The Mother–Child Dyad Adipokine Pattern: A Review of Current Knowledge
Abstract
:1. Introduction
2. Scope and Methodology
3. Adipokines in Maternal–Infant Dyad
3.1. Adiponectin
3.2. Leptin
3.3. Resistin
3.4. Irisin
3.5. Ghrelin
3.6. Nesfatin-1
3.7. Vaspin
3.8. Visfatin
3.9. Chemerin
3.10. Apelin
3.11. Adropin
3.12. Copeptin
3.13. Omentin
3.14. Dermicidin
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AGA | Appropriate for Gestational Age |
CS | Cesarean Section |
EGWG | Excessive Gestational Weight Gain |
GDM | Gestational Diabetes Mellitus |
GDM G1 | Diet-controlled GDM |
GDM G2 | Diet- and Insulin-controlled GDM |
HMW | High Molecular Weight |
IUGR | Intrauterine Growth Restriction |
LGA | Large for Gestational Age |
SGA | Small for Gestational Age |
T2DM | Type 2 diabetes |
VLBW | Very Low Birth Weight |
WHO | World Health Organization |
References
- Burton, G.J.; Fowden, A.L. The placenta: A multifaceted, transient organ. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140066. [Google Scholar] [CrossRef]
- Ilekis, J.V.; Tsilou, E.; Fisher, S.; Abrahams, V.M.; Soares, M.J.; Cross, J.C.; Zamudio, S.; Illsley, N.P.; Myatt, L.; Colvis, C.; et al. Placental origins of adverse pregnancy outcomes: Potential molecular targets: Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am. J. Obstet. Gynecol. 2016, 215, S1–S46. [Google Scholar] [CrossRef]
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and metabolic adaptations in physiological and complicated pregnancy: Focus on obesity and gestational diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef]
- Bowman, C.J.; Bouressam, M.; Campion, S.N.; Cappon, G.D.; Catlin, N.R.; Cutler, M.W.; Diekmann, J.; Rohde, C.M.; Sellers, R.S.; Lindemann, C. Lack of effects on female fertility and prenatal and postnatal offspring development in rats with BNT162b2, a mRNA-based COVID-19 vaccine. Reprod. Toxicol. 2021, 103, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.E.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W., Jr.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The importance of nutrition in pregnancy and lactation: Lifelong consequences. Am. J. Obstet. Gynecol. 2022, 226, 607–632. [Google Scholar] [CrossRef]
- Malhotra, A.; Allison, B.J.; Castillo-Melendez, M.; Jenkin, G.; Polglase, G.R.; Miller, S.L. Neonatal morbidities of fetal growth restriction: Pathophysiology and impact. Front. Endocrinol. 2019, 10, 55. [Google Scholar] [CrossRef]
- Rees, W.D. Interactions between nutrients in the maternal diet and the implications for the long-term health of the offspring. Proc. Nutr. Soc. 2019, 78, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Kereliuk, S.M.; Dolinsky, V.W. Recent experimental studies of maternal obesity, diabetes during pregnancy and the developmental origins of cardiovascular disease. Int. J. Mol. Sci. 2022, 23, 4467. [Google Scholar] [CrossRef]
- Tully, K.P.; Stuebe, A.M.; Verbiest, S.B. The fourth trimester: A critical transition period with unmet maternal health needs. Am. J. Obstet. Gynecol. 2017, 217, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Gianino, A.; Tronick, E.Z. The mutual regulation model: The infant’s self and interactive regulation, coping, and defensive capacities. In Stress and Coping; Field, T., McCabe, P., Schneiderman, N., Eds.; Erlbaum: Hillsdale, NJ, USA, 1988; pp. 47–68. [Google Scholar]
- Tronick, E.; Beeghly, M. Infants’ meaning-making and the development of mental health problems. Am. Psychol. 2011, 66, 107–119. [Google Scholar] [CrossRef]
- DiCorcia, J.A.; Tronick, E. Quotidian resilience: Exploring mechanisms that drive resilience from a perspective of everyday stress and coping. Neurosci. Biobehav. Rev. 2011, 35, 1593–1602. [Google Scholar] [CrossRef] [PubMed]
- Sravish, A.V.; Tronick, E.; Hollenstein, T.; Beeghly, M. Dyadic flexibility during the face-to-face still-face paradigm: A dynamic systems analysis of its temporal organization. Infant Behav. Dev. 2013, 36, 432–437. [Google Scholar] [CrossRef]
- Lassi, Z.S.; Majeed, A.; Rashid, S.; Yakoob, M.Y.; Bhutta, Z.A. The interconnections between maternal and newborn health—Evidence and implications for policy. J. Matern. Fetal Neonatal Med. 2013, 1, 3–53. [Google Scholar] [CrossRef] [PubMed]
- Beebe, B.; Messinger, D.; Bahrick, L.E.; Margolis, A.; Buck, K.A.; Chen, H. A systems view of mother-infant face-to-face communication. Dev. Psychol. 2016, 52, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.L.; Underwood, M.A.; German, J.B. Helping mom help baby: Nutrition-based support for the mother-infant dyad during lactation. Front. Nutr. 2020, 7, 54. [Google Scholar] [CrossRef]
- Northrup, J.B.; Iverson, J.M. The development of mother-infant coordination across the first year of life. Dev. Psychol. 2020, 56, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.L.; Roemer, E.J.; Northrup, J.B.; Iverson, J.M. Dynamics of the dyad: How mothers and infants co-construct interaction spaces during object play. Dev. Sci. 2023, 26, e13281. [Google Scholar] [CrossRef]
- Provenzi, L.; Giusti, L.; Fumagalli, M.; Frigerio, S.; Morandi, F.; Borgatti, R.; Mosca, F.; Montirosso, R. The dual nature of hypothalamic-pituitary-adrenal axis regulation in dyads of very preterm infants and their mothers. Psychoneuroendocrinology 2019, 100, 172–179. [Google Scholar] [CrossRef]
- Tsang, L.P.M.; Ng, D.C.C.; Chan, Y.H.; Chen, H.Y. Caring for the mother-child dyad as a family physician. Singap. Med. J. 2019, 60, 497–501. [Google Scholar] [CrossRef]
