Plant-Based Diets and Risk of Hospitalization with Respiratory Infection: Results from the Atherosclerosis Risk in Communities (ARIC) Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Dietary Assessments
2.3. Plant-Based Diet Score
2.4. Outcome Assessment
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Diet Indices
3.3. Plant-Based Diets and Hospitalization with Respiratory Infections
3.4. Components of Diet Indices and Hospitalization with Respiratory Infections
3.5. Plant-Based Diets and Hospitalization with Any Infection
3.6. Components of Diet Indices and Hospitalization with Any Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef]
- Craddock, J.C.; Neale, E.P.; Peoples, G.E.; Probst, Y.C. Vegetarian-Based Dietary Patterns and their Relation with Inflammatory and Immune Biomarkers: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 433–451. [Google Scholar] [CrossRef]
- Erickson, K.L.; Medina, E.A.; Hubbard, N.E. Micronutrients and innate immunity. J. Infect. Dis. 2000, 182 (Suppl. S1), S5–S10. [Google Scholar] [CrossRef]
- Field, C.J.; Johnson, I.R.; Schley, P.D. Nutrients and their role in host resistance to infection. J. Leukoc. Biol. 2002, 71, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.E.; Sun, Q.; Hu, F.B. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016, 13, e1002039. [Google Scholar] [CrossRef]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef]
- Kim, H.; Caulfield, L.E.; Garcia-Larsen, V.; Steffen, L.M.; Coresh, J.; Rebholz, C.M. Plant-Based Diets Are Associated With a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults. J. Am. Heart Assoc. 2019, 8, e012865. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Rebholz, C.M.; Garcia-Larsen, V.; Steffen, L.M.; Coresh, J.; Caulfield, L.E. Operational Differences in Plant-Based Diet Indices Affect the Ability to Detect Associations with Incident Hypertension in Middle-Aged US Adults. J. Nutr. 2020, 150, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Merino, J.; Joshi, A.D.; Nguyen, L.H.; Leeming, E.R.; Mazidi, M.; Drew, D.A.; Gibson, R.; Graham, M.S.; Lo, C.H.; Capdevila, J.; et al. Diet quality and risk and severity of COVID-19: A prospective cohort study. Gut 2021, 70, 2096–2104. [Google Scholar] [CrossRef]
- Kim, H.; Rebholz, C.M.; Hegde, S.; LaFiura, C.; Raghavan, M.; Lloyd, J.F.; Cheng, S.; Seidelmann, S.B. Plant-based diets, pescatarian diets and COVID-19 severity: A population-based case-control study in six countries. BMJ Nutr. Prev. Health 2021, 4, 257–266. [Google Scholar] [CrossRef]
- Charland, K.M.; Buckeridge, D.L.; Hoen, A.G.; Berry, J.G.; Elixhauser, A.; Melton, F.; Brownstein, J.S. Relationship between community prevalence of obesity and associated behavioral factors and community rates of influenza-related hospitalizations in the United States. Influenza Other Respir. Viruses 2013, 7, 718–728. [Google Scholar] [CrossRef]
- Alperovich, M.; Neuman, M.I.; Willett, W.C.; Curhan, G.C. Fatty acid intake and the risk of community-acquired pneumonia in U.S. women. Nutrition 2007, 23, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, O.M.; Judd, S.E.; Voeks, J.H.; Carson, A.P.; Safford, M.M.; Shikany, J.M.; Wang, H.E. Diet patterns and risk of sepsis in community-dwelling adults: A cohort study. BMC Infect. Dis. 2015, 15, 231. [Google Scholar] [CrossRef]
- Wright, J.D.; Folsom, A.R.; Coresh, J.; Sharrett, A.R.; Couper, D.; Wagenknecht, L.E.; Mosley, T.H., Jr.; Ballantyne, C.M.; Boerwinkle, E.A.; Rosamond, W.D.; et al. The ARIC (Atherosclerosis Risk in Communities) Study: JACC Focus Seminar 3/8. J. Am. Coll. Cardiol. 2021, 77, 2939–2959. [Google Scholar] [CrossRef]
- Stevens, J.; Metcalf, P.A.; Dennis, B.H.; Tell, G.S.; Shimakawa, T.; Folsom, A.R. Reliability of a food frequency questionnaire by ethnicity, gender, age and education. Nutr. Res. 1996, 16, 735–745. [Google Scholar] [CrossRef]
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, F.M.; Calatayud, B.; Gallego, J.G.; González-Martín, C.; Alguacil, L.F. Effects of Mediterranean diet in patients with recurring colds and frequent complications. Allergol. Immunopathol. 2017, 45, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Rohli, K.E.; Yang, S.; Jia, P. Impact of obesity on COVID-19 patients. J. Diabetes Complicat. 2021, 35, 107817. [Google Scholar] [CrossRef]
- Losso, J.N.; Losso, M.N.; Toc, M.; Inungu, J.N.; Finley, J.W. The Young Age and Plant-Based Diet Hypothesis for Low SARS-CoV-2 Infection and COVID-19 Pandemic in Sub-Saharan Africa. Plant Foods Hum. Nutr. 2021, 76, 270–280. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Economic Research Service. Food Availability and Consumption. Available online: https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-essentials/food-availability-and-consumption/ (accessed on 1 December 2021).
