Folic Acid Supplementation during Pregnancy and Its Association with Telomere Length in Children at Four Years: Results from the INMA Birth Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Folic Acid Supplementation
2.3. Leucocyte Telomere Length Measurement
2.4. Covariates
2.5. Statistical Analyses
2.6. Ethic Declarations
3. Results
3.1. Cohort Characteristics
3.2. Associations between FA Supplementation and TL
3.3. Associations between FA Supplementation and TL by Sex
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crider, K.S.; Yang, T.P.; Berry, R.J.; Bailey, L.B. Folate and DNA Methylation: A Review of Molecular Mechanisms and the Evidence for Folate’s Role. Adv. Nutr. Int. Rev. J. 2012, 3, 21–38. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. Edtion ed. In Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women; World Health Organization Copyright © 2023; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Kelly, P.; McPartlin, J.; Goggins, M.; Weir, D.G.; Scott, J.M. Unmetabolized folic acid in serum: Acute studies in subjects consuming fortified food and supplements. Am. J. Clin. Nutr. 1997, 65, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Valera-Gran, D.; de la Hera, M.G.; Navarrete-Muñoz, E.M.; Fernandez-Somoano, A.; Tardón, A.; Julvez, J.; Forns, J.; Lertxundi, N.; Ibarluzea, J.M.; Murcia, M.; et al. Folic Acid Supplements During Pregnancy and Child Psychomotor Development After the First Year of Life. JAMA Pediatr. 2014, 168, e142611. [Google Scholar] [CrossRef] [PubMed]
- Valera-Gran, D.; Navarrete-Muñoz, E.M.; de la Hera, M.G.; Fernández-Somoano, A.; Tardón, A.; Ibarluzea, J.; Balluerka, N.; Murcia, M.; González-Safont, L.; Romaguera, D.; et al. Effect of maternal high dosages of folic acid supplements on neurocognitive development in children at 4–5 y of age: The prospective birth cohort Infancia y Medio Ambiente (INMA) study. Am. J. Clin. Nutr. 2017, 106, 878–887. [Google Scholar] [CrossRef]
- Smith, A.D.; Kim, Y.-I.; Refsum, H. Is folic acid good for everyone? Am. J. Clin. Nutr. 2008, 87, 517–533. [Google Scholar] [CrossRef]
- van Uitert, E.M.; Steegers-Theunissen, R.P.M. Influence of maternal folate status on human fetal growth parameters. Mol. Nutr. Food Res. 2012, 57, 582–595. [Google Scholar] [CrossRef]
- Oaks, B.M.; Adu-Afarwuah, S.; Kumordzie, S.; Laudenslager, M.L.; Smith, D.L.; Lin, J.; Young, R.R.; Arnold, C.D.; Bentil, H.; Okronipa, H.; et al. Impact of a nutritional supplement during gestation and early childhood on child salivary cortisol, hair cortisol, and telomere length at 4–6 years of age: A follow-up of a randomized controlled trial. Stress 2020, 23, 597–606. [Google Scholar] [CrossRef]
- Entringer, S.; Epel, E.S.; Lin, J.; Blackburn, E.H.; Buss, C.; Shahbaba, B.; Gillen, D.L.; Venkataramanan, R.; Simhan, H.N.; Wadhwa, P.D. Maternal Folate Concentration in Early Pregnancy and Newborn Telomere Length. Ann. Nutr. Metab. 2015, 66, 202–208. [Google Scholar] [CrossRef]
- Saretzki, G. Telomeres, Telomerase and Ageing. Edtion ed. In Biochemistry and Cell Biology of Ageing: Part I Biomedical Science; Harris, J.R., Korolchuk, V.I., Eds.; Springer: Singapore, 2018; pp. 221–308. [Google Scholar]
- Rentscher, K.E.; Carroll, J.E.; Mitchell, C. Psychosocial Stressors and Telomere Length: A Current Review of the Science. Annu. Rev. Public Health 2020, 41, 223–245. [Google Scholar] [CrossRef]
- Herrmann, M.; Pusceddu, I.; März, W.; Herrmann, W. Telomere biology and age-related diseases. Clin. Chem. Lab. Med. (CCLM) 2018, 56, 1210–1222. [Google Scholar] [CrossRef]