- Aureli, T.; Presaghi, F.; Garito, M.C. Mother-infant co-regulation during infancy: Developmental changes and influencing factors. Infant Behav. Dev. 2022, 69, 101768. [Google Scholar] [CrossRef]
- Choi, K.W.; Denckla, C.A.; Hoffman, N.; Budree, S.; Goddard, L.; Zar, H.J.; Stern, M.; Stein, D.J. Influence of maternal childhood trauma on perinatal depression, observed mother-infant interactions, and child growth. Matern. Child Health J. 2022, 26, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, M.H.; Suwalsky, J.T.; Breakstone, D.A. Emotional relationships between mothers and infants: Knowns, unknowns, and unknown unknowns. Dev. Psychopathol. 2012, 24, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Géa-Horta, T.; Silva Rde, C.; Fiaccone, R.L.; Barreto, M.L.; Velásquez-Meléndez, G. Factors associated with nutritional outcomes in the mother-child dyad: A population-based cross-sectional study. Public Health Nutr. 2016, 19, 2725–2733. [Google Scholar] [CrossRef] [PubMed]
- Rocha, N.A.C.F.; Dos Santos Silva, F.P.; Dos Santos, M.M.; Dusing, S.C. Impact of mother-infant interaction on development during the first year of life: A systematic review. J. Child Health Care 2020, 24, 365–385. [Google Scholar] [CrossRef]
- Bornstein, M.H.; Manian, N.; Henry, L.M. Clinically depressed and typically developing mother-infant dyads: Domain base rates and correspondences, relationship contingencies and attunement. Infancy 2021, 26, 877–900. [Google Scholar] [CrossRef] [PubMed]
- Howell, K.R.; Powell, T.L. Effects of maternal obesity on placental function and fetal development. Reproduction 2017, 153, R97–R108. [Google Scholar] [CrossRef]
- Mohamad, M.; Loy, S.L.; Lim, P.Y.; Wang, Y.; Soo, K.L.; Mohamed, H.J.J. Maternal serum and breast milk adiponectin: The association with infant adiposity development. Int. J. Environ. Res. Public Health 2018, 15, 1250. [Google Scholar] [CrossRef]
- Reynolds, L.P.; Borowicz, P.P.; Caton, J.S.; Crouse, M.S.; Dahlen, C.R.; Ward, A.K. Developmental programming of fetal growth and development. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 229–247. [Google Scholar] [CrossRef]
- Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A. Physiological changes in pregnancy. Cardiovasc. J. Afr. 2016, 27, 89–94. [Google Scholar] [CrossRef]
- Olmos-Ortiz, A.; Flores-Espinosa, P.; Díaz, L.; Velázquez, P.; Ramírez-Isarraraz, C.; Zaga-Clavellina, V. Immunoendocrine dysregulation during gestational diabetes mellitus: The central role of the placenta. Int. J. Mol. Sci. 2021, 22, 8087. [Google Scholar] [CrossRef]
- Sutovska, H.; Babarikova, K.; Zeman, M.; Molcan, L. Prenatal hypoxia affects foetal cardiovascular regulatory mechanisms in a sex- and circadian-dependent manner: A review. Int. J. Mol. Sci. 2022, 23, 2885. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wu, H.; Yang, Y.; Wang, F.; Wang, Y.-L.; Shao, X. Placental development and pregnancy-associated diseases. Matern. Fetal Med. 2022, 4, 36–51. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, J.; Wang, Y.; Wu, Y.; Liu, H.; Feng, W.; Si, Z.; Sun, R.; Hao, Z.; Guo, H.; et al. Comparative study of microvascular structural changes in the gestational diabetic placenta. Diabetes Vasc. Dis. Res. 2023, 20, 14791641231173627. [Google Scholar] [CrossRef] [PubMed]
- Jarmuzek, P.; Wielgos, M.; Bomba-Opon, D. Placental pathologic changes in gestational diabetes mellitus. Neuroendocrinol. Lett. 2015, 36, 101–105. [Google Scholar]
- Catalano, P.M.; McIntyre, H.D.; Cruickshank, J.K.; McCance, D.R.; Dyer, A.R.; Metzger, B.E.; Lowe, L.P.; Trimble, E.R.; Coustan, D.R.; Hadden, D.R.; et al. The hyperglycemia and adverse pregnancy outcome study: Associations of GDM and obesity with pregnancy outcomes. Diabetes Care 2012, 35, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Qiu, A.; Broekman, B.F.; Wong, E.Q.; Gluckman, P.D.; Godfrey, K.M.; Saw, S.M.; Soh, S.E.; Kwek, K.; Chong, Y.S.; et al. The influence of gestational diabetes on neurodevelopment of children in the first two years of life: A prospective study. PLoS ONE 2016, 11, e0162113. [Google Scholar] [CrossRef] [PubMed]
- Teramo, K.; Piñeiro-Ramos, J.D. Fetal chronic hypoxia and oxidative stress in diabetic pregnancy. Could fetal erythropoietin improve offspring outcomes? Free Radic. Biol. Med. 2019, 142, 32–37. [Google Scholar] [CrossRef]
- Barker, D.J. The Fetal and infant origins of adult disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef]
- Barker, D.J. Fetal origins of coronary heart disease. BMJ 1995, 311, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Barr, M., Jr.; DeSesso, J.M.; Lau, C.S.; Osmond, C.; Ozanne, S.E.; Sadler, T.W.; Simmons, R.A.; Sonawane, B.R. Workshop to identify critical windows of exposure for children’s health: Cardiovascular and endocrine work group summary. Environ. Health Perspect. 2000, 108, 569–571. [Google Scholar]
- Selevan, S.G.; Kimmel, C.A.; Mendola, P. Identifying critical windows of exposure for children’s health. Environ. Health Perspect. 2000, 108, 451–455. [Google Scholar]
- Michońska, I.; Łuszczki, E.; Zielińska, M.; Oleksy, Ł.; Stolarczyk, A.; Dereń, K. Nutritional programming: History, hypotheses, and the role of prenatal factors in the prevention of metabolic diseases—A narrative review. Nutrients 2022, 14, 4422. [Google Scholar] [CrossRef]
- Kwon, E.J.; Kim, Y.J. What is fetal programming? A lifetime health is under the control of in utero health. Obstet. Gynecol. Sci. 2017, 60, 506–519. [Google Scholar] [CrossRef]
