Waist Circumference Is an Essential Factor in Predicting Insulin Resistance and Early Detection of Metabolic Syndrome in Adults
Abstract
:1. Introduction
2. Methods
2.1. Inclusion Criteria
- -
- Working age (18 and 67 years);
- -
- Being an active worker;
- -
- Agreeing to participate in the study.
2.2. Determination of Variables
- -
- Triglycerides/HDL-c. It is obtained by dividing the value of triglycerides by the value of HDL cholesterol. Values over 2.4 [28] are considered high.
- -
- Glucose triglyceride index (TyG index). It is obtained by the formula: Ln(triglycerides [mg/dL] × glucose [mg/dL]/2). High values are considered from 8.8 [28].
- -
- TyG index-BMI [29]. This is obtained by multiplying the TyG index by body mass (BMI).
- -
- TyG index-waist circumference [29]. This is obtained by multiplying the TyG index by waist circumference.
- -
- TyG index-WtHR [30]. This is obtained by multiplying the TyG index by the waist/height index.
- -
- Metabolic score for insulin resistance (METS-IR). Obtained by applying the formula: Ln((2 × G0) + TG0) × BMI)/(Ln(HDL-c)) (G0, fasting glucose; TG0, fasting triglycerides; BMI, body mass index; HDL-c, high-density lipoprotein cholesterol). High values are considered from 50 [31].
2.3. Ethical Considerations and Aspects
2.4. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bello, B.; Sanchez, G.; Campos, A.; Baez, E.G.; Fernandez, J.; Achiong, F. Síndrome Metabólico: Un problema de salud con múltiples definiciones. Rev. Méd. Electrón. 2012, 34, 199–213. [Google Scholar]
- Lemieux, I.; Després, J.P. Metabolic Syndrome: Past, Present and Future. Nutrients 2020, 12, 3501. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.Y.; Lee, M.K. Autonomic dysfunction, diabetes and metabolic syndrome. J. Diabetes Investig. 2021, 12, 2108–2111. [Google Scholar] [CrossRef]
- Muzurović, E.; Mikhailidis, D.P.; Mantzoros, C. Non-alcoholic fatty liver disease, insulin resistance, metabolic syndrome and their association with vascular risk. Metabolism 2021, 119, 154770. [Google Scholar] [CrossRef] [PubMed]
- Krentowska, A.; Kowalska, I. Metabolic syndrome and its components in different phenotypes of polycystic ovary syndrome. Diabetes Metab. Res. Rev. 2022, 38, e3464. [Google Scholar] [CrossRef]
- Lim, S.; Kim, J.W.; Targher, G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol. Metab. 2021, 32, 500–514. [Google Scholar] [CrossRef]
- Ali, A.H.K. Prevalence and Predictors of Metabolic Syndrome among Patients with Bronchial Asthma: A Cross Sectional Study. Open Respir. Med. J. 2021, 15, 14–18. [Google Scholar] [CrossRef]
- Martins, F.O.; Conde, S.V. Gender Differences in the Context of Obstructive Sleep Apnea and Metabolic Diseases. Front. Physiol. 2021, 12, 792633. [Google Scholar] [CrossRef]
- Mili, N.; Paschou, S.A.; Goulis, D.G.; Dimopoulos, M.A.; Lambrinoudaki, I.; Psaltopoulou, T. Obesity, metabolic syndrome, and cancer: Pathophysiological and therapeutic associations. Endocrine 2021, 74, 478–497. [Google Scholar] [CrossRef]