- McGill, C.R.; Kurilich, A.C.; Davignon, J. The role of potatoes and potato components in cardiometabolic health: A review. Ann. Med. 2013, 45, 467–473. [Google Scholar] [CrossRef]
- Beals, K.A. Potatoes, nutrition and health. Am. J. Potato Res. 2019, 96, 102–110. [Google Scholar] [CrossRef]
- Albashir, A.A.D. The potential impacts of obesity on COVID-19. Clin. Med. 2020, 20, e109–e113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chi, J.; Lv, W.; Wang, Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (COVID-19). Diabetes. Metab. Res. Rev. 2021, 37, e3377. [Google Scholar] [CrossRef] [PubMed]
- Lighter, J.; Phillips, M.; Hochman, S.; Sterling, S.; Johnson, D.; Francois, F.; Stachel, A. Obesity in Patients Younger Than 60 Years Is a Risk Factor for COVID-19 Hospital Admission. Clin. Infect. Dis. 2020, 71, 896–897. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010, 2010, 289645. [Google Scholar] [CrossRef] [PubMed]
- Muller, L.M.; Gorter, K.J.; Hak, E.; Goudzwaard, W.L.; Schellevis, F.G.; Hoepelman, A.I.; Rutten, G.E. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin. Infect. Dis. 2005, 41, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Casqueiro, J.; Casqueiro, J.; Alves, C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J. Endocrinol. Metab. 2012, 16 (Suppl. 1), S27–S36. [Google Scholar] [CrossRef]
- Erener, S. Diabetes, infection risk and COVID-19. Mol. Metab. 2020, 39, 101044. [Google Scholar] [CrossRef]
- Forouhi, N.G. Embracing complexity: Making sense of diet, nutrition, obesity and type 2 diabetes. Diabetologia 2023, 66, 786–799. [Google Scholar] [CrossRef]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef]
Characteristics | Quintile 1 (n = 2129) | Quintile 2 (n= 2554) | Quintile 3 (n = 2384) | Quintile 4 (n = 2759) | Quintile 5 (n = 2129) |
---|---|---|---|---|---|
Median score (range) | 43(18–45) | 48 (46–49) | 51 (50–52) | 54 (53–56) | 59 (57–72) |
Female, % | 44.0 | 53.8 | 61.1 | 61.6 | 59.0 |
Mean age (SD) | 59.8 (5.6) | 59.9 (5.7) | 59.8 (5.7) | 60.2 (5.7) | 60.2 (5.7) |
Race, % | |||||
White | 67.7 | 74.5 | 77.9 | 82.2 | 87.0 |
Black | 32.1 | 25.1 | 21.9 | 17.5 | 12.6 |
BMI, mean (SD) | 29.1 (5.6) | 29.0 (5.7) | 28.4 (5.4) | 28.3 (5.5) | 27.7 (5.3) |
Current smoker, % | 24.5 | 19.3 | 17.4 | 13.5 | 12.5 |
Alcohol intake in g/week, mean (SD) | 68.5 (159.2) | 47.7 (125.5) | 36.1 (112.6) | 30.6 (74.4) | 29.1 (69.3) |