- Gorenjak, V.; Petrelis, A.M.; Stathopoulou, M.G.; Visvikis-Siest, S. Telomere length determinants in childhood. Clin. Chem. Lab. Med. (CCLM) 2019, 58, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Benetos, A.; Kark, J.D.; Susser, E.; Kimura, M.; Sinnreich, R.; Chen, W.; Steenstrup, T.; Christensen, K.; Herbig, U.; von Bornemann Hjelmborg, J.; et al. Tracking and fixed ranking of leukocyte telomere length across the adult life course. Aging Cell 2013, 12, 615–621. [Google Scholar] [CrossRef]
- Martens, D.S.; Van Der Stukken, C.; Derom, C.; Thiery, E.; Bijnens, E.M.; Nawrot, T.S. Newborn telomere length predicts later life telomere length: Tracking telomere length from birth to child- and adulthood. EBioMedicine 2021, 63, 103164. [Google Scholar] [CrossRef] [PubMed]
- Moores, C.J.; Fenech, M.; O’callaghan, N.J. Telomere dynamics: The influence of folate and DNA methylation. Ann. N. Y. Acad. Sci. 2011, 1229, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Bull, C.F.; Mayrhofer, G.; O’Callaghan, N.J.; Au, A.Y.; Pickett, H.A.; Low, G.K.M.; Zeegers, D.; Hande, M.P.; Fenech, M.F. Folate Deficiency Induces Dysfunctional Long and Short Telomeres; Both States Are Associated with Hypomethylation and DNA Damage in Human WIL2-NS Cells. Cancer Prev. Res. 2014, 7, 128–138. [Google Scholar] [CrossRef]
- Habibi, N.; Bianco-Miotto, T.; Phoi, Y.Y.; Jankovic-Karasoulos, T.; Roberts, C.T.; Grieger, J.A. Maternal diet and offspring telomere length: A systematic review. Nutr. Rev. 2020, 79, 148–159. [Google Scholar] [CrossRef]
- Martens, D.S.; Janssen, B.G.; Bijnens, E.M.; Clemente, D.B.P.; Vineis, P.; Plusquin, M.; Nawrot, T.S. Association of Parental Socioeconomic Status and Newborn Telomere Length. JAMA Netw. Open 2020, 3, e204057. [Google Scholar] [CrossRef]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef]
- Telomere Research Network (TRN). Resoruces of Study Design & Analysis. Available online: https://trn.tulane.edu/resources/study-design-analysis/ (accessed on 21 December 2022).
- Vioque, J.; Navarrete-Muñoz, E.-M.; Gimenez-Monzó, D.; García-De-La-Hera, M.; Granado, F.; Young, I.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Buckland, G.; González, C.A.; Agudo, A.; Vilardell, M.; Berenguer, A.; Amiano, P.; Ardanaz, E.; Arriola, L.; Barricarte, A.; Basterretxea, M.; et al. Adherence to the Mediterranean Diet and Risk of Coronary Heart Disease in the Spanish EPIC Cohort Study. Am. J. Epidemiology 2009, 170, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Entringer, S.; De Punder, K.; Buss, C.; Wadhwa, P.D. The fetal programming of telomere biology hypothesis: An update. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170151. [Google Scholar] [CrossRef] [PubMed]
- Ly, K.; Walker, C.; Berry, S.; Snell, R.; Marks, E.; Thayer, Z.; Atatoa-Carr, P.; Morton, S. Telomere length in early childhood is associated with sex and ethnicity. Sci. Rep. 2019, 9, 10359. [Google Scholar] [CrossRef] [PubMed]
- Lansdorp, P.M. Sex differences in telomere length, lifespan, and embryonic dyskerin levels. Aging Cell 2022, 21, e13614. [Google Scholar] [CrossRef]
- Sanderson, P.; McNulty, H.; Mastroiacovo, P.; McDowell, I.F.; Melse-Boonstra, A.; Finglas, P.M.; Gregory, J.F. Folate bioavailability: UK food standards agency workshop report. Br. J. Nutr. 2003, 90, 473–479. [Google Scholar] [CrossRef]
- Menezo, Y.; Elder, K.; Clement, A.; Clement, P. Folic Acid, Folinic Acid, 5 Methyl TetraHydroFolate Supplementation for Mutations That Affect Epigenesis through the Folate and One-Carbon Cycles. Biomolecules 2022, 12, 197. [Google Scholar] [CrossRef]
- Thiamin, R. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline1, 1998. Available online: https://www.ncbi.nlm.nih.gov/books/NBK114310/ (accessed on 24 March 2023).