- Nishikawa, H.; Asai, A.; Fukunishi, S.; Nishiguchi, S.; Higuchi, K. Metabolic Syndrome and Sarcopenia. Nutrients 2021, 13, 3519. [Google Scholar] [CrossRef]
- Zafar, U.; Khaliq, S.; Ahmad, H.U.; Manzoor, S.; Lone, K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones 2018, 17, 299–313. [Google Scholar] [CrossRef]
- Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2020, 12, 1066. [Google Scholar] [CrossRef] [Green Version]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Napoleão, A.; Fernandes, L.; Miranda, C.; Marum, A.P. Effects of Calorie Restriction on Health Span and Insulin Resistance: Classic Calorie Restriction Diet vs. Ketosis-Inducing Diet. Nutrients 2021, 13, 1302. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Oikonomou, C.; Nychas, G.; Dimitriadis, G.D. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients 2022, 14, 823. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell Physiol. 2019, 234, 8152–8161. [Google Scholar] [CrossRef]
- Calvano, A.; Izuora, K.; Oh, E.C.; Ebersole, J.L.; Lyons, T.J.; Basu, A. Dietary berries, insulin resistance and type 2 diabetes: An overview of human feeding trials. Food Funct. 2019, 10, 6227–6243. [Google Scholar] [CrossRef]
- Mastrototaro, L.; Roden, M. Insulin resistance and insulin sensitizing agents. Metabolism 2021, 125, 154892. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef]
- Lytrivi, M.; Castell, A.L.; Poitout, V.; Cnop, M. Recent Insights into Mechanisms of β-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes. J. Mol. Biol. 2020, 432, 1514–1534. [Google Scholar] [CrossRef] [PubMed]
- Cifarelli, V.; Appak-Baskoy, S.; Peche, V.S.; Kluzak, A.; Shew, T.; Narendran, R.; Pietka, K.M.; Cella, M.; Walls, C.W.; Czepielewski, R.; et al. Visceral obesity and insulin resistance associate with CD36 deletion in lymphatic endothelial cells. Nat. Commun. 2021, 12, 3350. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Shankaran, M.; Yoshino, M.; Schweitzer, G.G.; Chondronikola, M.; Beals, J.W.; Okunade, A.L.; Patterson, B.W.; Nyangau, E.; Field, T.; et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Investig. 2020, 130, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Heeren, J.; Scheja, L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol. Metab. 2021, 50, 101238. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, D.; Mohanty, P.; Dhindsa, S.; Syed, T.; Ghanim, H.; Aljada, A.; Dandona, P. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003, 52, 2882–2887. [Google Scholar] [CrossRef] [Green Version]
- Domingo-Salvany, A.; Bacigalupe, A.; Carrasco, J.M.; Espelt, A.; Ferrando, J.; Borrell, C.; del Grupo de Determinantes Sociales de Sociedad Española de Epidemiología. Propuestas de clase social neoweberiana y neomarxista a partir de la Clasificación Nacional de Ocupaciones 2011. Gac. Sanit. 2013, 27, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Bernal, M.T.; Ramos, L.A.; Jacobi, A.; Gutmann, W.; Klein, S.J.; Díaz-Cerezuela, P. Assessment of cardiometabolic status in 5994 German mechanics. Acad. J. Health Sci. 2022, 37, 16–21. [Google Scholar] [CrossRef]