- Kereliuk, S.M.; Brawerman, G.M.; Dolinsky, V.W. Maternal macronutrient consumption and the developmental origins of metabolic disease in the offspring. Int. J. Mol. Sci. 2017, 18, 1451. [Google Scholar] [CrossRef]
- Edwards, M. The Barker Hypothesis. In Handbook of Famine, Starvation, and Nutrient Deprivation; Springer Nature: Basel, Switzerland, 2019; pp. 191–211. [Google Scholar]
- Fernandez-Twinn, D.S.; Ozanne, S.E. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol. Behav. 2006, 88, 234–243. [Google Scholar] [CrossRef]
- Berglund, S.K.; García-Valdés, L.; Torres-Espinola, F.J.; Segura, M.T.; Martínez-Zaldívar, C.; Aguilar, M.J.; Agil, A.; Lorente, J.A.; Florido, J.; Padilla, C.; et al. Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: An observational cohort study (PREOBE). BMC Public Health 2016, 16, 207. [Google Scholar] [CrossRef] [PubMed]
- Franzago, M.; Fraticelli, F.; Stuppia, L.; Vitacolonna, E. Nutrigenetics, epigenetics and gestational diabetes: Consequences in mother and child. Epigenetics 2019, 14, 215–235. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, A.; Dearden, L.; Fernandez-Twinn, D.S.; Ozanne, S.E. Programming of cardiometabolic health: The role of maternal and fetal hyperinsulinaemia. J. Endocrinol. 2022, 253, R47–R63. [Google Scholar] [CrossRef]
- Seneviratne, S.N.; Rajindrajith, S. Fetal programming of obesity and type 2 diabetes. World J. Diabetes 2022, 13, 482–497. [Google Scholar] [CrossRef] [PubMed]
- Galvan-Martinez, D.H.; Bosquez-Mendoza, V.M.; Ruiz-Noa, Y.; Ibarra-Reynoso, L.D.R.; Barbosa-Sabanero, G.; Lazo-de-la-Vega-Monroy, M.L. Nutritional, pharmacological, and environmental programming of NAFLD in early life. Am. J. Physiol. Gastrointest. Liver Physiol. 2023, 324, G99–G114. [Google Scholar] [CrossRef]
- Hamilton, J.K.; Odrobina, E.; Yin, J.; Hanley, A.J.; Zinman, B.; Retnakaran, R. Maternal insulin sensitivity during pregnancy predicts infant weight gain and adiposity at 1 year of age. Obesity 2010, 18, 340–346. [Google Scholar] [CrossRef]
- Bernardi, J.R.; Ferreira, C.F.; Nunes, M.; da Silva, C.H.; Bosa, V.L.; Silveira, P.P.; Goldani, M.Z. Impact of perinatal different intrauterine environments on child growth and development in the first six months of life-IVAPSA birth cohort: Rationale, design, and methods. BMC Pregnancy Childbirth 2012, 12, 25. [Google Scholar] [CrossRef]
- Karnik, S.; Kanekar, A. Childhood obesity: A global public health crisis. Int. J. Prev. Med. 2012, 3, 1–7. [Google Scholar] [PubMed]
- Poobalan, A.; Aucott, L. Obesity among young adults in developing countries: A systematic overview. Curr. Obes. Rep. 2016, 5, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Lindell, N.; Carlsson, A.; Josefsson, A.; Samuelsson, U. Maternal obesity as a risk factor for early childhood type 1 diabetes: A nationwide, prospective, population-based case-control study. Diabetologia 2018, 61, 130–137. [Google Scholar] [CrossRef]
- Schetz, M.; De Jong, A.; Deane, A.M.; Druml, W.; Hemelaar, P.; Pelosi, P.; Pickkers, P.; Reintam-Blaser, A.; Roberts, J.; Sakr, Y.; et al. Obesity in the critically ill: A narrative review. Intensive Care Med. 2019, 45, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, D.; Bogdański, P.; Zawiejska, A.; Wender-Ożegowska, E. Role of gestational weight gain, gestational diabetes, breastfeeding, and hypertension in mother to child obesity transmission. Pol. Arch. Intern. Med. 2019, 129, 267–275. [Google Scholar] [CrossRef]
- Saros, L.; Lind, A.; Setänen, S.; Tertti, K.; Koivuniemi, E.; Ahtola, A.; Haataja, L.; Shivappa, N.; Hébert, J.R.; Vahlberg, T.; et al. Maternal obesity, gestational diabetes mellitus, and diet in association with neurodevelopment of 2-year-old children. Pediatr. Res. 2023, 94, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.M.; Vickers, M.H. The role of adipokines in developmental programming: Evidence from animal models. J. Endocrinol. 2019, 242, 81–94. [Google Scholar]
- Vickers, M.H. Early life nutrition and neuroendocrine programming. Neuropharmacology 2022, 205, 108921. [Google Scholar] [CrossRef]
- Donato, J., Jr. Programming of metabolism by adipokines during development. Nat. Rev. Endocrinol. 2023, 19, 385–397. [Google Scholar] [CrossRef]
- Rojas-Rodriguez, R.; Lifshitz, L.M.; Bellve, K.D.; Min, S.Y.; Pires, J.; Leung, K.; Boeras, C.; Sert, A.; Draper, J.T.; Corvera, S.; et al. Human adipose tissue expansion in pregnancy is impaired in gestational diabetes mellitus. Diabetologia 2015, 58, 2106–2114. [Google Scholar] [CrossRef] [PubMed]
- Arhire, L.I.; Mihalache, L.; Covasa, M. Irisin: A hope in understanding and managing obesity and metabolic syndrome. Front. Endocrinol. 2019, 10, 524. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The role of adipokines in health and disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef]
- Chirico, V.; Cannavò, S.; Lacquaniti, A.; Salpietro, V.; Mandolfino, M.; Romeo, P.D.; Cotta, O.; Munafò, C.; Giorgianni, G.; Salpietro, C.; et al. Prolactin in obese children: A bridge between inflammation and metabolic-endocrine dysfunction. Clin. Endocrinol. 2013, 79, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Recinella, L.; Orlando, G.; Ferrante, C.; Chiavaroli, A.; Brunetti, L.; Leone, S. Adipokines: New potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front. Physiol. 2020, 11, 578966. [Google Scholar] [CrossRef] [PubMed]
- Zorena, K.; Jachimowicz-Duda, O.; Ślęzak, D.; Robakowska, M.; Mrugacz, M. Adipokines and obesity. Potential link to metabolic disorders and chronic complications. Int. J. Mol. Sci. 2020, 21, 3570. [Google Scholar] [CrossRef]