- Paul, L.; Jacques, P.F.; Aviv, A.; Vasan, R.S.; D’agostino, R.B.; Levy, D.; Selhub, J. High plasma folate is negatively associated with leukocyte telomere length in Framingham Offspring cohort. Eur. J. Nutr. 2014, 54, 235–241. [Google Scholar] [CrossRef]
- Obeid, R.; Herrmann, W. The Emerging Role of Unmetabolized Folic Acid in Human Diseases: Myth or Reality? Curr. Drug Metab. 2012, 13, 1184–1195. [Google Scholar] [CrossRef]
- Troen, A.M.; Mitchell, B.; Sorensen, B.; Wener, M.H.; Johnston, A.; Wood, B.; Selhub, J.; McTiernan, A.; Yasui, Y.; Oral, E.; et al. Unmetabolized Folic Acid in Plasma Is Associated with Reduced Natural Killer Cell Cytotoxicity among Postmenopausal Women. J. Nutr. 2006, 136, 189–194. [Google Scholar] [CrossRef]
- Nettle, D.; Gadalla, S.M.; Lai, T.-P.; Susser, E.; Bateson, M.; Aviv, A. Measurement of Telomere Length for Longitudinal Analysis: Implications of Assay Precision. Am. J. Epidemiology 2021, 190, 1406–1413. [Google Scholar] [CrossRef]
- Lai, T.P.; Wright, W.E.; Shay, J.W. Comparison of telomere length measurement methods. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160451. [Google Scholar] [CrossRef] [PubMed]
Children’s Characteristics | All Areas | Asturias | Gipuzkoa | Sabadell | p |
---|---|---|---|---|---|
n (%) | 666 (100) | 264 (39.6) | 132 (19.8) | 270 (40.6) | - |
Sex, n (%) | 0.523 | ||||
Girls | 317 (47.6) | 120 (45.5) | 68 (51.5) | 129 (47.8) | |
Boys | 349 (52.4) | 144 (54.5) | 64 (48.5) | 141 (52.2) | |
Season of blood extraction at age four, n (%) | <0.001 | ||||
Winter | 179 (26.9) | 97 (36.8) | 8 (6.1) | 74 (27.4) | |
Spring | 223 (33.5) | 71 (26.9) | 73 (55.3) | 79 (29.3) | |
Summer | 102 (15.3) | 26 (9.8) | 25 (18.9) | 51 (18.9) | |
Autumn | 162 (24.3) | 70 (26.5) | 26 (19.7) | 66 (24.4) | |
Relative Mediterranean diet score, median (IQR) | 9.0 (7.0; 10.0) | 9.0 (8.0; 11.0) | 8.0 (7.0; 10.0) | 8.0 (6.0; 10.0) | <0.001 |
TV time, (h/week), median (IQR) | 9.0 (5.6; 13.5) | 9.0 (5.8; 12.0) | 7.0 (4.5; 11.5) | 10 (6.5; 14.0) | <0.001 |
Sleep (h/day), median (IQR) | 10.5 (10.0; 11.0) | 10.5 (10.0; 11.0) | 11.0 (10.0; 11.0) | 10.4 (10.0; 11.0) | 0.104 |
UPF intake (g/day), median (IQR) | 390.6 (280.5; 553.5) | 314.4 (228.4; 433.7) | 382.6 (277.1; 562.8) | 481.5 (352.2; 633.3) | <0.001 |
Mother’s characteristics | |||||
Age (years), median (IQR) | 31 (29; 34) | 32 (29; 35) | 32 (29; 34) | 30 (28; 33) | <0.001 |
Parity, n (%) | 0.110 | ||||
0 | 380 (57.1) | 163 (61.7) | 68 (51.5) | 149 (55.2) | |
≥1 | 286 (42.9) | 101 (38.3) | 64 (48.5) | 121 (44.8) | |
Smoking status (yes), n (%) | 159 (23.9) | 65 (24.6) | 21 (15.9) | 73 (27.0) | <0.001 |
Educational level, n (%) | <0.001 | ||||
Primary | 131 (19.7) | 41 (15.5) | 20 (15.1) | 70 (25.9) | |
Secondary | 274 (41.1) | 120 (45.5) | 41 (31.1) | 113 (41.9) | |
University | 261 (39.2) | 103 (39.0) | 71 (53.8) | 87 (32.2) | |
Folate intake (1st period) | 308.4 (262.5; 353.0) | 313.3 (264.4; 366.8) | 336.8 (296.0; 376.0) | 285.0 (238.8; 329.6) | <0.001 |
Folate intake (2nd period) | 299.2 (255.2; 352.3) | 304.4 (258.4; 358.7) | 341.7 (287.9; 377.8) | 281.2 (242.2; 318.3) | <0.001 |