- Unger, G.; Benozzi, S.F.; Perruzza, F.; Pennacchiotti, G.L. Triglycerides and glucose index: A useful indicator of insulin resistance. Endocrinol. Nutr. 2014, 61, 533–540. [Google Scholar] [CrossRef]
- Selvi, N.M.K.; Nandhini, S.; Sakthivadivel, V.; Lokesh, S.; Srinivasan, A.R.; Sumathi, S. Association of Triglyceride-Glucose Index (TyG index) with HbA1c and Insulin Resistance in Type 2 Diabetes Mellitus. Maedica 2021, 16, 375–381. [Google Scholar] [CrossRef]
- Gu, Q.; Hu, X.; Meng, J.; Ge, J.; Wang, S.J.; Liu, X.Z. Associations of Triglyceride-Glucose Index and Its Derivatives with Hyperuricemia Risk: A Cohort Study in Chinese General Population. Int. J. Endocrinol. 2020, 2020, 3214716. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Almeda-Valdes, P.; Gomez-Velasco, D.; Viveros-Ruiz, T.; Cruz-Bautista, I.; Romo-Romo, A.; Sánchez-Lázaro, D.; Meza-Oviedo, D.; Vargas-Vázquez, A.; Campos, O.A.; et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur. J. Endocrinol. 2018, 178, 533–544. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.; Katzmarzyk, P.T.; Ross, R. Waist circumference and not body mass index explains obesity-related health risk. Am. J. Clin. Nutr. 2004, 79, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Deusdará, R.; de Moura Souza, A.; Szklo, M. Association between Obesity, Overweight, Elevated Waist Circumference, and Insulin Resistance Markers among Brazilian Adolescent Students. Nutrients 2022, 14, 3487. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Sobczak, A.I.S.; Blindauer, C.A.; Stewart, A.J. Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients 2019, 11, 2022. [Google Scholar] [CrossRef] [Green Version]
- Sears, B.; Perry, M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015, 14, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrows, R.; Correa-Burrows, P.; Reyes, M.; Blanco, E.; Albala, C.; Gahagan, S. High cardiometabolic risk in healthy Chilean adolescents: Associations with anthropometric, biological and lifestyle factors. Public Health Nutr. 2016, 19, 486–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gluvic, Z.; Zaric, B.; Resanovic, I.; Obradovic, M.; Mitrovic, A.; Radak, D.; Isenovic, E.R. Link between Metabolic Syndrome and Insulin Resistance. Curr. Vasc. Pharmacol. 2017, 15, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.E.; Walker, M. Genetics of Insulin Resistance and the Metabolic Syndrome. Curr. Cardiol. Rep. 2016, 18, 75. [Google Scholar] [CrossRef] [Green Version]
- Zafar, U.; Khaliq, S.; Ahmad, H.U.; Lone, K.P. Serum profile of cytokines and their genetic variants in metabolic syndrome and healthy subjects: A comparative study. Biosci. Rep. 2019, 39, BSR20181202. [Google Scholar] [CrossRef]
