva, A.M. Structural and functional body components in athletic health and performance phenotypes. Eur. J. Clin. Nutr. 2019, 73, 215–224. [Google Scholar] [CrossRef]
- Silva, J.R.; Brito, J.; Akenhead, R.; Nassis, G.P. The transition period in soccer: A window of opportunity. Sports Med. 2016, 46, 305–313. [Google Scholar] [CrossRef]
- Kasper, A.M.; Langan-Evans, C.; Hudson, J.F.; Brownlee, T.E.; Harper, L.D.; Naughton, R.J.; Morton, J.P.; Close, G.L. Come back skinfolds, all is forgiven: A narrative review of the efficacy of common body composition methods in applied sports practice. Nutrients 2021, 13, 1075. [Google Scholar] [CrossRef]
- Campa, F.; Gobbo, L.A.; Stagi, S.; Cyrino, L.T.; Toselli, S.; Marini, E.; Coratella, G. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur. J. Appl. Physiol. 2022, 122, 561–589. [Google Scholar] [CrossRef]
- Diaz, E.O.; Villar, J.; Immink, M.; Gonzales, T. Bioimpedance or anthropometry? Eur. J. Clin. Nutr. 1989, 43, 129–137. [Google Scholar]
- Oppliger, R.A.; Nielsen, D.H.; Vance, C.G. Wrestlers’ minimal weight: Anthropometry, bioimpedance, and hydrostatic weighing compared. Med. Sci. Sports Exerc. 1991, 23, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P.T.; Vancini, R.L.; Andrade, M.D.S.; de Lira, C.A.B.; Knechtle, B. Assessment methods of body fat in recreational marathon runners: Bioelectrical impedance analysis versus skinfold thickness. Biomed Res. Int. 2021, 2021, 3717562. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.C.; Rodrigues, C.A.S.; Mundstock, E.; Dos Santos, T.S.; Filho, A.D.; Noal, J.; Amaral, M.A.; Preto, L.T.; Vendrusculo, F.M.; Mattiello, R. Can skinfold thickness equations be substituted for bioimpedance analysis in children? J. Pediatr. 2021, 97, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, B.S.; Snarr, R.L.; Ryan, G.A. Bias varies for bioimpedance analysis and skinfold technique when stratifying collegiate male athletes’ fat-free mass hydration levels. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2020, 45, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Campa, F.; Matias, C.N.; Toselli, S.; Koury, J.C.; Andreoli, A.; Sardinha, L.S.B.; Silva, A.M. Generalized bioelectric impedance-based equations underestimate body fluids in athletes. Scand. J. Med. Sci. Sports 2021, 31, 2123–2132. [Google Scholar] [CrossRef]
- López-Taylor, J.R.; González-Mendoza, R.G.; Gaytán-González, A.; Jiménez-Alvarado, J.A.; Villegas-Balcázar, M.; Jáuregui-Ulloa, E.E.; Torres-Naranjo, F. Accuracy of anthropometric equations for estimating body fat in professional male soccer players compared with DXA. J. Sport. Med. 2018, 2018, 6843792. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Coratella, G. Athlete or non-athlete? This is the question in body composition. Front. Physiol. 2021, 12, 814572. [Google Scholar] [CrossRef]
- Fernandes Filho, J.; Caniuqueo Vargas, A.; Duarte Rocha, C.C.; Hernández Mosqueira, C.; Roquetti Fernandes, P.; Fernandes da Silva, S.; Ramirez-Campillo, R.; Quiroz Sievers, G. Evaluation and comparison of five skinfold calipers. Nutr. Hosp. 2017, 34, 111–115. [Google Scholar] [CrossRef]
- Adão, T.; Lameira, G.; dos Santos, J.; Palha, F. Technical error of measurement in anthropometry. Rev. Bras. Med. do Esporte 2005, 11, 81–85. [Google Scholar] [CrossRef]