Folate intake (whole period) | 302.1 (266.4; 346.0) | 311.5 (267.4; 354.4) | 228.0 (294.7; 375.3) | 282.6 (252.6; 322.6) | <0.001 |
Energy intake (1st period) | 1986 (1718; 2306) | 2019 (1748; 2310) | 2870 (1608; 2134) | 2028 (1775; 2331) | <0.001 |
Energy intake (2nd period) | 1984 (1687; 2315) | 1947 (1644; 2330) | 1924 (1603; 2152) | 2067 (1801; 2393) | <0.001 |
Energy intake (whole period) | 2000 (1772; 2269) | 1990 (1782; 2280) | 1903 (1625; 2124) | 2062 (1798; 2311) | <0.001 |
Alcohol intake (1st period) | 0 (0; 0.04) | 0 (0; 0) | 0 (0; 0.05) | 0 (0; 0.09) | <0.001 |
Alcohol intake (2nd period) | 0 (0; 0.09) | 0 (0; 0.04) | 0.04 (0; 0.3) | 0 (0; 0.3) | <0.001 |
Alcohol intake (whole period) | 0 (0; 0.13) | 0 (0; 0.04) | 0.04 (0; 0.18) | 0.2 (0; 0.3) | <0.001 |
Folic Acid Supplementation | First Period a | Second Period b | Whole Period c | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % Difference (95% CI) | p | I2 | n | % Difference (95% CI) | p | I2 | n | % Difference (95% CI) | p | I2 | |
<400 μg/d | 356 | Ref. | - | - | 383 | Ref. | - | - | 371 | Ref. | - | - |
≥400 to 999 μg/d | 97 | 2.70 (−5.99; 11.4) | 0.543 | 69.9 | 149 | −2.55 (−6.72; 1.62) | 0.231 | 0.0 | 113 | 1.11 (−5.13; 2.90) | 0.586 | 0.0 |
≥1000 to 4999 μg/d | 157 | 0.23 (−3.19; 3.65) | 0.896 | 16.3 | 44 | −3.16 (−9.00; 2.69) | 0.290 | 0.0 | 161 | 1.40 (−2.35; 5.16) | 0.464 | 0.0 |
≥5000 μg/d | 56 | −6.07 (−12.60; 0.46) | 0.068 | 0.0 | 90 | −2.10 (−8.15; 3.96) | 0.497 | 0.0 | 21 | −13.5 (−27.4; 0.35) | 0.055 | 69.4 |
n | % difference d (95% CI) | p | I2 | n | % difference d (95% CI) | p | I2 | |||||
<400 μg/d | 356 | Ref. | - | - | 383 | Ref. | - | - | ||||
≥400 to 999 μg/d | 97 | 2.73 (−5.83; 11.3) | 0.532 | 69.2 | 149 | −2.72 (−6.86; 1.42) | 0.198 | 0.0 | ||||
≥1000 to 4999 μg/d | 157 | 0.02 (−4.23; 4.27) | 0.993 | 37.6 | 44 | −1.71 (−7.92; 4.50) | 0.590 | 0.0 | ||||
≥5000 μg/d | 56 | −7.28 (−14.42; −0.13) | 0.046 | 0.0 | 90 | 0.93 (−5.68; 7.54) | 0.784 | 0.0 |
Folic Acid Supplementation | First Period a | Second Period b | Whole Period c | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % Difference (95% CI) | p | I2 | n | % Difference (95% CI) | p | I2 | n | % Difference (95% CI) | p | I2 | |
<400 μg/d | 172 | Ref. | - | - | 186 | Ref. | - | - | 184 | Ref. | - | - |
≥400 to 999 μg/d | 48 | −1.30 (−9.23; 6.63) | 0.748 | 0.0 | 67 | −4.10 (−10.1; 1.94) | 0.183 | 0.0 | 45 | −5.44 (−12.1; 1.27) | 0.112 | 0.0 |
≥1000 to 4999 μg/d | 68 | 0.86 (−5.77; 7.48) | 0.800 | 0.0 | 23 | 1.81 (−7.86; 11.5) | 0.713 | 0.0 | 77 | 2.10 (−3.66; 7.87) | 0.474 | 0.0 |
≥5000 μg/d | 29 | −2.32 (−15.3; 10.7) | 0.726 | 0.0 | 41 | 1.55 (−6.77; 9.86) | 0.715 | 16.2 | 11 | 0.01 (−0.06; 0.07) | 0.799 | 0.0 |
n | % difference d (95% CI) | p | I2 | n | % difference d (95% CI) | p | I2 | |||||
<400 μg/d | 172 | Ref. | - | - | 186 | Ref. | - | - | ||||
≥400 to 999 μg/d | 48 | 2.46 (−4.50; 9.41) | 0.489 | 46.6 | 67 | −4.11 (−10.3; 2.11) | 0.196 | 0.0 | ||||
