Designing Optimal Food-Based Recommendations and Nutrient-Dense Canteen Menu for Oil and Gas Workers Using Linear Programming: A Preliminary Study in Oil and Gas Worksite in East Kalimantan, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Data Collection
2.3.1. Socio-Demographic Characteristics and Anthropometry
2.3.2. Dietary Assessment
2.3.3. Food Price Data
2.3.4. Food Composition Table
2.3.5. Recommended Energy and Nutrient Intake
2.4. Data Analysis
2.5. Linear Programming Applied to Formulate FBRs and Nutrient-Dense Menu
2.5.1. Preparation of Linear Programming Model Parameters
2.5.2. Development of Modelled Diets
2.6. Ethical Approval
3. Results
3.1. Socio-Demographic Characteristics and Anthropometry Status
3.2. Nutrient Intake
3.3. Dietary Pattern
3.4. Problem Nutrients, Draft FBRs, and Nutrient-Dense Canteen Menu
- Consume 3 main meals in a day consisting of grain foods, including:
- At least 5 servings/week of whole grain products
- Consume 2 servings/day of meat, fish, or poultry, including:
- At least 8 servings/week of fish, including 4 servings/week of Mackerel
- At least 5 servings/week of poultry
- Consume 1–2 serving/day of legume, nuts, or seeds
- Consume 2.5 servings/day of vegetables, including:
- At least 7 servings/week of dark green leafy vegetable
- Consume 1.5 servings/day of fruits, including:
- At least 5 servings/week of vitamin C sources fruit
- Limit fried food or foods cooked with margarine, butter, and coconut milk to a maximum of 3 servings/day
- Limit the usage of added salt to a maximum of ½ teaspoon/day
- 1 serving of brown rice milled = 100 g (cooked weight)
- 1 serving of fish = 75 g (wet weight)
- 1 serving of meat/poultry = 40 g (wet weight)
- 1 serving of tempeh = 50 g (cooked weight)
- 1 serving of peanut = 20 g (wet weight)
- 1 serving of vegetables = 100 g (wet weight)
- 1 serving of fruits = 80 g (wet weight)
- 1 serving of vegetable oil/butter/margarine = 5 g
- 1 serving of coconut milk = 30 g
- ½ teaspoon of salt = 1 g
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wanjek, C. Food at Work: Workplace Solutions for Malnutrition, Obesity and Chronic Diseases; International Labour Organization: Geneva, Switzerland, 2005. [Google Scholar]
- World Benchmarking Alliance. Methodology for the 2023 Food and Agriculture Benchmark; World Benchmarking Alliance: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Naicker, A.; Shrestha, A.; Joshi, C.; Willett, W.; Spiegelman, D. Workplace cafeteria and other multicomponent interventions to promote healthy eating among adults: A systematic review. Prev. Med. Rep. 2021, 22, 101333. [Google Scholar] [CrossRef]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Ni Mhurchu, C.; Aston, L.M.; Jebb, S.A. Effects of worksite health promotion interventions on employee diets: A systematic review. BMC Public Health 2010, 10, 62. [Google Scholar] [CrossRef]
- Tsai, S.P.; Ahmed, F.S.; Wendt, J.K.; Bhojani, F.; Donnelly, R.P. The Impact of Obesity on Illness Absence and Productivity in an Industrial Population of Petrochemical Workers. Ann. Epidemiol. 2008, 18, 8–14. [Google Scholar] [CrossRef]
- Mannocci, A.; Pignalosa, S.; Saulle, R.; Sernia, S.; De Sanctis, S.; Consentino, M.; Gialdi, C.; Nicosia, V.; La Torre, G. Prevalence of major cardiovascular risk factors among oil and gas and energy company workers. Ann. Ist. Super. Sanita 2015, 51, 148–153. [Google Scholar] [CrossRef]
- Baghshini, M.R.; Nikbakht-Jam, I.; Mohaddes-Ardabili, H.; Pasdar, A.; Avan, A.; Tayefi, M.; Sahebkar, A.; Sheikh-Andalibi, M.S.; Ferns, G.A.; Ghayour-Mobarhan, M. Higher prevalence of metabolic syndrome among male employees of a gas refinery than in their counterparts in nonindustrial environments. Asian Biomed. 2017, 11, 227–234. [Google Scholar] [CrossRef]
- Nea, F.M.; Kearney, J.; Livingstone, M.B.E.; Pourshahidi, L.K.; Corish, C.A. Dietary and lifestyle habits and the associated health risks in shift workers. Nutr. Res. Rev. 2015, 28, 143–166. [Google Scholar] [CrossRef]