- International Society for Advancement of Kinanthropometry. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Potchefstroom, South Africa, 2001; ISBN1 0868037125. ISBN2 9780868037127. [Google Scholar]
- Lukaski, H.; Bolonchuk, W. Theory and Validation of the Tetrapolar Bioelectrical Impedance Method to Assess Human Body Composition; The Institute of Physical Sciences in Medicine: London, UK, 1987. [Google Scholar]
- Sun, S.S.; Chumlea, W.C.; Heymsfield, S.B.; Lukaski, H.C.; Schoeller, D.; Friedl, K.; Kuczmarski, R.J.; Flegal, K.M.; Johnson, C.L.; Hubbard, V.S. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am. J. Clin. Nutr. 2003, 77, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Lean, M.E.; Han, T.S.; Deurenberg, P. Predicting body composition by densitometry from simple anthropometric measurements. Am. J. Clin. Nutr. 1996, 63, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matias, C.N.; Campa, F.; Santos, D.A.; Lukaski, H.; Sardinha, L.B.; Silva, A.M. Fat-free mass bioelectrical impedance analysis predictive equation for athletes using a 4-compartment model. Int. J. Sports Med. 2021, 42, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.D.; Hannan, W.J. Prediction of fat and fat-free mass in male athletes using dual X-ray absorptiometry as the reference method. J. Sports Sci. 2000, 18, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.M.; Rowe, D.A.; Misic, M.M.; Prior, B.M.; Arngrímsson, S.A. Skinfold prediction equation for athletes developed using a four-component model. Med. Sci. Sports Exerc. 2005, 37, 2006–2011. [Google Scholar] [CrossRef] [PubMed]
- Withers, R.T.; Craig, N.P.; Bourdon, P.C.; Norton, K.I. Relative body fat and anthropometric prediction of body density of male athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 191–200. [Google Scholar] [CrossRef]
- Matias, C.N.; Campa, F.; Cavaca, M.; Paoli, A.; Texeira, F.J. Fat-free mass estimation in male elite futsal players: Development and validation of a new bioelectrical imped-ance-based predictive equation. Nutrition 2022, 111931. [Google Scholar] [CrossRef] [PubMed]
- Giro, R.; Matias, C.N.; Campa, F.; Santos, D.A.; Cavaca, M.L.; Duque, P.; Oliveira, M.; Matos, N.; Vicente, F.; Pereira, P.; et al. Development and validation of an anthropometric equation to predict fat mass percentage in professional and semi-professional male futsal players. Nutrients 2022, 14, 4514. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G.; Warner, D.S. Agreed statistics: Measurement method comparison. Anesthesiology 2012, 116, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- McBride, G.B. Statistical Calculators; Lin’s Concordance.
- Lohman, T.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Houtkooper, L.B.; Lohman, T.G.; Going, S.B.; Howell, W.H. Why bioelectrical impedance analysis should be used for estimating adiposity. Am. J. Clin. Nutr. 1996, 64, 436S–448S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukaski, H.C.; Bolonchuk, W.W.; Siders, W.A.; Hall, C.B. Body composition assessment of athletes using bioelectrical impedance measurements. J. Sports Med. Phys. Fitness 1990, 30, 434–440. [Google Scholar] [PubMed]
- De Lorenzo, A.; Bertini, I.; Iacopino, L.; Pagliato, E.; Testolin, C.; Testolin, G. Body composition measurement in highly trained male athletes: A comparison of three methods. J. Sports Med. Phys. Fitness 2000, 40, 178–183. [Google Scholar] [PubMed]