- Boccardi, V.; Mancinetti, F.; Baroni, M.; Cecchetti, R.; Bastiani, P.; Ruggiero, C.; Mecocci, P. Metabolic Score for Insulin Resistance (METS-IR) and Circulating Cytokines in Older Persons: The Role of Gender and Body Mass Index. Nutrients 2022, 14, 3228. [Google Scholar] [CrossRef]
- Bovolini, A.; Garcia, J.; Andrade, M.A.; Duarte, J.A. Metabolic Syndrome Pathophysiology and Predisposing Factors. Int. J. Sports Med. 2021, 42, 199–214. [Google Scholar] [CrossRef]
- Caimi, G.; Urso, C.; Brucculeri, S.; Amato, C.; Carlisi, M.; Lo Presti, R. An assessment of the hemorheological profile in patients with subclinical carotid atherosclerosis divided in relation to the number of cardiovascular risk factors and different degrees of insulin resistance. Clin. Hemorheol. Microcirc. 2021, 78, 417–428. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, J.; Zhang, Y.; Wu, L.; Yu, Z.; He, D.; Huang, H.; Qu, W.; Luo, X. Triglyceride glucose index influences platelet reactivity in acute ischemic stroke patients. BMC Neurol. 2021, 21, 409. [Google Scholar] [CrossRef]
- Song, K.; Park, G.; Lee, H.S.; Choi, Y.; Oh, J.S.; Choi, H.S.; Suh, J.; Kwon, A.; Kim, H.-S.; Chae, H.W. Prediction of insulin resistance by modified triglyceride glucose indices in youth. Life 2021, 11, 286. [Google Scholar] [CrossRef]
- Dikaiakou, E.; Vlachopapadopoulou, E.A.; Paschou, S.A.; Athanasouli, F.; Panagiotopoulos, Ι.; Kafetzi, M.; Fotinou, A. Τriglycerides-glucose (TyG) index is a sensitive marker of insulin resistance in Greek children and adolescents. Endocrine 2020, 70, 58–64. [Google Scholar] [CrossRef]
- Raimi, T.H.; Dele-Ojo, B.F.; Dada, S.A.; Fadare, J.O.; Ajayi, D.D.; Ajayi, E.A.; Ajayi, O.A. Triglyceride-Glucose Index and Related Parameters Predicted Metabolic Syndrome in Nigerians. Metab. Syndr. Relat. Disord. 2021, 19, 76–82. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; He, S.; Jia, S.; Zhang, Z.; Ye, R.; Yang, X. Association of metabolic syndrome with TyG index and TyG-related parameters in an urban Chinese population: A 15-year prospective study. Diabetol. Metab. Syndr. 2022, 14, 84. [Google Scholar] [CrossRef]
- Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007–2010 Korean National Health and Nutrition Examination Survey. PLoS ONE 2019, 14, e0212963. [Google Scholar] [CrossRef]
- Jialal, I.; Adams-Huet, B. The Ratios of Triglycerides and C-reactive protein to High density-lipoprotein-cholesterol as valid biochemical markers of the Nascent Metabolic Syndrome. Endocr. Res. 2021, 46, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Qi, Y.; Huang, C.; Wu, M.; Wang, C.; Li, F.; Yang, C.; Yan, L.; Ren, M.; Sun, K. Associations of lipid parameters with insulin resistance and diabetes: A population-based study. Clin. Nutr. 2018, 37, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.M.; Zhao, D.; Zhang, N.; Yu, C.G.; Zhang, Q.; Thijs, L.; Staessen, J.A. Insulin resistance in relation to lipids and inflammation in type-2 diabetic patients and non-diabetic people. PLoS ONE 2016, 11, e0153171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Li, Q.; Cui, M.; Yin, Z.; Li, L.; Zhong, T.; Xie, P. Clinical surrogate markers for predicting metabolic syndrome in middle-aged and elderly Chinese. J. Diabetes Investig. 