- Mearns, K.; Hope, L. Health and Well-Being in the Offshore Environment: The Management of Personal Health; American Psychological Association: Washington, DC, USA, 2005. [Google Scholar]
- Stewart, J.; Manmathan, G.; Wilkinson, P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc. Dis. 2017, 6, 2048004016687211. [Google Scholar] [CrossRef]
- Atkinson, G.; Fullick, S.; Grindey, C.; Maclaren, D. Exercise, Energy Balance and the Shift Worker. Sports Med. 2008, 38, 671–685. [Google Scholar] [CrossRef]
- Handayani, Y.N.; Sartika, R.A.D. Hipertensi pada Pekerja Perusahaan Migas X di Kalimantan Timur, Indonesia. Makara Seri Kesehat. 2013, 8, 215–222. [Google Scholar] [CrossRef]
- Kaliterna, L.L.; Prizmic, L.Z.; Zganec, N. Quality of life, life satisfaction and happiness in shift- and non-shiftworkers. Rev. Saude Publica 2004, 38, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Corpes, A. Offshore installations benefit from nutrition training programmes. Perspect. Public Health 2013, 133, 286. [Google Scholar] [CrossRef]
- Smith, K.G.; Paudyal, V.; Klein, S.; Stewart, D. Health, self-care and the offshore workforce—opportunities for behaviour change interventions, an epidemiological survey. Rural Remote Health 2018, 18, 4319. [Google Scholar] [CrossRef]
- Hassani, B.; Amani, R.; Haghighizadeh, M.H.; Araban, M. A priority oriented nutrition education program to improve nutritional and cardiometabolic status in the workplace: A randomized field trial. J. Occup. Med. Toxicol. 2020, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.G.; Paudyal, V.; Quinn, F.; Klein, S.; Stewart, D. Offshore workers and health behaviour change: An exploration using the Theoretical Domains Framework. Int. Marit. Health 2018, 69, 248–256. [Google Scholar] [CrossRef]
- Darmon, N.; Vieux, F.; Maillot, M.; Volatier, J.-L.; Martin, A. Nutrient profiles discriminate between foods according to their contribution to nutritionally adequate diets: A validation study using linear programming and the SAIN, LIM system. Am. J. Clin. Nutr. 2009, 89, 1227–1236. [Google Scholar] [CrossRef]
- Maillot, M.; Ferguson, E.L.; Drewnowski, A.; Darmon, N. Nutrient Requirements and Optimal Nutrition Nutrient Profiling Can Help Identify Foods of Good Nutritional Quality for Their Price: A Validation Study with Linear Programming. J. Nutr. 2008, 138, 1107–1113. Available online: https://academic.oup.com/jn/article/138/6/1107/4670267 (accessed on 2 November 2020).
- Vieux, F.; Maillot, M.; Rehm, C.D.; Drewnowski, A. Designing Optimal Breakfast for the United States Using Linear Programming and the NHANES 2011–2014 Database: A Study from the International Breakfast Research Initiative (IBRI). Nutrients 2019, 11, 1374. [Google Scholar] [CrossRef]
- Fahmida, U.; Kolopaking, R.; Santika, O.; Sriani, S.; Umar, J.; Htet, M.K.; Ferguson, E. Effectiveness in improving knowledge, practices, and intakes of “key problem nutrients” of a complementary feeding intervention developed by using linear programming: Experience in Lombok, Indonesia. Am. J. Clin. Nutr. 2015, 101, 455–461. [Google Scholar] [CrossRef]
- Abdullah, M.; Witjaksono, F.; Mansyur, M.; Nurwidya, F.; Djuwita, R.; Dwiriani, C.M.; Fahmida, U. Promotion of optimized food-based recommendations to improve dietary practices and nutrient intakes among Minangkabau women of reproductive age with dyslipidemia. Asia Pac. J. Clin. Nutr. 2020, 29, 334–347. [Google Scholar] [CrossRef]
- Hamzah, A.A. Keselamatan, kesehatan kerja, dan lindungan lingkungan prioritas hulu migas. Bul. SKK Migas. 2020, 1, 7–8. [Google Scholar]
- Devold, H. Oil and Gas Production Handbook—An Introduction to Oil and Gas Production; ABB Oil and Gas: Oslo, Norway, 2007. [Google Scholar]
- Bouchard, C.; Tremblay, A.; Leblanc, C.; Lortie, G.; Savard, R.; Thériault, G. A method to assess energy expenditure in children and adults. Am. J. Clin. Nutr. 1983, 37, 461–467. [Google Scholar] [CrossRef] [PubMed]
- WHO. The WHO STEP Wise Approach to Noncommunicable Disease Risk Factor Surveillance; World Health Organization: Geneva, Switzerland, 2017.