- Kirichenko, T.V.; Markina, Y.V.; Bogatyreva, A.I.; Tolstik, T.V.; Varaeva, Y.R.; Starodubova, A.V. The role of adipokines in inflammatory mechanisms of obesity. Int. J. Mol. Sci. 2022, 23, 14982. [Google Scholar] [CrossRef]
- Freitas Lima, L.C.; Braga, V.A.; do Socorro de França Silva, M.; Cruz, J.C.; Sousa Santos, S.H.; de Oliveira Monteiro, M.M.; Balarini, C.M. Adipokines, diabetes and atherosclerosis: An inflammatory association. Front. Physiol. 2015, 6, 304. [Google Scholar] [CrossRef]
- Ruszała, M.; Niebrzydowska, M.; Pilszyk, A.; Kimber-Trojnar, Ż.; Trojnar, M.; Leszczyńska-Gorzelak, B. Novel biomolecules in the pathogenesis of gestational diabetes mellitus. Int. J. Mol. Sci. 2021, 22, 11578. [Google Scholar] [CrossRef]
- Santilli, F.; Liani, R.; Di Fulvio, P.; Formoso, G.; Simeone, P.; Tripaldi, R.; Ueland, T.; Aukrust, P.; Davì, G. Increased circulating resistin is associated with insulin resistance, oxidative stress and platelet activation in type 2 diabetes mellitus. Thromb. Haemost. 2016, 116, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.B.; Ohashi, K.; Wang, Y.; Ogawa, H.; Murohara, T.; Ma, X.L.; Ouchi, N. Role of adipokines in cardiovascular disease. Circ. J. 2017, 81, 920–928. [Google Scholar] [CrossRef]
- Smekal, A.; Vaclavik, J. Adipokines and cardiovascular disease: A comprehensive review. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 2017, 161, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Masuzaki, H.; Ogawa, Y.; Sagawa, N.; Hosoda, K.; Matsumoto, T.; Mise, H.; Nishimura, H.; Yoshimasa, Y.; Tanaka, I.; Mori, T.; et al. Nonadipose tissue production of leptin: Leptin as a novel placenta-derived hormone in humans. Nat. Med. 1997, 3, 1029–1033. [Google Scholar] [CrossRef]
- Haugen, F.; Ranheim, T.; Harsem, N.K.; Lips, E.; Staff, A.C.; Drevon, C.A. Increased plasma levels of adipokines in preeclampsia: Relationship to placenta and adipose tissue gene expression. Am. J. Physiol. Endocrinol. Metab. 2006, 290, 326–333. [Google Scholar] [CrossRef]
- Briana, D.D.; Malamitsi-Puchner, A. Reviews: Adipocytokines in normal and complicated pregnancies. Reprod. Sci. 2009, 16, 921–937. [Google Scholar] [CrossRef]
- De Knegt, V.E.; Hedley, P.L.; Kanters, J.K.; Thagaard, I.N.; Krebs, L.; Christiansen, M.; Lausten-Thomsen, U. The role of leptin in fetal growth during preeclampsia. Int. J. Mol. Sci. 2021, 22, 4569. [Google Scholar] [CrossRef] [PubMed]
- Weyermann, M.; Beermann, C.; Brenner, H.; Rothenbacher, D. Adiponectin and leptin in maternal serum, cord blood, and breast milk. Clin. Chem. 2006, 52, 2095–2102. [Google Scholar] [CrossRef] [PubMed]
- Kugananthan, S.; Gridneva, Z.; Lai, C.T.; Hepworth, A.R.; Mark, P.J.; Kakulas, F.; Geddes, D.T. Associations between maternal body composition and appetite hormones and macronutrients in human milk. Nutrients 2017, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Smith-Kirwin, S.M.; O’Connor, D.M.; De Johnston, J.; Lancey, E.D.; Hassink, S.G.; Funanage, V.L. Leptin expression in human mammary epithelial cells and breast milk. J. Clin. Endocrinol. Metab. 1998, 83, 1810–1813. [Google Scholar] [CrossRef] [PubMed]
- Hassiotou, F.; Savigni, D.; Hartmann, P.; Geddes, D. Mammary cells synthesize appetite hormones that may contribute to breast milk. FASEB J. 2014, 28, 38.8. [Google Scholar] [CrossRef]
- Kratzsch, J.; Bae, Y.J.; Kiess, W. Adipokines in human breast milk. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Tessier, D.R.; Ferraro, Z.M.; Gruslin, A. Role of leptin in pregnancy: Consequences of maternal obesity. Placenta 2013, 34, 205–211. [Google Scholar] [CrossRef]
- Brombach, C.; Tong, W.; Giussani, D.A. Maternal obesity: New placental paradigms unfolded. Trends. Mol. Med. 2022, 28, 823–835. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khaza′ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, J.E.; Ferrell, W.R.; Crawford, L.; Wallace, A.M.; Greer, I.A.; Sattar, N. Maternal obesity is associated with dysregulation of metabolic, vascular, and inflammatory pathways. J. Clin. Endocrinol. Metab. 2002, 87, 4231–4237. [Google Scholar] [CrossRef] [PubMed]
- Challier, J.C.; Basu, S.; Bintein, T.; Minium, J.; Hotmire, K.; Catalano, P.M.; Hauguel-de Mouzon, S. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 2008, 29, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.C.; Powell, T.L.; Jansson, T. Placental function in maternal obesity. Clin. Sci. 2020, 134, 961–984. [Google Scholar] [CrossRef]
- Lund-Blix, N.A.; Dydensborg Sander, S.; Størdal, K.; Nybo Andersen, A.M.; Rønningen, K.S.; Joner, G.; Skrivarhaug, T.; Njølstad, P.R.; Husby, S.; Stene, L.C. Infant feeding and risk of type 1 diabetes in two large scandinavian birth cohorts. Diabetes Care 2017, 40, 920–927. [Google Scholar] [CrossRef]
- Peila, C.; Gazzolo, D.; Bertino, E.; Cresi, F.; Coscia, A. Influence of diabetes during pregnancy on human milk composition. Nutrients 2020, 12, 185. [Google Scholar] [CrossRef]
- Avellar, A.C.S.; Oliveira, M.N.; Caixeta, F.; Souza, R.C.V.E.; Teixeira, A.; Faria, A.M.C.; Silveira-Nunes, G.; Faria, E.S.; Maioli, T.U. Gestational diabetes mellitus changes human colostrum immune composition. Front. Immunol. 2022, 13, 910807. [Google Scholar] [CrossRef]
- WHO. Exclusive Breastfeeding for Six Months Best for Babies Everywhere. Available online: www.who.int/news/item/15-01-2011-exclusive-breastfeeding-for-six-months-best-for-babies-everywhere (accessed on 17 July 2023).