2018, 9, 411–418. [Google Scholar] [CrossRef]
Women | Men | Total | ||
---|---|---|---|---|
n = 172,282 | n = 246,061 | n = 418,343 | ||
Mean (SD) | Mean (SD) | Mean (SD) | p-Value | |
Age | 39.6 (10.8) | 40.6 (11.1) | 40.2 (11.0) | <0.0001 |
Height | 161.8 (6.5) | 174.6 (7.0) | 169.4 (9.3) | <0.0001 |
Weight | 66.2 (14.0) | 81.4 (14.7) | 75.1 (16.2) | <0.0001 |
BMI | 25.3 (5.2) | 26.7 (4.5) | 26.1 (4.8) | <0.0001 |
Waist | 74.8 (10.6) | 86.2 (11.1) | 81.5 (12.2) | <0.0001 |
SBP | 117.4 (15.7) | 128.2 (15.5) | 123.7 (16.5) | <0.0001 |
DBP | 72.6 (10.4) | 77.8 (11.0) | 75.6 (11.0) | <0.0001 |
Cholesterol | 190.6 (35.8) | 192.6 (38.9) | 191.8 (37.7) | <0.0001 |
HDL-c | 56.8 (8.7) | 50.3 (8.5) | 53.0 (9.1) | <0.0001 |
LDL-c | 116.1 (34.8) | 118.0 (36.7) | 117.2 (35.9) | <0.0001 |
Triglycerides | 89.1 (46.2) | 123.7 (86.4) | 109.5 (74.6) | <0.0001 |
Glycaemia | 87.8 (15.1) | 93.3 (21.3) | 91.0 (19.2) | <0.0001 |
% | % | % | p-value | |
18–29 years | 20.7 | 18.8 | 19.6 | <0.0001 |
30–39 years | 29.7 | 27.6 | 28.4 | |
40–49 years | 29.6 | 30.0 | 29.9 | |
50–59 years | 16.8 | 19.7 | 18.5 | |
≥60 years | 3.2 | 3.9 | 3.6 | |
Social class I | 6.9 | 4.9 | 5.7 | <0.0001 |
Social class II | 23.4 | 14.9 | 18.4 | |
Social class III | 69.7 | 80.3 | 75.9 | |
Nonsmokers | 67.2 | 66.6 | 66.9 | <0.0001 |
Smokers | 32.8 | 33.4 | 33.2 |
Non-MS ATPIII | Yes MS ATPIII | Non-MS IDF | Yes MS IDF | Non-MS JIS | Yes MS JIS | ||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | Mean (SD) | Mean (SD) | p-Value | Mean (SD) | Mean (SD) | p-Value | |
Men | n = 204,597 | n = 41,464 | n = 213,558 | n = 32,503 | n = 178,147 | n = 67,914 | |||
TG/HDL-c | 2.1 (1.4) | 4.9 (3.2) | <0.0001 | 2.3 (1.8) | 4.5 (3.0) | <0.0001 | 2.0 (1.2) | 4.3 (2.9) | <0.0001 |
TyG index | 8.4 (0.5) | 9.2 (0.6) | <0.0001 | 8.4 (0.5) | 9.0 (0.6) | <0.0001 | 8.3 (0.5) | 9.0 (0.6) | <0.0001 |
TyG-BMI | 215.6 (36.8) | 285.4 (47.3) | <0.0001 | 217.0 (37.3) | 295.3 (45.5) | <0.0001 | 210.0 (33.6) | 272.8 (45.9) | <0.0001 |
TyG-waist | 704.8 (97.2) | 873.8 (121.2) | <0.0001 | 704.5 (94.6) | 922.3 (92.2) | <0.0001 | 690.1 (88.6) | 846.5 (116.7) | <0.0001 |
TyG-WtHR | 4.0 (0.5) | 5.0 (0.7) | <0.0001 | 4.0 (0.5) | 5.2 (0.5) | <0.0001 | 4.0 (0.5) | 4.9 (0.6) | <0.0001 |
METS-IR | 37.0 (6.5) | 50.3 (8.9) | <0.0001 | 37.3 (6.6) | 52.2 (8.5) | <0.0001 | 36.0 (5.8) | 47.9 (8.5) | <0.0001 |
Women | n = 155,772 | n = 16,510 | p-value | n = 156,169 | n = 16,113 | p-value | n = 153,102 | n = 19,180 | p-value |