- Conway, J.M.; Ingwersen, L.A.; Moshfegh, A.J. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: An observational validation study. J. Am. Diet. Assoc. 2004, 104, 595–603. [Google Scholar] [CrossRef] [PubMed]
- FAO. Dietary Assessment: A Resource Guide to Method Selection and Application in Low Resource Settings; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [CrossRef]
- Tim Survei Konsumsi Makanan Individu. Buku Foto Makanan; Badan Penelitian dan Pengembangan Kesehatan: Jakarta, Indonesia, 2014; pp. 17–119. [Google Scholar]
- Kemenkes, R.I. Pedoman Perkiraan Jumlah Garam dan Penyerapan Minyak Goreng; Badan Penelitian dan Pengembangan Kesehatan: Jakarta, Indonesia, 2017. [Google Scholar]
- Zhang, L.; Zhao, F.; Zhang, P.; Gao, J.; Liu, C.; He, F.J.; Lin, C.-P. A Pilot Study to Validate a Standardized One-Week Salt Estimation Method Evaluating Salt Intake and Its Sources for Family Members in China. Nutrients 2015, 7, 751–763. [Google Scholar] [CrossRef]
- Ministry of Health Republic Indonesia. Indonesian Food Composition Data. Available online: https://www.panganku.org/ (accessed on 20 May 2020).
- U.S. Department of Agriculture. FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 20 June 2020).
- Schakel, S.F.; Buzzard, I.M.; Gebhardt, S.E. Procedures for Estimating Nutrient Values for Food Composition Databases. J. Food Compos. Anal. 1997, 10, 102–114. [Google Scholar] [CrossRef]
- Ministry of Health Republic of Indonesia. Peraturan Menteri Kesehatan RI No. 28 Tahun 2019 Tentang Angka Kecukupan Gizi yang Dianjurkan untuk Masyarakat Indonsesia; Ministry of Health Republic of Indonesia: Jakarta, Indonesia, 2019; Volume 8, p. 55.
- FAO. Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation; FAO Food and Nutrition Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; Volume 91.
- Human energy requirements: Report of a joint FAO/WHO/UNU Expert Consultation. Food Nutr. Bull. 2005, 26, 166.
- Lahner, C.R. Adult weight measurement: Decoding the terminology used in literature. S. Afr. J. Clin. Nutr. 2018, 32, 28–31. [Google Scholar] [CrossRef]
- Okubo, H.; Sasaki, S.; Murakami, K.; Yokoyama, T.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Designing optimal food intake patterns to achieve nutritional goals for Japanese adults through the use of linear programming optimization models. Nutr. J. 2015, 14, 57. [Google Scholar] [CrossRef]
- Erhardt, J. Nutrition Survey and Calculations. Available online: https://www.nutrisurvey.de/ (accessed on 25 September 2020).
- Christina, D.; Ayu, R.; Sartika, D. Obesitas pada Pekerja Minyak dan Gas Obesity among Oil and Gas Workers. Natl. Public Health J. 2011, 6, 104–110. [Google Scholar]
- Heath, G.; Coates, A.; Sargent, C.; Dorrian, J. Sleep Duration and Chronic Fatigue Are Differently Associated with the Dietary Profile of Shift Workers. Nutrients 2016, 8, 771. [Google Scholar] [CrossRef]