- Cardwell, C.R.; Stene, L.C.; Ludvigsson, J.; Rosenbauer, J.; Cinek, O.; Svensson, J.; Perez-Bravo, F.; Memon, A.; Gimeno, S.G.; Wadsworth, E.J.; et al. Breastfeeding and childhood-onset type 1 diabetes: A pooled analysis of individual participant data from 43 observational studies. Diabetes Care 2012, 35, 2215–2225. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.J.; Na, R.; Johnatty, S.E.; Wise, L.A.; Adami, H.O.; Brinton, L.A.; Chen, C.; Cook, L.S.; Dal Maso, L.; De Vivo, I.; et al. Breastfeeding and endometrial cancer risk: An analysis from the epidemiology of endometrial cancer consortium. Obstet. Gynecol. 2017, 129, 1059–1067. [Google Scholar] [CrossRef]
- Tromp, I.; Kiefte-de Jong, J.; Raat, H.; Jaddoe, V.; Franco, O.; Hofman, A.; de Jongste, J.; Moll, H. Breastfeeding and the risk of respiratory tract infections after infancy: The Generation R Study. PLoS ONE 2017, 12, e0172763. [Google Scholar] [CrossRef] [PubMed]
- Miliku, K.; Azad, M.B. Breastfeeding and the developmental origins of asthma: Current evidence, possible mechanisms, and future research priorities. Nutrients 2018, 10, 995. [Google Scholar] [CrossRef] [PubMed]
- Babic, A.; Sasamoto, N.; Rosner, B.A.; Tworoger, S.S.; Jordan, S.J.; Risch, H.A.; Harris, H.R.; Rossing, M.A.; Doherty, J.A.; Fortner, R.T.; et al. Association between breastfeeding and ovarian cancer risk. JAMA Oncol. 2020, 6, e200421. [Google Scholar] [CrossRef]
- Azad, M.B.; Nickel, N.C.; Bode, L.; Brockway, M.; Brown, A.; Chambers, C.; Goldhammer, C.; Hinde, K.; McGuire, M.; Munblit, D.; et al. Breastfeeding and the origins of health: Interdisciplinary perspectives and priorities. Matern. Child Nutr. 2021, 17, e13109. [Google Scholar] [CrossRef]
- Blackshaw, K.; Valtchev, P.; Koolaji, N.; Berry, N.; Schindeler, A.; Dehghani, F.; Banati, R.B. The risk of infectious pathogens in breastfeeding, donated human milk and breast milk substitutes. Public Health Nutr. 2021, 24, 1725–1740. [Google Scholar] [CrossRef]
- Camacho-Morales, A.; Caba, M.; García-Juárez, M.; Caba-Flores, M.D.; Viveros-Contreras, R.; Martínez-Valenzuela, C. Breastfeeding contributes to physiological immune programming in the newborn. Front. Pediatr. 2021, 9, 744104. [Google Scholar] [CrossRef]
- Alotiby, A.A. The role of breastfeeding as a protective factor against the development of the immune-mediated diseases: A systematic review. Front. Pediatr. 2023, 11, 1086999. [Google Scholar] [CrossRef]
- Stordal, B. Breastfeeding reduces the risk of breast cancer: A call for action in high-income countries with low rates of breastfeeding. Cancer Med. 2023, 12, 4616–4625. [Google Scholar] [CrossRef] [PubMed]
- Erliana, U.D.; Fly, A.D. The function and alteration of immunological properties in human milk of obese mothers. Nutrients 2019, 11, 1284. [Google Scholar] [CrossRef]
- Zhang, S.; Li, T.; Xie, J.; Zhang, D.; Pi, C.; Zhou, L.; Yang, W. Gold standard for nutrition: A review of human milk oligosaccharide and its effects on infant gut microbiota. Microb. Cell Factories 2021, 20, 108. [Google Scholar] [CrossRef]
- Reynolds, C.M.; Vickers, M.H. Editorial: Maternal diet and offspring health. Front. Nutr. 2022, 9, 867661. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchi, A.; Giannì, M.L.; Morniroli, D.; Leone, L.; Roggero, P.; Agostoni, C.; De Cosmi, V.; Mosca, F. Hormones in breast milk and effect on infants’ growth: A systematic review. Nutrients 2019, 11, 1845. [Google Scholar] [CrossRef]
- Kwok, J.; Speyer, L.G.; Soursou, G.; Murray, A.L.; Fanti, K.A.; Auyeung, B. Maternal metabolic syndrome in pregnancy and child development at age 5: Exploring mediating mechanisms using cord blood markers. BMC Med. 2023, 21, 124. [Google Scholar] [CrossRef]
- Ramiro-Cortijo, D.; Singh, P.; Herranz Carrillo, G.; Gila-Díaz, A.; Martín-Cabrejas, M.A.; Martin, C.R.; Arribas, S.M. Association of maternal body composition and diet on breast milk hormones and neonatal growth during the first month of lactation. Front. Endocrinol. 2023, 14, 1090499. [Google Scholar] [CrossRef]
- Mazurek, D.; Bronkowska, M. Maternal anthropometric factors and circulating adipokines as predictors of birth weight and length. Int. J. Environ. Res. Public Health 2020, 17, 4799. [Google Scholar] [CrossRef] [PubMed]
- Suwaydi, M.A.; Zhou, X.; Perrella, S.L.; Wlodek, M.E.; Lai, C.T.; Gridneva, Z.; Geddes, D.T. The impact of gestational diabetes mellitus on human milk metabolic hormones: A systematic review. Nutrients 2022, 14, 3620. [Google Scholar] [CrossRef]
- Shang, M.; Dong, X.; Hou, L. Correlation of adipokines and markers of oxidative stress in women with gestational diabetes mellitus and their newborns. J. Obstet. Gynaecol. Res. 2018, 44, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.M.; Brei, C.; Stecher, L.; Much, D.; Brunner, S.; Hauner, H. Cord blood and child plasma adiponectin levels in relation to childhood obesity risk and fat distribution up to 5 y. Pediatr. Res. 2017, 81, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Aydin, H.I.; Eser, A.; Kaygusuz, I.; Yildirim, S.; Celik, T.; Gunduz, S.; Kalman, S. Adipokine, adropin and endothelin-1 levels in intrauterine growth restricted neonates and their mothers. J. Perinat. Med. 2016, 44, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.J.; Fraser, L.M.; Sundernathan, T.; Deussen, A.R.; Louise, J.; Yelland, L.N.; Grivell, R.M.; Macpherson, A.; Gillman, M.W.; Robinson, J.S.; et al. The effect of an antenatal lifestyle intervention in overweight and obese women on circulating cardiometabolic and inflammatory biomarkers: Secondary analyses from the LIMIT randomised trial. BMC Med. 2017, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Rio-Aige, K.; Azagra-Boronatk, I.; Massot-Cladera, M.; Selma-Royo, M.; Parra-Llorca, A.; González, S.; García-Mantrana, I.; Castell, M.; Rodríguez-Lagunas, M.J.; Collado, M.C.; et al. Association of maternal microbiota and diet in cord blood cytokine and immunoglobulin profiles. Int. J. Mol. Sci. 2021, 22, 1778. [Google Scholar] [CrossRef]