TG/HDL-c | 1.5 (0.7) | 3.0 (1.7) | <0.0001 | 1.5 (0.8) | 2.8 (1.5) | <0.0001 | 1.5 (0.7) | 2.9 (1.7) | <0.0001 |
TyG index | 8.1 (0.4) | 8.8 (0.5) | <0.0001 | 8.1 (0.4) | 8.7 (0.5) | <0.0001 | 8.1 (0.4) | 8.7 (0.5) | <0.0001 |
TyG-BMI | 198.9 (39.6) | 287.0 (52.9) | <0.0001 | 198.6 (39.3) | 291.8 (48.9) | <0.0001 | 198.0 (39.3) | 281.8 (51.0) | <0.0001 |
TyG-waist | 594.5 (84.7) | 773.7 (117.3) | <0.0001 | 592.9 (83.5) | 793.8 (95.0) | <0.0001 | 592.6 (84.4) | 764.3 (109.9) | <0.0001 |
TyG-WtHR | 3.7 (0.5) | 4.8 (0.7) | <0.0001 | 3.7 (0.5) | 4.9 (0.6) | <0.0001 | 3.7 (0.5) | 4.7 (0.7) | <0.0001 |
METS-IR | 33.7 (6.8) | 49.3 (9.2) | <0.0001 | 33.6 (6.7) | 50.2 (8.4) | <0.0001 | 33.5 (6.8) | 48.3 (8.9) | <0.0001 |
MS NCEP ATPIII | MS IDF | MS JIS | ||||
---|---|---|---|---|---|---|
OR (CI 95%) | p-Value | OR (CI 95%) | p-Value | OR (CI 95%) | p-Value | |
TG/HDL normal | 1 | <0.0001 | 1 | <0.0001 | 1 | <0.0001 |
TG/HDL high | 3.21 (3.11–3.32) | 1.94 (1.87–2.01) | 4.10 (3.98–4.22) | |||
TyG index normal | 1 | <0.0001 | 1 | <0.0001 | 1 | <0.0001 |
TyG index high | 5.68 (5.50–5.87) | 2.96 (2.85–3.06) | 4.33 (4.21–4.45) | |||
METS-IR normal | 1 | <0.0001 | 1 | <0.0001 | 1 | <0.0001 |
METS-IR high | 16.11 (15.64–16.58) | 18.41 (17.93–18.91) | 16.03 (15.55–16.53) |
ATPIII-JIS Criteria | IDF Criteria | |||||
---|---|---|---|---|---|---|
TyG High | TG/HDL High | METS-IR High | TyG High | TG/HDL High | METS-IR High | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Waist normal | 1 | 1 | 1 | 1 | 1 | 1 |
Waist high | 20.07 (19.45–20.71) | 9.96 (9.68–10.25) | 12.33 (11.95–12.72) | 15.20 (14.76–1.85) | 16.82 (16.39–17.26) | 25.32 (24.27–26.41) |
HDL normal | 1 | 1 | 1 | 1 | 1 | 1 |
HDL high | 7.33 (7.12–7.54) | 1.93 (1.87–2.00) | 1.66 (1.60–1.72) | 1.64 (1.58–1.69) | 10.09 (9.81–10.38) | 7.80 (7.58–8.02) |
Normal tension | 1 | 1 | 1 | 1 | 1 | 1 |
High tension | 2.77 (2.69–2.86) | 1.33 (1.30–1.36) | 1.48 (1.44–1.52) | 1.44 (1.40–1.48) | 1.29 (1.26–1.32) | 2.30 (2.23–2.37) |
TG normal | 1 | 1 | 1 | 1 | 1 | 1 |
TG high | 4.20 (4.08–4.32) | 5.06 (4.60–5.54) | 10.94 (10.56–11.46) | 12.15 (11.88–12.51) | 14.84 (14.39–15.52) | 3.44 (3.34–3.54) |
Glycaemia normal | 1 | 1 | 1 | 1 | 1 | 1 |
Glycaemia high | 3.16 (3.06–3.25) | 1.57 (1.53–1.62) | 10.58 (10.52–10.65) | 12.10 11.73–12.48) | 1.54 (1.49–1.58) | 2.63 (2.56–2.71) |
MS NCEP ATPIII | MS IDF | MS JIS | |
---|---|---|---|
AUC (95% CI) | AUC (95% CI) | AUC (95% CI) | |
Women n = 172,282 | |||
TG/HDL | 0.853 (0.850–0.856) | 0.822 (0.819–0.826) | 0.844 (0.841–0.847) |
TyG index | 0.846 (0.842–0.849) | 0.807 (0.804–0.811) | 0.837 (0.834–0.840) |
TyG-BMI | 0.914 (0.912–0.916) | 0.937 (0.936–0.939) | 0.912 (0.910–0.914) |
TyG-waist | 0.894 (0.891–0.896) | 0.952 (0.950–0.953) | 0.900 (0.897–0.902) |
TyG-WtHR | 0.905 (0.903–0.908) | 0.950 (0.949–0.951) | 0.909 (0.907–0.911) |
METS-IR | 0.918 (0.916–0.920) | 0.942 (0.941–0.944) | 0.916 (0.914–0.918) |
Men n = 246,061 | |||