- Oshaug, A.; Østgård, L.I.; Trygg, K.U. Diet among oil-workers on off-shore oil installations in the Norwegian sector of the North Sea. Br. J. Nutr. 1992, 68, 11–19. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Flachs, P.; Rossmeisl, M.; Bryhn, M.; Kopecky, J. Cellular and molecular effects ofn−3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin. Sci. 2009, 116, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Cebrián, S.; Costa, A.G.V.; Navas-Carretero, S.; Zabala, M.; Martínez, J.A.; Moreno-Aliaga, M.J. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: A review of the evidence. J. Physiol. Biochem. 2013, 69, 633–651. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Liu, Y.; Lin, X.; Fang, Y.; Cui, J.; Wan, J. Dietary fiber intake and risk of metabolic syndrome: A meta-analysis of observational studies. Clin. Nutr. 2018, 37, 1935–1942. [Google Scholar] [CrossRef]
- Oy, S.; Witjaksono, F.; Mustafa, A.; Setyobudi, S.I.; Fahmida, U. Problem Nutrients in Adolescent Girls with Anemia Versus Nonanemic Adolescent Girls and the Optimized Food-Based Recommendations to Meet Adequacy of These Nutrients in Adolescent School Girls in East Java, Indonesia. Food Nutr. Bull. 2019, 40, 295–307. [Google Scholar] [CrossRef]
- Hlaing, L.M.; Fahmida, U.; Htet, M.K.; Utomo, B.; Firmansyah, A.; Ferguson, E.L. Local food-based complementary feeding recommendations developed by the linear programming approach to improve the intake of problem nutrients among 12–23-month-old Myanmar children. Br. J. Nutr. 2015, 116, S16–S26. [Google Scholar] [CrossRef]
- Makurat, J.; Kretz, E.C.; Wieringa, F.T.; Chamnan, C.; Krawinkel, M.B. Dietary Diversity in Cambodian Garment Workers: The Role of Free Lunch Provision. Nutrients 2018, 10, 1010. [Google Scholar] [CrossRef]
Variable | Total Workers, n = 31 | Offshore, n = 13 | Onshore, n = 18 |
---|---|---|---|
Age (years) | 39.5 ± 5.1 | 39.9 ± 5.9 | 39.3 ± 4.6 |
Working period (years) | 7.0 (3.0–16.0) | 3.0 (3.0–4.5) | 12.5 (9.8–19) * |
Body mass index (kg/m2) | 25.7 ± 1.9 | 25.2 ± 3.9 | |
Normal: 18.5–22.9 | 7 (22.6) | 2 | 5 |
Overweight: 23.0–24.9 | 4 (12.9) | 2 | 2 |
Obese: ≥25 | 20 (64.5) | 9 | 11 |
Waist circumference (cm) | 91.2 ± 4.7 | 88.1 ± 11.5 | |
Central obesity: WC ≥ 90 | 15 (48.4) | ||
SBP (mmHg) | 122.5 ± 11.5 | 118.7 ± 10.3 | |
Hypertension: >140 | 1 (3.2) | 1 (7.7) | 0 |
DBP (mmHg) | 83.7 ± 6.5 * | 75.1 ± 8.4 | |
Hypertension: >90 | 1 (3.2) | 1 (7.7) | 0 |
Lipid profile (mg/dL) | |||
LDL cholesterol | 146.3 ± 52.9 | 135.1 ± 26.7 | |
HDL cholesterol | 61.9 ± 31.2 | 47.3 ± 7.4 | |
Total cholesterol | 226.8 ± 38.1 * | 199.7 ± 25.7 | |
Borderline-high: ≥200 | 19 (61.3) | ||
Fasting blood glucose (mg/dL) | 89.3 ± 10.1 | 93.6 ± 12.7 | |
Prediabetic: 100–125 | 5 (16.1) | ||
Inadequate sleep: <7 h/day | 21 (67.7) | 8 | 14 |
Ever-smoker | 17 (54.8) | ||
Family history of NCDs | 24 (77.4) | ||
Physical activity level | 1.69 (1.64–2.05) | 1.80 (1.60–2.19) | 1.67 (1.63–1.84) |
Sedentary: 1.40–1.69 | 15 (48.4) | 5 | 10 |
Active/moderate: 1.70–1.99 | 8 (25.8) | 3 | 5 |
Vigorous: 2.00–2.40 | 8 (25.8) | 5 | 3 |
Nutrients | Unit | RNI ‡ | Total (n = 31) | Offshore (n = 13) | Onshore (n = 18) | |||
---|---|---|---|---|---|---|---|---|
Median | Min–Max | Median | Min–Max | Median | Min–Max | |||