Chronic lung disease, % | |||||
Asthma | 4.6 | 4.5 | 4.9 | 4.6 | 5.0 |
COPD | 5.0 | 5.3 | 4.6 | 3.7 | 4.1 |
Diabetes mellitus, % | 16.9 | 16.0 | 15.9 | 14.1 | 13.0 |
Income, % | |||||
<$ 50,000 | 33.9 | 33.9 | 31.3 | 29.0 | 24.8 |
$ 50,000–75,000 | 36.0 | 35.0 | 36.4 | 35.9 | 36.7 |
>$ 75,000 | 30.1 | 31.1 | 32.3 | 35.1 | 38.5 |
Education, % | |||||
Less than HS | 26.4 | 21.3 | 19.00 | 17.5 | 14.0 |
HS graduate | 40.4 | 41.9 | 43.0 | 42.7 | 41.4 |
Some college or above | 33.1 | 36.8 | 38.0 | 39.8 | 44.6 |
Food and nutrient intakes, mean (SD) | |||||
Total energy (kcal) | 1753.2 (649.1) | 1565.3 (598.5) | 1507.4 (562.3) | 1554.5 (565.3) | 1703.1 (571.3) |
Healthy plant foods (servings/day) | 5.9 (3.3) | 6.6 (3.2) | 7.3 (3.3) | 8.2 (3.3) | 10.0 (3.7) |
Less healthy plant foods (servings/day) | 4.6 (2.5) | 4.7 (2.6) | 4.8 (2.5) | 5.2 (2.5) | 6.1 (2.7) |
Animal foods (servings/day) | 5.5 (2.3) | 4.3 (1.8) | 3.8 (1.7) | 3.5 (1.6) | 3.2 (1.5) |
Vegetables and fruit (servings/day) | 2.8 (2.0) | 3.1 (2.1) | 3.4 (2.0) | 3.9 (2.1) | 4.7 (2.3) |
Meat (servings/day) | 2.1 (1.0) | 1.6 (0.9) | 1.4 (0.8) | 1.3 (0.7) | 1.2 (0.7) |
Fish (servings/day) | 0.35 (0.4) | 0.29 (0.3) | 0.28 (0.3) | 0.28 (0.3) | 0.26 (0.3) |
Dairy (servings/day) | 2.1 (1.7) | 1.7 (1.3) | 1.6 (1.2) | 1.5 (1.1) | 1.4 (1.1) |
Fiber (g) | 14.4 (7.6) | 15.4 (7.4) | 16.7 (7.6) | 18.8 (7.6) | 23.1 (9.2) |
Vitamin A (IU) | 8486.4 (6807.4) | 9044.8 (8362.4) | 9847.1 (8255.9) | 10,923.4 (8355.6) | 13,067.6 (10,183.3) |
Vitamin C (mg) | 108.0 (88.4) | 113.8 (87.2) | 126.6 (86.4) | 142.4 (89.0) | 169.7 (91.3) |
Folate (mcg) | 226.1 (114.3) | 229.2 (114.3) | 247.1 (119.2) | 272.3 (117.5) | 320.1 (129.8) |
Vitamin B12 (mcg) | 8.3 (4.5) | 6.8 (3.8) | 6.3 (3.7) | 5.8 (3.6) | 5.5 (3.5) |
Iron (mg) | 11.3 (4.8) | 10.9 (5.0) | 11.1 (5.2) | 11.9 (5.4) | 13.4 (5.9) |
Calcium (mg) | 756.6 (485.5) | 653.3 (390.3) | 632.7 (358.4) | 644.3 (342.1) | 668.8 (328.1) |
Magnesium (mg) | 249.6 (101.5) | 238.0 (93.6) | 241.2 (90.7) | 257.6 (90.7) | 292.3 (97.6) |
Potassium (mg) | 2622.9 (1072.6) | 2502.9 (962.1) | 2564.9 (947.8) | 2735.4 (950.7) | 3086.2 (975.3) |
Zinc (mg) | 12.1 (5.2) | 10.4 (4.5) | 9.9 (4.3) | 9.9 (4.1) | 10.2 (4.2) |
Protein (g) | 86.6 (35.2) | 74.3 (29.4) | 70.6 (27.8) | 70.1 (27.8) | 72.2 (27.3 |