- Civar, S.; Ozer, M.; Aktop, A.; Tercan, E.; Ayceman, N. Validity of leg-to-leg bioelectrical impedance measurement in higly active males. Biol. Sport 2003, 20, 209–220. [Google Scholar]
- Dixon, C.B.; Deitrick, R.W.; Pierce, J.R.; Cutrufello, P.T.; Drapeau, L.L. Evaluation of the BOD POD and leg-to-leg bioelectrical impedance analysis for estimating percent body fat in National Collegiate Athletic Association Division III collegiate wrestlers. J. Strength Cond. Res. 2005, 19, 85–91. [Google Scholar] [CrossRef]
- Svantesson, U.; Zander, M.; Klingberg, S.; Slinde, F. Body composition in male elite athletes, comparison of bioelectrical impedance spectroscopy with dual energy X-ray absorptiometry. J. Negat. Results Biomed. 2008, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loenneke, J.P.; Wray, M.E.; Wilson, J.M.; Barnes, J.T.; Kearney, M.L.; Pujol, T.J. Accuracy of field methods in assessing body fat in collegiate baseball players. Res. Sports Med. 2013, 21, 286–291. [Google Scholar] [CrossRef]
- Colville, B.; Heyward, V.; Sandoval, W. Comparison of two methods for estimating body composition of bodybuilders. J. Strength Cond. Res. 1989, 3, 57–61. [Google Scholar]
- Kirkendall, D.T.; Grogan, J.W.; Bowers, R.G. Field comparison of body composition techniques: Hydrostatic weighing, skinfold thickness, and bioelectric impedance. J. Orthop. Sports Phys. Ther. 1991, 13, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Hortobágyi, T.; Israel, R.G.; Houmard, J.A.; O’Brien, K.F.; Johns, R.A.; Wells, J.M. Comparison of four methods to assess body composition in black and white athletes. Int. J. Sport Nutr. 1992, 2, 60–74. [Google Scholar] [CrossRef]
- Pichard, C.; Kyle, U.G.; Gremion, G.; Gerbase, M.; Slosman, D.O. Body composition by x-ray absorptiometry and bioelectrical impedance in female runners. Med. Sci. Sports Exerc. 1997, 29, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Berges, G.; Gómez-Bruton, A.; Matute-Llorente, Á.; Julián-Almárcegui, C.; Gómez-Cabello, A.; González-Agüero, A.; Casajús, J.A.; Vicente-Rodríguez, G. Assessing fat mass of adolescent swimmers using anthropometric equations: A DXA Validation study. Res. Q. Exerc. Sport 2017, 88, 230–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petri, C.; Campa, F.; Hugo Teixeira, V.; Izzicupo, P.; Galanti, G.; Pizzi, A.; Badicu, G.; Mascherini, G. Body fat assessment in international elite soccer referees. J. Funct. Morphol. Kinesiol. 2020, 5, 38. [Google Scholar] [CrossRef]
- Zemski, A.J.; Broad, E.M.; Slater, G.J. Skinfold prediction equations fail to provide an accurate estimate of body composition in elite rugby union athletes of caucasian and polynesian ethnicity. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Poldrack, R.A.; Huckins, G.; Varoquaux, G. Establishment of best practices for evidence for prediction: A review. JAMA Psychiatry 2020, 77, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, A.; Vicini, M.; Pollastri, L.; Lombardi, E.; Magni, E.; Andreazzoli, A.; Orsini, M.; Bonifazi, M.; Lukaski, H.; Gatterer, H. Bioimpedance patterns and bioelectrical impedance vector analysis (BIVA) of road cyclists. J. Sports Sci. 2018, 36, 2608–2613. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Pastori, G.; Codognotto, M.; Paoli, A. Equivalence of information from single frequency v. bioimpedance spectroscopy in bodybuilders. Br. J. Nutr. 2007, 97, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Sedeaud, A.; Marc, A.; Schipman, J.; Schaal, K.; Danial, M.; Guillaume, M.; Berthelot, G.; Toussaint, J.-F. Secular trend: Morphology and performance. J. Sports Sci. 2014, 32, 1146–1154. [Google Scholar] [CrossRef]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. 1961. Nutrition 1993, 9, 480–491; discussion 480, 492. [Google Scholar]
Authors | Equation | Sample | Methodology | Note |
---|---|---|---|---|
BIA-Based Predictive Equations | ||||
Generalized equations | ||||
Lukaski and Bolonchuk [21] | (1) FFM (kg) = 0.734 × (S2/R) + 0.116 × Wt + 0.096 × Xc + 0.876 × gender – 4.03 (2) FM% = (Wt − FFM)/Wt × 100 | 114 men and women | Foot-to-hand BIA at 50 kHz vs. underwater weighing | gender coded as 0 = female, and 1 = male |
Sun et al. [22] | (1) FFM (kg) = −10.68 + 0.65 × (S2/R) + 0.26 × Wt + 0.02 × R (2) FM% = (Wt − FFM)/Wt × 100 | 1474 men and women | Foot-to-hand BIA at 50 kHz vs. underwater weighing | |
Athletic equations | ||||
Matias et al. [25] | (1) FFM (kg) = −2.261 + 0.327 × (S2/R) + 0.525 × Wt + 5.462 × gender (2) FM% = (Wt − FFM)/Wt × 100 | 142 male and female athletes of different sports (basketball, handball, combat sports, pentathlon, rugby, soccer, swimming, track and field athletic sports, triathlon, volleyball, tennis, and sailing) | Foot-to-hand BIA at 50 kHz vs. 4C modeling | gender coded as 0 = female, and 1 = male |
Stewart et al. [26] | (1) FM (g) = 429.4 × Wt − 283.6 × (S2/R) − 73.1 × Xc − 134.1 (2) FM% = (FMg/1000)/Wt × 100 | 82 male athletes of different sports (cycling, racket sports, rowing, rugby, running, strength sports, and triathlon) | Foot-to-hand BIA at 50 kHz vs. DXA | |
Sport-specific equations | ||||
Matias et al. [29] | (1) FFM (kg) = −8.865 + 0.437 × Wt + 0.186 × Xc + 0.415 × (S2/R) | 66 male elite futsal players | Foot-to-hand BIA at 50 kHz vs. DXA | |
Anthropometry-based predictive equations | ||||
Generalized equations | ||||
Durnin and Womersley [23] | (1) BD (g/cm3) = 1.16 − 0.06 × ((LOG(4SKF)) (2) FM% = 495/BD − 450 (Siri’s formula) | 481 men and women | Manual anthropometry vs. underwater weighing | 4SKF = sum of biceps, triceps, subscapular, and iliac skinfolds |
Lean et al. [24] | (1) BD (g/cm3) = 1.1862 − (0.0684 × LOG(4SKF) − (0.000601 × age) (2) FM% = 495/BD − 450 (Siri’s formula) | 147 men and women | Manual anthropometry vs. underwater weighing | 4SKF = sum of biceps, triceps, subscapular, and iliac skinfolds |
Athletic equation | ||||
Evans et al. [27] | FM% = 8.997 + 0.24658 × (3SKF) − 6.343 × (gender) − 1.998 × (race) | 132 male and female athletes of different sports (football, basketball, volleyball, gymnastics, swimming, and track, and field) | Manual anthropometry vs. 4C modeling | 3SKF = sum of abdomen, mid-thigh, and triceps skinfolds; gender coded as 0 = female, 1 = male and race coded as 0 = white, 1 = black |
Withers et al. [28] | (1) BD (g/cm3) = 1.0988 − (0.0004 × 7SKF) (2) FM% = 495/BD − 450 (Siri’s formula) | 207 male athletes of different sports (badminton, basketball, cycling, field hockey, field lacrosse, gymnastics, speed roller skating, squash, swimming, and volleyball) | Manual anthropometry vs. underwater weighing | 7SKF = sum of biceps, triceps, subscapular, supraspinal, abdominal, mid-thigh, and calf skinfolds |