Energy | (kcal) | 2550 | 2313 | 2006–2599 | 2067 | 1771–2377 | 2438 | 2152–2709 |
Protein | (g) | 65 | 84.0 | 75.6–99.4 | 84.0 | 76.8–101.1 | 85.5 | 75.3–100.7 |
(%) | 10.2 | 15.6 | 14.5–17.5 | 17.4 * | 15.2–18.4 | 15.1 | 13.4–16.2 | |
Total fat | (g) | 76.5 | 89.8 | 64.6–112.2 | 81.6 | 64.0–112.9 | 93.4 | 75.0–106.1 |
(%) | 27 | 34.5 | 29.0–40.3 | 34.5 | 31.0–43.2 | 35.0 | 28.5–39.7 | |
Total PUFAs | (g) | 24.1 | 12.6 | 9.6–16.9 | 9.6 | 7.9–15.4 | 14.0 | 11.8–17.6 |
(%) | 8.5 | 5.1 | 3.9–6.2 | 4.5 | 3.5–6.1 | 5.6 | 4.5–6.8 | |
n-6 PUFAs | (g) | 17 | 3.88 | 2.43–6.33 | 5.12 | 3.05–6.35 | 2.98 | 1.71–5.61 |
n-3 PUFAs | (g) | 1.6 | 0.83 | 0.64–1.05 | 0.83 | 0.59–1.02 | 0.81 | 0.67–1.06 |
EPA + DHA | (g) | 1.125 | 0.370 | 0.150–0.495 | 0.175 | 0.140–0.370 | 0.428 * | 0.321–0.565 |
MUFAs | (g) | 4.3 | 29.0 | 24.1–37.0 | 28.6 | 24.3–37.4 | 30.0 | 21.0–36.7 |
(%) | 1.5 | 11.6 | 9.9–14.2 | 12.7 | 10.5–15.6 | 10.1 | 9.2–13.5 | |
SFAs | (g) | <28.3 | 39.8 | 31.6–43.1 | 38.9 | 31.1–45.7 | 39.9 | 30.5–43.3 |
(%) | 10 | 14.6 | 12.9–18.0 | 15.9 * | 14.5–19.1 | 14.2 | 11.8–15.9 | |
PUFAs/SFAs | ratio | 0.36 | 0.27–0.43 | 0.27 | 0.23–0.36 | 0.41 * | 0.32–0.46 | |
Cholesterol | (mg) | <300 | 460 | 225–690 | 621 * | 462–841 | 301 | 218–503 |
Carbohydrates | (g) | 415 | 270.8 | 218.2–333.2 | 247.3 | 205.7–275.1 | 313.4 * | 243.7–358.9 |
(%) | 50.7 | 44.5–56.1 | 49.2 | 40.0–55.2 | 51.6 | 45.6–58.9 | ||
Dietary fiber | (g) | 36 | 14.3 | 12.2–20.0 | 13.2 | 9.9–20.0 | 15.8 | 13.6–20.6 |
Sodium | (mg) | 1500 | 3174 | 2740–3777 | 3174 | 2476–3736 | 3181 | 2776–3785 |
Food Group/ Food Subgroup | Median Serving Size | Time Consumed per Week | p Value a | |||||
---|---|---|---|---|---|---|---|---|
Total (n = 31) | Offshore (n = 13) | Onshore (n = 18) | ||||||
Median | P5–P95 | Median | P5–P95 | Median | P5–P95 | |||
Added fats | 6 | 32 | 19–48 | 29 | 18–42 | 35 | 22–50 | 0.123 |
Added sugars | 8 | 12 | 3–22 | 10 | 5–17 | 15 | 5–22 | 0.166 |
Bakery and breakfast cereals | 60 | 8 | 1–20 | 4 | 1–12 | 8 | 3–24 | 0.221 |
Beverages | 13 | 6 | 0–19 | 6 | 0–19 | 4 | 1–13 | 0.421 |
Composites (mixed food group) | 50 | 2 | 0–5 | 4 | 1–5 | 2 | 1–4 | 0.007 b |
Dairy products | 53 | 4 | 0–13 | 5 | 1–13 | 5 | 2–13 | 0.505 |
Fruits | 88 | 12 | 3–33 | 9 | 2–25 | 20 | 9–35 | 0.008 b |
Grains and grain products | 40 | 28 | 8–40 | 27 | 8–35 | 29 | 9–42 | 0.422 |
Fortified grain and products | 47 | 7 | 4–9 | 5 | 4–8 | 8 | 6–9 | 0.051 |
Refined grain products | 63 | 20 | 1–32 | 25 | 9–34 | 29 | 5–43 | 0.968 |
Whole grain products | 55 | 2 | 0–8 | 3 | 0–5 | 2 | 0–7 | 1.000 |
Legumes, nuts, and seeds | 27 | 6 | 1–18 | 5 | 1–9 | 8 | 2–19 | 0.042 b |
Cooked beans and peas | 40 | 0 | 0–1 | 0 | 0–0 | 0 | 0–2 | 0.078 |
Nuts, seeds, and unsweetened products | 24 | 1 | 0–2 | 1 | 0–3 | 1 | 1–2 | 0.787 |
Soybeans and products | 29 | 4 | 0–18 | 3 | 1–6 | 5 | 0–15 | 0.031 b |
Meat, fish, and eggs | 50 | 25 | 17–33 | 26 | 18–34 | 23 | 17–32 | 0.166 |
Eggs | 50 | 6 | 2–12 | 7 | 3–12 | 4 | 0–11 | 0.084 |
Fish without bones | 54 | 6 | 2–10 | 5 | 1–8 | 6 | 1–11 | 0.129 |