Carbs (g) | 185.9 (84.7) | 184.7 (82.6) | 188.9 (79.2) | 204.7 (78.3) | 239.2 (83.1) |
Fat (g) | |||||
Animal | 50.1 (21.7) | 38.3 (17.3) | 33.4 (15.2) | 31.4 (15.3) | 29.1 (14.6) |
Vegetable | 19.6 (11.9) | 19.6 (12.2) | 19.3 (12.0) | 20.6 (12.3) | 24.7 (13.1) |
Diet Type | Quintile | HR and 95% CI | |||
---|---|---|---|---|---|
Unadjusted | Model 1 * | Model 2 # | Model 3 & | ||
PDI | Quintile 1 | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) |
Quintile 2 | 0.86 (0.76, 0.97) | 0.89 (0.78, 1.00) | 0.94 (0.82, 1.01) | 0.94 (0.82, 1.08) | |
Quintile 3 | 0.85 (0.75, 0.97) | 0.89 (0.78, 1.00) | 0.97 (0.85, 1.12) | 0.98 (0.86,1.13) | |
Quintile 4 | 0.77 (0.69,0.88) | 0.78 (0.68, 0.89) | 0.88 (0.77, 1.01) | 0.91 (0.80, 1.04) | |
Quintile 5 | 0.78 (0.69, 0.89) | 0.78 (0.70, 0.83) | 0.90 (0.78, 1.04) | 0.92 (0.80, 1.07) | |
Trend p value | <0.001 | <0.001 | 0.099 | 0.217 | |
HPDI | Quintile 1 | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) |
Quintile 2 | 0.95 (0.83, 1.07) | 0.95 (0.84, 1.08) | 0.97 (0.85, 1.12) | 0.97 (0.85, 1.12) | |
Quintile 3 | 0.94 (0.83, 1.06) | 0.90 (0.80, 1.02) | 0.95 (0.83, 1.08) | 0.97 (0.84, 1.11) | |
Quintile 4 | 0.94 (0.82, 1.06) | 0.87 (0.77, 0.99) | 0.93 (0.81, 1.08) | 0.95 (0.82, 1.10) | |
Quintile 5 | 0.82 (0.73, 0.93) | 0.74 (0.65, 0.84) | 0.84 (0.73, 0.97) | 0.86 (0.75, 0.99) | |
Trend p value | 0.003 | <0.001 | 0.012 | 0.037 | |
UPDI | Quintile 1 | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) |
Quintile 2 | 0.98 (0.88, 1.08) | 0.99 (0.89, 1.10) | 0.98 (0.88, 1.01) | 1.00 (0.90, 1.12) | |
Quintile 3 | 0.88 (0.78, 0.98) | 0.90 (0.80, 1.00) | 0.90 (0.79, 1.01) | 0.91 (0.80, 1.02) | |
Quintile 4 | 1.01 (0.92, 1.12) | 0.98 (0.90, 1.10) | 1.00 (0.89, 1.11) | 1.01 (0.90, 1.12) | |
Quintile 5 | 1.01 (0.91, 1.12) | 1.01 (0.90, 1.13) | 1.00 (0.88, 1.12) | 1.03 (0.91, 1.16) | |
Trend p value | 0.29 | 0.58 | 0.85 | 0.57 |
Diet Type | Quintile | HR and 95% CI | |||
---|---|---|---|---|---|
Unadjusted | Model 1 * | Model 2 # | Model 3 & | ||
PDI | Quintile 1 | 1 (Ref) | 1 (Ref) | 1 (Ref) | 1 (Ref) |
Quintile 2 | 0.87 (0.80, 0.96) | 0.88 (0.80, 0.97) | 0.93 (0.84, 1.3) | 0.94 (0.84, 1.04) | |
Quintile 3 | 0.85 (0.77, 0.94) | 0.86 (0.78, 0.95) | 0.92 (0.82, 1.02) | 0.93 (0.84, 1.04) | |
Quintile 4 | 0.83(0.76, 0.92) | 0.83 (0.75, 0.91) | 0.89 (0.81, 0.99) | 0.92 (0.83, 1.02) | |