Sport-specific equation | ||||
Giro et al. [30] | FM% = −0.620 + 0.159 × 4SKF + 0.120 × waist circumference (cm) | 78 male elite futsal players | Manual anthropometry vs. DXA | 4SKF = sum of triceps, abdomen, iliac crest, and mid-thigh skinfolds |
Regression Analysis | CCC analysis | Agreement Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | r2 | SEE (kg) | CCC | ρ | Cb | Bias | 95% LoA | Trend | |
FM%DXA | 15.6 ± 3.6 | - | - | - | - | - | - | - | - |
BIA-based predictive equations | |||||||||
Generalized equations | |||||||||
Lukaski and Bolonchuk [21] | 18.3 ± 5.3 * | 0.53 | 2.46 | 0.641 | 0.880 | 0.728 | 2.69 | −4.5; 9.9 | r = 0.406; p < 0.001 |
Sun et al. [22] | 16.8 ± 3.9 * | 0.57 | 2.33 | 0.719 | 0.757 | 0.951 | 1.13 | −4.0; 6.3 | r = 0.034; p = 0.790 |
Athletic equations | |||||||||
Matias et al. [25] | 15.2 ± 5.1 | 0.69 | 1.99 | 0.774 | 0.829 | 0.933 | −0.48 | −6.2; 5.2 | r = 0.451; p < 0.001 |
Stewart et al. [26] | 14.8 ± 4.5 | 0.53 | 2.44 | 0.682 | 0.729 | 0.936 | −0.80 | −7.3; 5.6 | r = 0.287; p = 0.020 |
Sport-specific equations | |||||||||
Matias et al. [29] | 15.2 ± 3.2 | 0.64 | 2.12 | 0.799 | 0.804 | 0.994 | −0.30 | −4.5; 3.9 | r = −0.217; p = 0.083 |
Anthropometry-based predictive equations | |||||||||
Generalized equations | |||||||||
Durnin and Womersley [23] | 13.6 ± 3.5 * | 0.62 | 2.19 | 0.670 | 0.786 | 0.853 | −2.04 | −7.3; 5.6 | r = −0.138; p = 0.271 |
Lean et al. [24] | 13.9 ± 4.1 * | 0.64 | 2.12 | 0.716 | 0.800 | 0.895 | −1.72 | −6.6; 3.1 | r = 0.357; p = 0.003 |
Athletic equations | |||||||||
Evans et al. [27] | 14.9 ± 5.1 | 0.70 | 1.93 | 0.774 | 0.838 | 0.925 | −0.67 | −6.3; 5.0 | r = 0.646; p < 0.001 |
Withers et al. [28] | 15.1 ± 3.9 | 0.62 | 2.16 | 0.778 | 0.792 | 0.932 | −0.55 | −5.3; 4.2 | r = 0.279; p = 0.023 |
Sport-specific equations | |||||||||
Giro et al. [30] | 15.9 ± 3.2 | 0.81 | 1.58 | 0.890 | 0.900 | 0.988 | 0.33 | −2.7; 3.4 | r = 0.235; p = 0.057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campa, F.; Matias, C.N.; Moro, T.; Cerullo, G.; Casolo, A.; Teixeira, F.J.; Paoli, A. Methods over Materials: The Need for Sport-Specific Equations to Accurately Predict Fat Mass Using Bioimpedance Analysis or Anthropometry. Nutrients 2023, 15, 278. https://doi.org/10.3390/nu15020278
Campa F, Matias CN, Moro T, Cerullo G, Casolo A, Teixeira FJ, Paoli A. Methods over Materials: The Need for Sport-Specific Equations to Accurately Predict Fat Mass Using Bioimpedance Analysis or Anthropometry. Nutrients. 2023; 15(2):278. https://doi.org/10.3390/nu15020278
Chicago/Turabian StyleCampa, Francesco, Catarina N. Matias, Tatiana Moro, Giuseppe Cerullo, Andrea Casolo, Filipe J. Teixeira, and Antonio Paoli. 2023. "Methods over Materials: The Need for Sport-Specific Equations to Accurately Predict Fat Mass Using Bioimpedance Analysis or Anthropometry" Nutrients 15, no. 2: 278. https://doi.org/10.3390/nu15020278
APA StyleCampa, F., Matias, C. N., Moro, T., Cerullo, G., Casolo, A., Teixeira, F. J., & Paoli, A. (2023). Methods over Materials: The Need for Sport-Specific Equations to Accurately Predict Fat Mass Using Bioimpedance Analysis or Anthropometry. Nutrients, 15(2), 278. https://doi.org/10.3390/nu15020278