Organ meat | 25 | 0 | 0–2 | 0 | 0–2 | 0 | 0–1 | 0.024 b |
Poultry, rabbit | 46 | 6 | 1–11 | 6 | 2–9 | 7 | 0–10 | 0.615 |
Processed meat | 27 | 2 | 0–5 | 3 | 1–5 | 1 | 0–3 | 0.007 b |
Red meat | 75 | 3 | 0–6 | 3 | 1–5 | 2 | 0–6 | 0.224 |
Seafood | 22 | 0 | 0–1 | 1 | 0–3 | 1 | 0–3 | 0.966 |
Small, whole fish, with bones | 33 | 0 | 0–1 | 0 | 0–1 | 0 | 0–1 | 0.536 |
Miscellaneous | 1.5 | 72 | 47–123 | 65 | 47–91 | 87 | 50–125 | 0.017 b |
Condiments, herbs, spices | 0.9 | 58 | 37–109 | 56 | 37–76 | 74 | 5–113 | 0.045 b |
Savory spreads and sauces | 3 | 11 | 4–7 | 9 | 4–15 | 12 | 0–16 | 0.015 b |
Sweet sauce and jams | 12 | 1 | 0–6 | 1 | 0–5 | 1 | 0–7 | 0.525 |
Savory snacks | 25 | 1 | 0–5 | 2 | 0–5 | 3 | 1–9 | 0.627 |
Starchy roots and plants | 30 | 2 | 0–5 | 2 | 1–5 | 2 | 1–4 | 0.008 b |
Sweetened snacks and desserts | 54 | 1 | 0–5 | 1 | 0–7 | 3 | 1–5 | 0.077 |
Vegetables | 18 | 26 | 10–47 | 24 | 11–46 | 29 | 11–46 | 0.471 |
Analysis | Achievement of Nutrients (%RNI) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protein | Fat | Ca | Vit C | Sodium | SFAs | PUFAs | EPA + DHA | Folate | Vit B12 | ω − 6 | Vit A | Fiber | ω − 3 | Cost IDR/d | |
Actual Portion Size | |||||||||||||||
Best diet (food patterns) | 186.6 | 136.7 | 75.0 | 105.2 | 151.3 | 172.0 | 60.9 | 98.0 | 78.0 | 307.6 | 60.4 | 117.1 | 41.9 | 126.1 | 74,098 |
Best diet (no-food pattern) | 188.4 | 139.2 | 86.3 a | 130.5 | 214.6 | 169.3 | 67.2 a | 100.0 | 92.4 a | 279.5 | 69.1 a | 163.2 | 60.4 a | 128.1 | 81,653 |
Best-case scenario | 212.7 | 158.8 | 101.2 | 293.5 | 266.5 | 209.9 | 74.4 b | 109.4 | 109.0 | 371.2 | 75.5 b | 258.1 | 78.0 b | 140.6 | 95,796 |
Worst-case scenario | 118.3 | 102.1 | 26.5 c | 4.4 c | 67.2 | 108.6 | 35.6 c | 11.5 | 22.3 c | 60.6 c | 20.9 c | 43.6 c | 14.4 c | 42.1 c | 41,589 |
Prescribed Portion Size | |||||||||||||||
Best diet (food patterns) | 170.3 | 132.1 | 86.7 | 194.8 | 123.2 | 153.4 | 62.3 | 100.0 | 100.0 | 221.2 | 60.3 | 230.6 | 57.2 | 126.6 | 59,399 |
Best diet (no-food pattern) | 195.0 | 129.5 | 100.0 | 345.1 | 157.4 | 133.8 | 76.9 a | 109.4 | 128.9 | 207.6 | 64.3 a | 299.0 | 98.0 a | 136.5 | 73,820 |
Best-case scenario | 209.3 | 150.9 | 143.5 | 545 | 237.1 | 189.7 | 80.2 b | 124.2 | 180.1 | 326.4 | 81.5 b | 403.5 | 111.4 | 169.3 | 96,681 |
Worst-case scenario | 113.0 | 95.3 | 27.5 c | 17.3 c | 55.8 c | 89.2 | 31 c | 11.2 c | 28.2 c | 42.7 c | 14.7 c | 40.8 c | 23.5 c | 29.4 c | 37,531 |
Analysis | Achievement of Nutrients (%RNI) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protein | Fat | Ca | Vit C | Sodium | SFAs | PUFAs | EPA + DHA | Folate | Vit B12 | ω − 6 | Vit A | Fiber | ω − 3 | Price (IDR) | |
Best diet (food patterns) | 204.9 | 113.8 | 149.2 | 116.3 | 143.6 | 127.0 | 61.2 | 100.0 | 90.9 | 329.0 | 64.5 | 106.8 | 43.9 | 124.2 | 72,086 |
Best diet (no-food pattern) | 207.3 | 125.3 | 127.3 | 134.3 | 201.1 | 149.8 | 69.2 a | 100.0 | 100.0 | 310.2 | 71.2 a | 144.4 | 63.7 a | 128.4 | 84,057 |
Best-case scenario without FBRs | 247.6 | 158.8 | 191.5 | 308.7 | 284.2 | 209.9 | 74.4 b | 110.3 | 120.7 | 440.4 | 75.6 b | 260.6 | 79.4 b | 141.9 | 100,890 |