- Uebel, K.; Pusch, K.; Gedrich, K.; Schneider, K.T.; Hauner, H.; Bader, B.L. Effect of maternal obesity with and without gestational diabetes on offspring subcutaneous and preperitoneal adipose tissue development from birth up to year-1. BMC Pregnancy Childbirth 2014, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Garofoli, F.; Mazzucchelli, I.; Angelini, M.; Klersy, C.; Ferretti, V.V.; Gardella, B.; Carletti, G.V.; Spinillo, A.; Tzialla, C.; Ghirardello, S. Leptin levels of the perinatal period shape offspring’s weight trajectories through the first year of age. Nutrients 2022, 14, 1451. [Google Scholar] [CrossRef]
- Chatmethakul, T.; Schmelzel, M.L.; Johnson, K.J.; Walker, J.R.; Santillan, D.A.; Colaizy, T.T.; Roghair, R.D. Postnatal leptin levels correlate with breast milk leptin content in infants born before 32 weeks gestation. Nutrients 2022, 14, 5224. [Google Scholar] [CrossRef]
- Kimber-Trojnar, Ż.; Patro-Małysza, J.; Trojnar, M.; Darmochwał-Kolarz, D.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Umbilical cord SFRP5 levels of term newborns in relation to normal and excessive gestational weight gain. Int. J. Mol. Sci. 2019, 20, 595. [Google Scholar] [CrossRef]
- Pekal, Y.; Özhan, B.; Enli, Y.; Özdemir, Ö.M.A.; Ergin, H. Cord blood levels of spexin, leptin, and visfatin in term infants born small, appropriate, and large for gestational age and their association with newborn anthropometric measurements. J. Clin. Res. Pediatr. Endocrinol. 2022, 14, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Gök, S.; Gök, B.C.; Enli, Y. Evaluation of the adipokine levels of pregnant women with preeclampsia. J. Obstet. Gynaecol. Res. 2023, 49, 154–163. [Google Scholar] [CrossRef]
- Erol, O.; Süren, D.; Ellidağ, H.Y.; Bülbül, G.A.; Derbent, A.U.; Elal, R.; Özel, D.; Sezer, C.; Yιlmaz, N. Serum level and placental expression of resistin in pregnancies complicated by preeclampsia: Relationship with disease severity. Clin. Exp. Obstet. Gynecol. 2016, 43, 516–521. [Google Scholar] [CrossRef]
- Cho, G.J.; Yoo, S.W.; Hong, S.C.; Oh, M.J.; Kim, T.; Kim, H.J.; Lee, K.W.; Kim, S.H. Correlations between umbilical and maternal serum resistin levels and neonatal birth weight. Acta Obstet. Gynecol. Scand. 2006, 85, 1051–1056. [Google Scholar] [CrossRef]
- Floeck, A.; Ferrari, N.; Joisten, C.; Puth, M.T.; Strizek, B.; Dolscheid-Pommerich, R.; Gembruch, U.; Merz, W.M. Resistin in pregnancy: Analysis of determinants in pairs of umbilical cord blood and maternal serum. Cytokine X 2021, 3, 100052. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.; Stepan, H.; Schrey, S.; Kralisch, S.; Hindricks, J.; Hopf, L.; Platz, M.; Lossner, U.; Jessnitzer, B.; Drewlo, S.; et al. Serum levels of irisin in gestational diabetes mellitus during pregnancy and after delivery. Cytokine 2014, 65, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Wawrusiewicz-Kurylonek, N.; Telejko, B.; Kuzmicki, M.; Sobota, A.; Lipinska, D.; Pliszka, J.; Raczkowska, B.; Kuc, P.; Urban, R.; Szamatowicz, J.; et al. Increased maternal and cord blood betatrophin in gestational diabetes. PLoS ONE 2015, 10, e0131171. [Google Scholar] [CrossRef] [PubMed]
- Mól, N.; Zasada, M.; Tomasik, P.; Klimasz, K.; Kwinta, P. Evaluation of irisin and visfatin levels in very low birth weight preterm newborns compared to full term newborns- a prospective cohort study. PLoS ONE 2018, 13, e0204835. [Google Scholar] [CrossRef]
- Aydin, S.; Kuloglu, T.; Aydin, S. Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus. Peptides 2013, 47, 66–70. [Google Scholar] [CrossRef]
- Yuksel, M.A.; Oncul, M.; Tuten, A.; Imamoglu, M.; Acikgoz, A.S.; Kucur, M.; Madazli, R. Maternal serum and fetal cord blood irisin levels in gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2014, 104, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Trejo, M.; Garcia-Rivas, G.; Torres-Quintanilla, A.; Laresgoiti-Servitje, E. Relationship between irisin concentration and serum cytokines in mother and newborn. PLoS ONE 2016, 11, e0165229. [Google Scholar] [CrossRef]
- Briana, D.D.; Boutsikou, M.; Boutsikou, T.; Marmarinos, A.; Gourgiotis, D.; Malamitsi-Puchner, A. Novel bioactive substances in human colostrum: Could they play a role in postnatal adaptation? J. Matern. Fetal Neonatal Med. 2017, 30, 504–507. [Google Scholar] [CrossRef]
- Foda, A.A.; Foda, E.A. Effects of delivery on maternal & neonatal irisin levels in normal and preeclamptic pregnant women. Pregnancy Hypertens. 2017, 10, 226–229. [Google Scholar] [CrossRef]
- Pavlova, T.; Zlamal, F.; Tomandl, J.; Hodicka, Z.; Gulati, S.; Bienertova-Vasku, J. Irisin maternal plasma and cord blood levels in mothers with spontaneous preterm and term delivery. Dis. Markers 2018, 2018, 7628957. [Google Scholar] [CrossRef]
- Fatima, S.S.; Khalid, E.; Ladak, A.A.; Ali, S.A. Colostrum and mature breast milk analysis of serum irisin and sterol regulatory element-binding proteins-1c in gestational diabetes mellitus. J. Matern. Fetal Neonatal Med. 2019, 32, 2993–2999. [Google Scholar] [CrossRef]
- Ersahin, S.S.; Yurci, A. Cord blood and maternal serum preptin and irisin concentrations are regulated independently in GDM. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1954–1958. [Google Scholar] [CrossRef]
- Shimizu, T.; Kitamura, T.; Yoshikawa, N.; Suganuma, H.; Hisata, K.; Tanaka, K.; Shinohara, K.; Yamashiro, Y. Plasma levels of active ghrelin until 8 weeks after birth in preterm infants: Relationship with anthropometric and biochemical measures. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F291–F292. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Díaz, R.A.; Gómez-Medina, M.P.; Ramírez-Soriano, E.; López-Robles, L.; Aguilar-Salinas, C.A.; Saucedo, R.; Zarate, A.; Valladares-Salgado, A.; Wacher, N.H. Lower plasma ghrelin levels are found in women with diabetes-complicated pregnancies. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 425–431. [Google Scholar] [CrossRef]