≥1000 to 4999 μg/d | 68 | −1.71 (−10.2; 6.84) | 0.700 | 0.0 | 23 | 3.54 (−6.33; 13.4) | 0.483 | 0.0 | ||||
≥5000 μg/d | 29 | −5.42 (−17.2; 6.39) | 0.368 | 0.0 | 41 | 2.82 (−5.70; 11.3) | 0.516 | 0.0 |
Folic Acid Supplementation | First Period a | Second Period b | Whole Period c | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % Difference (95% CI) | p | I2 | n | % Difference (95% CI) | p | I2 | n | % Difference (95% CI) | p | I2 | |
<400 μg/d | 184 | Ref. | - | - | 197 | Ref. | 187 | Ref. | - | - | ||
≥400 to 999 μg/d | 49 | 0.30 (−7.35; 7.95) | 0.939 | 0.0 | 82 | 0.01 (−6.50; 6.52) | 0.998 | 0.0 | 68 | 3.23 (−2.38; 8.85) | 0.259 | 0.0 |
≥1000 to 4999 μg/d | 89 | −0.20 (−4.47; 4.07) | 0.928 | 12.0 | 21 | −7.98 (−15.4; −0.53) | 0.036 | 0.0 | 84 | 0.36 (−4.55; 5.27) | 0.886 | 0.0 |
≥5000 μg/d | 27 | −11.3 (−19.4; −3.22) | 0.006 | 22.2 | 49 | 8.28 (−8.84; 25.4) | 0.343 | 54.3 | 10 | −7.84 (−22.5; 6.85) | 0.295 | 56.1 |
n | % difference d (95% CI) | p | I2 | n | % difference d (95% CI) | p | I2 | |||||
<400 μg/d | 184 | Ref. | - | - | 197 | Ref. | - | - | ||||
≥400 to 999 μg/d | 49 | 0.45 (−7.27; 8.17) | 0.909 | 0.0 | 82 | 0.18 (−6.18; 6.55) | 0.955 | 0.0 | ||||
≥1000 to 4999 μg/d | 89 | 0.36 (−5.11; 5.83) | 0.898 | 10.5 | 21 | −7.97 (−15.9; −0.04) | 0.049 | 0.0 | ||||
≥5000 μg/d | 27 | −13.5 (−23.0; −4.04) | 0.005 | 0.0 | 49 | 4.55 (−5.46; 14.6) | 0.373 | 21.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petermann-Rocha, F.; Valera-Gran, D.; Prieto-Botella, D.; Martens, D.S.; Gonzalez-Palacios, S.; Riaño-Galán, I.; Murcia, M.; Irizar, A.; Julvez, J.; Santa-Marina, L.; et al. Folic Acid Supplementation during Pregnancy and Its Association with Telomere Length in Children at Four Years: Results from the INMA Birth Cohort Study. Nutrients 2023, 15, 4303. https://doi.org/10.3390/nu15194303
Petermann-Rocha F, Valera-Gran D, Prieto-Botella D, Martens DS, Gonzalez-Palacios S, Riaño-Galán I, Murcia M, Irizar A, Julvez J, Santa-Marina L, et al. Folic Acid Supplementation during Pregnancy and Its Association with Telomere Length in Children at Four Years: Results from the INMA Birth Cohort Study. Nutrients. 2023; 15(19):4303. https://doi.org/10.3390/nu15194303
Chicago/Turabian StylePetermann-Rocha, Fanny, Desirée Valera-Gran, Daniel Prieto-Botella, Dries S Martens, Sandra Gonzalez-Palacios, Isolina Riaño-Galán, Mario Murcia, Amaia Irizar, Jordi Julvez, Loreto Santa-Marina, and et al. 2023. "Folic Acid Supplementation during Pregnancy and Its Association with Telomere Length in Children at Four Years: Results from the INMA Birth Cohort Study" Nutrients 15, no. 19: 4303. https://doi.org/10.3390/nu15194303
APA StylePetermann-Rocha, F., Valera-Gran, D., Prieto-Botella, D., Martens, D. S., Gonzalez-Palacios, S., Riaño-Galán, I., Murcia, M., Irizar, A., Julvez, J., Santa-Marina, L., Tardón, A., Sunyer, J., Vioque, J., Nawrot, T., & Navarrete-Muñoz, E. -M. (2023). Folic Acid Supplementation during Pregnancy and Its Association with Telomere Length in Children at Four Years: Results from the INMA Birth Cohort Study. Nutrients, 15(19), 4303. https://doi.org/10.3390/nu15194303