Quintile 5 | 0.77 (0.70, 0.85) | 0.76 (0.68, 0.84) | 0.82 (0.74, 0.92) | 0.85 (0.76, 0.96) | |
Trend p value | <0.001 | <0.001 | <0.001 | 0.009 | |
HPDI | Quintile 1 | 1 (Ref) | 1 (Ref) | 1 (Ref) | 1 (Ref) |
Quintile 2 | 0.99 (0.90, 1.09) | 0.98 (0.89, 1.08) | 0.99 (0.89, 1.10) | 0.98 (0.88, 1.09) | |
Quintile 3 | 0.97 (0.88, 1.07) | 0.92 (0.84, 1.02) | 0.95 (0.85, 1.05) | 0.97 (0.87, 1.07) | |
Quintile 4 | 0.93 (0.84, 1.03) | 0.86 (0.78, 0.95) | 0.91 (0.81, 1.01) | 0.92 (0.83, 1.03) | |
Quintile 5 | 0.87 (0.79, 0.95) | 0.78 (0.70, 0.86) | 0.84 (0.76, 0.94) | 0.87 (0.78, 0.97) | |
Trend p value | 0.001 | <0.001 | <0.001 | 0.006 | |
UPDI | Quintile 1 | 1 (Ref) | 1 (Ref) | 1 (Ref) | 1 (Ref) |
Quintile 2 | 0.98 (0.91, 1.06) | 0.98 (0.91, 1.06) | 0.98 (0.90, 1.07) | 1.00 (0.92, 1.09) | |
Quintile 3 | 0.96 (0.89, 1.05) | 0.97 (0.89, 1.05) | 0.96 (0.87, 1.05) | 0.98 (0.90, 1.08) | |
Quintile 4 | 0.98 (0.90, 1.05) | 0.95 (0.88, 1.03) | 0.97 (0.89, 1.05) | 0.98 (0.90, 1.06) | |
Quintile 5 | 1.00 (0.92, 1.09) | 1.00 (0.91, 1.09) | 0.98 (0.90, 1.08) | 1.03 (0.94, 1.13) | |
Trend p value | 0.57 | 0.80 | 0.79 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kendrick, K.N.; Kim, H.; Rebholz, C.M.; Selvin, E.; Steffen, L.M.; Juraschek, S.P. Plant-Based Diets and Risk of Hospitalization with Respiratory Infection: Results from the Atherosclerosis Risk in Communities (ARIC) Study. Nutrients 2023, 15, 4265. https://doi.org/10.3390/nu15194265
Kendrick KN, Kim H, Rebholz CM, Selvin E, Steffen LM, Juraschek SP. Plant-Based Diets and Risk of Hospitalization with Respiratory Infection: Results from the Atherosclerosis Risk in Communities (ARIC) Study. Nutrients. 2023; 15(19):4265. https://doi.org/10.3390/nu15194265
Chicago/Turabian StyleKendrick, Karla N., Hyunju Kim, Casey M. Rebholz, Elizabeth Selvin, Lyn M. Steffen, and Stephen P. Juraschek. 2023. "Plant-Based Diets and Risk of Hospitalization with Respiratory Infection: Results from the Atherosclerosis Risk in Communities (ARIC) Study" Nutrients 15, no. 19: 4265. https://doi.org/10.3390/nu15194265
APA StyleKendrick, K. N., Kim, H., Rebholz, C. M., Selvin, E., Steffen, L. M., & Juraschek, S. P. (2023). Plant-Based Diets and Risk of Hospitalization with Respiratory Infection: Results from the Atherosclerosis Risk in Communities (ARIC) Study. Nutrients, 15(19), 4265. https://doi.org/10.3390/nu15194265