Worst-case scenario without FBRs | 118.3 | 79.5 | 26.5 c | 4.4 c | 64.1 c | 76.8 | 26.0 c | 9.2 c | 22.3 c | 60.6 c | 11.7 c | 24.6 c | 9.2 c | 28.5 c | 39,691 |
Alternative sets of FBRs tested (worst-case scenarios only) | |||||||||||||||
WholeGrain5 | 113.0 | 95.3 | 27.5 | 17.3 | 55.8 | 89.2 | 31.0 | 11.2 | 28.2 | 42.7 | 14.7 | 40.8 | 23.5 | 29.4 | 37,531 |
LNS7, SoybeanP5 | 126.1 | 99.3 | 34.5 | 17.7 | 56.9 | 91.3 | 37.6 | 12.1 | 33.6 | 48.2 | 15.5 | 46.6 | 25.1 | 30.6 | 37,894 |
LNS10 | 130.0 | 100.8 | 35.8 | 18.2 | 57.6 | 93.0 | 40.0 | 12.5 | 36.4 | 51.0 | 16.3 | 49 | 26.3 | 31.0 | 38,016 |
MFP21, Fish8, Mackerel4 | 123.8 | 95.6 | 28.7 | 18.3 | 56.5 | 89.2 | 32.1 | 67.2 | 28.2 | 77.6 | 14.7 | 42.1 | 23.6 | 68.9 | 37,779 |
MFP14, Fish8, Mackerel4 | 123.8 | 95.6 | 28.7 | 18.3 | 56.5 | 89.2 | 32.1 | 67.2 | 28.2 | 77.6 | 14.7 | 42.1 | 23.6 | 68.9 | 37,779 |
Vegetable18, DGLV7 | 113.0 | 95.3 | 30.9 | 33.8 | 55.8 | 89.2 | 31.0 | 11.6 | 35.0 | 42.7 | 14.7 | 72.8 | 27.3 | 29.8 | 37,789 |
Fruit11, VitCSourcesFruit5 | 124.1 | 102.3 | 35.2 | 27.8 | 65.0 | 98.9 | 34.8 | 14.1 | 38.3 | 61.1 | 19.8 | 55.3 | 31.7 | 35.6 | 42,636 |
Poultry5, NutSeedandProduct2 | 115.1 | 98.0 | 27.9 | 17.3 | 55.8 | 89.8 | 34.9 | 11.3 | 31.3 | 44.2 | 23.5 | 42.2 | 24.9 | 29.6 | 37,531 |
AddedFat21 | 113.0 | 95.4 | 27.5 | 17.3 | 55.8 | 89.3 | 31.0 | 11.2 | 28.2 | 42.7 | 14.7 | 40.8 | 23.5 | 29.4 | 37,531 |
Salt7 | 113.0 | 95.3 | 27.5 | 17.3 | 55.8 | 89.2 | 31.0 | 11.2 | 28.2 | 42.7 | 14.7 | 40.8 | 23.5 | 29.4 | 37,531 |
FBRs1 | 135.9 | 99.4 | 35.7 | 18.6 | 57.5 | 91.3 | 38.6 | 68.0 | 33.8 | 83.0 | 15.5 | 47.9 | 25.2 | 70.0 | 38,111 |
FBRs2 | 151.4 | 109.5 | 51.9 | 67.3 | 78.9 | 106.5 | 45.8 | 71.9 | 59.4 | 105.5 | 24.4 | 100.5 | 49.1 | 79.9 | 44,889 |
FBRs3 | 157.1 | 114.4 | 55.9 | 94.4 | 86.9 | 111.7 | 51.1 | 73.0 | 70.3 | 112.7 | 33.1 | 110.0 | 57.8 | 83.7 | 46,733 |
Final FBRs * | 157.9 | 112.5 | 56.0 | 94.8 | 86.9 | 111.7 | 49.8 | 73.0 | 69.4 | 112.7 | 28.2 | 110.0 | 57.8 | 83.7 | 46,732 |
Day | Original Snack (O) | Modified Snack (M) | Energy (kcal) | PUFAs (g) | n-6 PUFAs (g) | Dietary Fiber (g) | Ca (mg) | Price in K (IDR) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O | M | O | M | O | M | O | M | O | M | O | M | |||
1 | Vegetable fritter | Karedok | 383 | 409 | 1 | 4.9 | 1 | 4.4 | 1 | 6.1 | 70.2 | 108 | 4 | 12 |
Brownies | Oat cookies | |||||||||||||
2 | Caramel pudding | Carrot pudding | 343 | 393 | 1 | 5.7 | 1 | 5.6 | 0 | 6.6 | 50.9 | 193 | 8 | 11 |
Kue lumpur | Boiled peanut and orange | |||||||||||||
3 | Croissant | Pao with tuna | 413 | 403 | 1 | 6.3 | 1 | 5.3 | 1 | 13 | 34.9 | 159 | 8 | 9 |
Putu ayu | Boiled soybean and guava | |||||||||||||
4 | Rissoles | Lumpia basah with vegetable filling | 291 | 393 | 1 | 9.2 | 1 | 9 | 0 | 5.1 | 51 | 56.2 | 2 | 10 |
Sponge white | Roasted sunflower seeds and banana | |||||||||||||
5 | Sausages Pizza | Wheat bread with peanut butter | 390 | 428 | 1 | 5.6 | 1 | 5.5 | 0 | 5.3 | 58.4 | 171 | 6 | 10 |
Muffin | Sweet potato muffin | |||||||||||||