- Aydin, S. The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides 2010, 31, 2236–2240. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.; Celik, O.; Celik, N.; Turkcuoglu, I.; Yilmaz, E.; Karaer, A.; Simsek, Y.; Celik, E.; Aydin, S. Cord blood nesfatin-1 and apelin-36 levels in gestational diabetes mellitus. Endocrine 2012, 41, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Liu, S.X.; Song, G.Y.; Ren, L.P.; Wang, C.; Zhang, D.H. Plasma levels and placental expression of vaspin in pregnant women with diabetes mellitus. Braz. J. Med. Biol. Res. 2015, 48, 273–279. [Google Scholar] [CrossRef]
- Lu, D.; Yang, M.; Yao, Y.; Xie, Y. A clinical research study on the respective relationships between visfatin and human fetuin a and pregnancy outcomes in gestational diabetes mellitus. Taiwan J. Obstet. Gynecol. 2019, 58, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Malamitsi-Puchner, A.; Briana, D.D.; Gourgiotis, D.; Boutsikou, M.; Baka, S.; Hassiakos, D. Blood visfatin concentrations in normal full-term pregnancies. Acta Paediatr. 2007, 96, 526–529. [Google Scholar] [CrossRef]
- Bienertová-Vašků, J.; Bienert, P.; Zlámal, F.; Tomandl, J.; Tomandlová, M.; Dostálová, Z.; Vašků, A. Visfatin is secreted into the breast milk and is correlated with weight changes of the infant after the birth. Diabetes Res. Clin. Pract. 2012, 96, 355–361. [Google Scholar] [CrossRef]
- Barker, G.; Lim, R.; Rice, G.E.; Lappas, M. Increased chemerin concentrations in fetuses of obese mothers and correlation with maternal insulin sensitivity. J. Matern. Fetal Neonatal Med. 2012, 25, 2274–2280. [Google Scholar] [CrossRef]
- Ustebay, S.; Baykus, Y.; Deniz, R.; Ugur, K.; Yavuzkir, S.; Yardim, M.; Kalayci, M.; Çaglar, M.; Aydin, S. Chemerin and dermcidin in human milk and their alteration in gestational diabetes. J. Hum. Lact. 2019, 35, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Hanssens, S.; Marousez, L.; Pécheux, O.; Besengez, C.; Storme, L.; Deruelle, P.; Eberlé, D.; Lesage, J. Maternal obesity reduces apelin level in cord blood without altering the placental apelin/elabela-APJ system. Placenta 2022, 128, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Oncul, M.; Tuten, A.; Erman, H.; Gelisgen, R.; Benian, A.; Uzun, H. Maternal and cord blood apelin, resistin and visfatin levels in gestational diabetes mellitus. Minerva Medica 2013, 104, 527–535. [Google Scholar] [PubMed]
- Marousez, L.; Hanssens, S.; Butruille, L.; Petit, C.; Pourpe, C.; Besengez, C.; Rakza, T.; Storme, L.; Deruelle, P.; Lesage, J.; et al. Breast milk apelin level increases with maternal obesity and high-fat feeding during lactation. Int. J. Obes. 2021, 45, 1052–1060. [Google Scholar] [CrossRef]
- Celik, E.; Yilmaz, E.; Celik, O.; Ulas, M.; Turkcuoglu, I.; Karaer, A.; Simsek, Y.; Minareci, Y.; Aydin, S. Maternal and fetal adropin levels in gestational diabetes mellitus. J. Perinat. Med. 2013, 41, 375–380. [Google Scholar] [CrossRef]
- Cakmak, B.D.; Dundar, B.; Acikgoz, A.S.; Ozgen, G.; Cift, T.; Ahmedian, R.; Altekin, Y. The relationship between maternal and umbilical cord adropin levels with the presence and severity of preeclampsia. J. Perinat. Med. 2017, 45, 879–885. [Google Scholar] [CrossRef]
- Foda, A.A.; Abdel Aal, I.A. Maternal and neonatal copeptin levels at cesarean section and vaginal delivery. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 165, 215–218. [Google Scholar] [CrossRef]
- Blohm, M.E.; Arndt, F.; Sandig, J.; Diehl, W.; Zeller, T.; Mueller, G.C.; Schlesner, C.; Mir, T.S.; Blankenberg, S.; Hecher, K.; et al. Cardiovascular biomarkers in paired maternal and umbilical cord blood samples at term and near term delivery. Early Hum. Dev. 2016, 94, 7–12. [Google Scholar] [CrossRef]
- Ulu, I.; Çekmez, Y.; Gülşen, M.S.; Haberal, E.T.; Yoğurtçuoğlu, E.E.; Türkmen, S.B.; Sunar, B.; Kıran, G. The correlation of maternal serum and cord blood copeptin levels with intrapartum fetal distress. Clin. Exp. Obstet. Gynecol. 2018, 45, 871–874. [Google Scholar] [CrossRef]
- Barker, G.; Lim, R.; Georgiou, H.M.; Lappas, M. Omentin-1 is decreased in maternal plasma, placenta and adipose tissue of women with pre-existing obesity. PLoS ONE 2012, 7, e42943. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.; Polterauer, M.; Springer, S.; Kuessel, L.; Haslinger, P.; Worda, C.; Worda, K. Maternal and neonatal omentin-1 levels in gestational diabetes. Arch. Gynecol. Obstet. 2018, 297, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Baska, A.; Burchardt, P.; Chlebus, K.; Dzida, G.; Jankowski, P.; Jaroszewicz, J.; Jaworski, P.; et al. Metabolic syndrome—A new definition and management guidelines: A joint position paper by the Polish Society of Hypertension, Polish Society for the Treatment of Obesity, Polish Lipid Association, Polish Association for Study of Liver, Polish Society of Family Medicine, Polish Society of Lifestyle Medicine, Division of Prevention and Epidemiology Polish Cardiac Society, “Club 30” Polish Cardiac Society, and Division of Metabolic and Bariatric Surgery Society of Polish Surgeons. Arch. Med. Sci. 2022, 18, 1133–1156. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Cao, F.; Li, X. Epigenetic programming and fetal metabolic programming. Front. Endocrinol. 2019, 10, 764. [Google Scholar] [CrossRef] [PubMed]
- Fruh, S.M. Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. J. Am. Assoc. Nurse Pract. 2017, 29, S3–S14. [Google Scholar] [CrossRef]
- Brown, J.; Ceysens, G.; Boulvain, M. Exercise for pregnant women with gestational diabetes for improving maternal and fetal outcomes. Cochrane Database Syst. Rev. 2017, 6, CD012202. [Google Scholar] [CrossRef]