TG/HDL | 0.875 (0.873–0.877) | 0.814 (0.812–0.817) | 0.840 (0.838–0.842) |
TyG index | 0.868 (0.866–0.870) | 0.793 (0.791–0.796) | 0.828 (0.826–0.830) |
TyG-BMI | 0.888 (0.887–0.889) | 0.919 (0.918–0.921) | 0.877 (0.876–0.879) |
TyG-waist | 0.864 (0.862–0.866) | 0.960 (0.959–0.960) | 0.862 (0.861–0.864) |
TyG-WtHR | 0.877 (0.876–0.879) | 0.950 (0.950–0.951) | 0.871 (0.869–0.873) |
METS-IR | 0.894 (0.892–0.896) | 0.925 (0.924–0.927) | 0.890 (0.889–0.892) |
MS NCEP-ATPIII | MS IDF | MS JIS | |
---|---|---|---|
Cut-Off-Sens-Specif-Youden | Cut-Off-Sens-Specif-Youden | Cut-Off-Sens-Specif-Youden | |
Women n = 172,282 | |||
TG/HDL | 1.83-77.0-77.0-0.540 | 1.77-75.6-73.8-0.494 | 1.78-76.1-75.7-0.518 |
TyG index | 8.38-76.9-76.4-0.533 | 8.35-73.5-73.4-0.469 | 8.36-76.1-75.6-0.517 |
TyG-BMI | 236.60-83.9-83.8-0.677 | 241.70-86.5-86.5-0.730 | 234.06-83.7-83.6-0.673 |
TyG-waist | 668.00-82.6-82.5-0.651 | 692.64-88.9-88.8-0.777 | 667.28-83.6-83.6-0.672 |
TyG-WtHR | 4.15-84.0-83.6-0.676 | 4.27-88.8-88.4-0.772 | 4.13-84.2-84.2-0.684 |
METS-IR | 40.25-84.4-84.4-0.688 | 41.24-87.3-87.2-0.745 | 39.58-84.6-84.6-0.692 |
Men n = 246,061 | |||
TG/HDL | 2.81-80.6-80.5-0.609 | 2.71-74.9-74.9-0.498 | 2.43-76.5-76.2-0.527 |
TyG index | 8.74-80.2-80.1-0.603 | 8.70-73.6-73.5-0.471 | 8.60-76.0-75.3-0.513 |
TyG-BMI | 246.07-80.9-80.8-0.617 | 253.24-83.9-83.9-0.678 | 236.13-79.6-79.6-0.592 |
TyG-waist | 779.61-78.2-78.1-0.563 | 823.44-89.7-89.6-0.793 | 759.38-78.6-78.6-0.572 |
TyG-WtHR | 4.48-79.4-79.4-0.588 | 4.68-88.0-87.9-0.759 | 4.35-79.3-79.3-0.586 |
METS-IR | 42.40-81.5-81.4-0.629 | 43.82-84.7-84.6-0.693 | 40.59-80.9-80.9-0.618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Manent, J.I.; Jover, A.M.; Martinez, C.S.; Tomás-Gil, P.; Martí-Lliteras, P.; López-González, Á.A. Waist Circumference Is an Essential Factor in Predicting Insulin Resistance and Early Detection of Metabolic Syndrome in Adults. Nutrients 2023, 15, 257. https://doi.org/10.3390/nu15020257
Ramírez-Manent JI, Jover AM, Martinez CS, Tomás-Gil P, Martí-Lliteras P, López-González ÁA. Waist Circumference Is an Essential Factor in Predicting Insulin Resistance and Early Detection of Metabolic Syndrome in Adults. Nutrients. 2023; 15(2):257. https://doi.org/10.3390/nu15020257
Chicago/Turabian StyleRamírez-Manent, José Ignacio, Andrés Martínez Jover, Caroline Silveira Martinez, Pilar Tomás-Gil, Pau Martí-Lliteras, and Ángel Arturo López-González. 2023. "Waist Circumference Is an Essential Factor in Predicting Insulin Resistance and Early Detection of Metabolic Syndrome in Adults" Nutrients 15, no. 2: 257. https://doi.org/10.3390/nu15020257
APA StyleRamírez-Manent, J. I., Jover, A. M., Martinez, C. S., Tomás-Gil, P., Martí-Lliteras, P., & López-González, Á. A. (2023). Waist Circumference Is an Essential Factor in Predicting Insulin Resistance and Early Detection of Metabolic Syndrome in Adults. Nutrients, 15(2), 257. https://doi.org/10.3390/nu15020257