6 | Pastel | Fish fillet with vegetable filling | 389 | 406 | 1 | 6.3 | 1 | 5.3 | 0 | 6.9 | 58 | 134 | 3 | 12 |
Chocolate ganache | Low-fat yogurt with muesli | |||||||||||||
7 | Fried fries | Potato cream soup with green peas | 420 | 384 | 2 | 5.3 | 1 | 4.8 | 0 | 9 | 113 | 143 | 4 | 10 |
Cream puff | Corn and pineapple salad | |||||||||||||
8 | Vanilla pudding | Steamed tofu | 282 | 350 | 1 | 5.7 | 1 | 5.4 | 0 | 3.6 | 62.2 | 216 | 28 | 11 |
Onion bread | Cucumber salad with olive oil dressing | |||||||||||||
9 | Bitter Ballen | A chicken ball with tomato sauce | 350 | 335 | 2 | 6 | 1 | 5.5 | 1 | 3.3 | 113 | 67.1 | 4 | 9 |
Danish pastry | Yunani salad | |||||||||||||
10 | Steamed sponge cake | Cassava steamed sponge cake | 375 | 424 | 1 | 5.2 | 1 | 5 | 0 | 4.1 | 45.5 | 134 | 4 | 9 |
Coffee bun | Bangkok salad | |||||||||||||
11 | Fried banana with chocolate | Homemade banana cereal bar | 391 | 415 | 2 | 5.8 | 0 | 5.3 | 2 | 8.1 | 31.5 | 203 | 15 | 11 |
Marble cake | Vegetable salad with cornflakes | |||||||||||||
12 | Éclair | Siomay tofu | 248 | 344 | 1 | 6.1 | 1 | 5.8 | 0 | 2.7 | 25.7 | 190 | 11 | 10 |
Rainbow cake | Cabbage salad with lemon-kiwi dressing | |||||||||||||
13 | Chicken puff pastry | Thousand island chicken soup | 343 | 341 | 1 | 5.3 | 1 | 4.9 | 0 | 4.8 | 16.2 | 235 | 7 | 10 |
Strawberry flavored pudding | Fruit salad | |||||||||||||
14 | Pancake | Lontho peanut cake | 440 | 359 | 2 | 5.2 | 1 | 4.8 | 0 | 3.2 | 93.9 | 123 | 6 | 8 |
Chicken Pizza | Caesar salad with grilled chicken | |||||||||||||
Average nutrient content | 361 | 385 | 1 | 5.9 | 1 | 5.5 | 1 | 5.8 | 58.8 | 152 | 6 | 10 | ||
%RNI | 13 | 14 | 5 | 22 | 4 | 32 | 1 | 16 | 5.9 | 15.2 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahra, N.L.; Chandra, D.N.; Mansyur, M.; Fahmida, U. Designing Optimal Food-Based Recommendations and Nutrient-Dense Canteen Menu for Oil and Gas Workers Using Linear Programming: A Preliminary Study in Oil and Gas Worksite in East Kalimantan, Indonesia. Nutrients 2023, 15, 4132. https://doi.org/10.3390/nu15194132
Zahra NL, Chandra DN, Mansyur M, Fahmida U. Designing Optimal Food-Based Recommendations and Nutrient-Dense Canteen Menu for Oil and Gas Workers Using Linear Programming: A Preliminary Study in Oil and Gas Worksite in East Kalimantan, Indonesia. Nutrients. 2023; 15(19):4132. https://doi.org/10.3390/nu15194132
Chicago/Turabian StyleZahra, Nur Lailatuz, Dian Novita Chandra, Muchtaruddin Mansyur, and Umi Fahmida. 2023. "Designing Optimal Food-Based Recommendations and Nutrient-Dense Canteen Menu for Oil and Gas Workers Using Linear Programming: A Preliminary Study in Oil and Gas Worksite in East Kalimantan, Indonesia" Nutrients 15, no. 19: 4132. https://doi.org/10.3390/nu15194132
APA StyleZahra, N. L., Chandra, D. N., Mansyur, M., & Fahmida, U. (2023). Designing Optimal Food-Based Recommendations and Nutrient-Dense Canteen Menu for Oil and Gas Workers Using Linear Programming: A Preliminary Study in Oil and Gas Worksite in East Kalimantan, Indonesia. Nutrients, 15(19), 4132. https://doi.org/10.3390/nu15194132