- Bowman, C.E.; Arany, Z.; Wolfgang, M.J. Regulation of maternal-fetal metabolic communication. Cell. Mol. Life Sci. 2021, 78, 1455–1486. [Google Scholar] [CrossRef] [PubMed]
- Kabbani, N.; Blüher, M.; Stepan, H.; Stumvoll, M.; Ebert, T.; Tönjes, A.; Schrey-Petersen, S. Adipokines in pregnancy: A systematic review of clinical data. Biomedicines 2023, 11, 1419. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Teague, A.M.; Tryggestad, J.B.; Lyons, T.J.; Chernausek, S.D. Fetal circulating human resistin increases in diabetes during pregnancy and impairs placental mitochondrial biogenesis. Mol. Med. 2020, 26, 76. [Google Scholar] [CrossRef] [PubMed]
Adipokine | The Number of Studies n/N (%) | References |
---|---|---|
Adiponectin | 8/47 (17.0) | [28,77,113,114,115,116,117,118] |
Leptin | 11/47 (23.4) | [77,113,115,116,117,118,119,120,121,122,123] |
Resistin | 5/47 (10.6) | [77,113,124,125,126] |
Irisin | 11//47 (23.4) | [127,128,129,130,131,132,133,134,135,136,137] |
Ghrelin | 3/47 (6.4) | [121,138,139] |
Nesfatin-1 | 2/47 (4.3) | [140,141] |
Vaspin | 1/47 (2.1) | [142] |
Visfatin | 6/47 (12.8) | [122,123,129,143,144,145] |
Chemerin | 2/47 (4.3) | [146,147] |
Apelin | 4/47 (8.5) | [141,148,149,150] |
Adropin | 5/47 (10.6) | [115,130,133,151,152] |
Copeptin | 5/47 (10.6) | [130,133,153,154,155] |
Omentin | 2/47 (4.3) | [156,157] |
Dermcidin | 1/47 (2.1) | [147] |
Adipokines (n/N, %) | Maternal Plasma/Serum | Cord Blood Plasma | Neonatal/Infant Plasma/Serum | Milk | Placental Samples | References |
---|---|---|---|---|---|---|
Adiponectin (8/47, 17.0) | A | A | [117] | |||
A | A | [28] | ||||
[116] | ||||||
A | A | [114] | ||||
B | B | [118] | ||||
A | A | A | [113] | |||
A | A | [77] | ||||
D1 | D1 | [115] | ||||
Leptin (11/47, 23.4) | A | A | A | [113] | ||
C1 | C1 | [77] | ||||
E | E | [120] | ||||
B | B | [118] | ||||
D | D | [115] | ||||
A | A | [117] | ||||
A | A | A | [119] | |||
D1 | D1 | [121] | ||||
C2 | C2 | [123] | ||||
E | A, C2, E | [122] | ||||
[116] | ||||||
Resistin (5/47, 10.6) | C3 | C3 | [77] | |||
A | A | A | [113] | |||
A | A | [125] | ||||
E | E | [126] | ||||
A | A | [124] | ||||
Irisin (11/47, 23.4) | A, E | A, E | [137] | |||
E | E | [135] | ||||
A | A | [134] | ||||
C2, C4 | C2, C4 | [131] | ||||
A | A | [132] | ||||
E | E | [128] | ||||
C4 | C4 | E | [127] | |||
A | F1 | [129] | ||||
A | A | [136] | ||||
E | E | [133] | ||||
[130] | ||||||
Ghrelin (3/47, 6.4) | D1 | D1 | [121] | |||
A | A | [138] | ||||
E | A, E | [139] | ||||
Nesfatin-1 (2/47, 4.3) | E | E | [141] | |||
[140] | ||||||
Vaspin (1/47, 2.1) | C1 | A | [142] | |||
Visfatin (6/47, 12.8) | [145] | |||||
E | E | F2 | [144] | |||
A | F1 | [129] | ||||
[143] | ||||||
E | A, C2, E | [122] | ||||
C2 | C2 | [123] | ||||
Chemerin (2/47, 4.3) | C2, C4 | C2, C4 | [146] | |||
[147] | ||||||
Apelin (4/47, 8.5) | [148] | |||||
A, C2, C4 | A, C2, C4 | [141] | ||||
E | E | [149] | ||||
A, C2, C4 | A, C2, C4 | [150] | ||||
Adropin (5/47, 10.6) | [130] | |||||
D2 | D | [115] | ||||
E | E | [133] | ||||
C5 | A | [152] | ||||
E | E | [151] | ||||
Copeptin (5/47, 10.6) | [130] | |||||
E | E | [133] | ||||
E | E | [154] | ||||
E | E | [155] | ||||
[153] | ||||||
Omentin (2/47, 4.3) | A | C2 | C2 | [156] | ||
C2 | A | [157] | ||||
Dermcidin (1/47, 2.1) | [147] | |||||
negative relationship | positive relationship | no relationship | no information |
Adipokines | Maternal Plasma/Serum | Cord Blood Plasma | Neonatal/Infant Plasma/Serum | Milk | Placenta | Sample Size | Method | References |
---|---|---|---|---|---|---|---|---|
Adiponectin | 13.5 ± 0.8 µg/mL | 29.9 ± 3.1 µg/mL | n = 27 mothers; n = 23 infants | Immunoassays | [117] | |||
2nd trimester: 8.59 ± 6.54; µg/mL; 3rd trimester 7.64 ± 3.89 µg/mL; NS | 0 month: 17.1 ± 8.8 ng/mL; 2nd month: 11.5 ± 8.5 ng/mL; p < 0.001 | n = 155 | ELISA | [28] | ||||
Lifestyle interv. 7.8 µg/mL; Standard 8.0 µg/mL; NS | Lifestyle interv.22.4 µg/mL; Standard 22.3 µg/mL; NS | n = 1951 women; n = 1174 infants | RIA | [116] | ||||
Total 14.9 µg/mL; Males: 15.1 µg/mL; Females: 14.6 µg/mL; NS | Total 9.2 µg/mL; Males 8.8 µg/mL; Females 10.4 µg/mL; NS | Cord n = 141; Children n = 40 | ELISA | [114] | ||||
GDM: ~0.5 µg/mL; non-GDM: ~0.8 µg/mL; p < 0.05 | GDM: ~2.7 µg/mL; non-GDM: ~2.6 µg/mL; p < 0.05 | Not detect | n = 105 GDM; n = 103 non-GDM | ELISA | [113] | |||
Lean: 5.0 ± 1.0 µg/mL; Obese non-GDM: 4.1 ± 1.8 µg/mL; Obese GDM: 3.8 ± 1.4 µg/mL; NS | Lean: 20.7 ± 6.2 µg/mL; Obese non-GDM: 20.8 ± 8.6 µg/mL; Obese GDM: 22.0 ± 7.3 µg/mL; NS | Obese GDM n = 16; Obese Non-GDM n = 13; HP n = 15 | ELISA | [118] | ||||
IUGR: 4.0 ± 1.6 ng/mL; HP: 3.7 ± 1.1 ng/mL; NS | IUGR: 3.34 ± 1.25 ng/mL; HP: 5.18 ± 3.10 ng/mL; p < 0.05 | IUGR n = 16; HP n = 16 | ELISA | [115] | ||||
PE: 18.3 ± 2.2 µg/mL; HP: 12.2 ± 1.1 µg/mL; p < 0.05 | Not detect | PE n = 15; HP n = 23 | RIA; RT-PCR | [77] | ||||
22.6 ± 4.4 ng/mL | 8.1 ± 1.1 ng/mL; p < 0.05 in relation to maternal plasma | n = 27 mothers; n = 23 infants | ELISA | [117] | ||||
Leptin | Donor: 989 pg/mL; maternal: 1434 pg/mL and 1774 pg/mL after conversion; p < 0.05 | Donor: 3.8 pg/mL; maternal at the 1st week: 580 pg/mL and 3rd week 577 pg/mL | n = 8 infants and their mothers | ELISA | [120] | |||
Lifestyle interv. 54.2 ng/mL; Standard 54.5 ng/mL; NS | Lifestyle interv. 13.1 ng/mL; Standard 13.1 ng/mL; NS | n = 1951 women; n = 1174 infants | RIA | [116] | ||||
GDM: ~0.6. ng/mL; non-GDM: ~0.5 ng/mL; p < 0.05 | GDM: ~0.7 ng/mL; non-GDM: ~0.6 ng/mL; p < 0.05 | GDM: ~0.5 ng/mg placenta; Non-GDM: ~0.4 ng/mg placenta | GDM n = 105; Non-GDM n = 103 | ELISA | [113] | |||
FT: 44.5 ng/mL; PT: 75.6 ng/mL; IUGR: 71.8 ng/mL; p < 0.05 | FT: 19.3 ng/mL; PT: 4.0 ng/mL; IUGR: 1.6 ng/mL; p < 0.001 | FT 621 pg/mL; PT: 622 pg/mL; IUGR: 844 pg/mL; NS | FT n = 16; PT n = 16; IUGR n = 13 | Automated immunoassay analyzer | [119] | |||
SGA: 19.2 ± 8.4 ng/mL; AGA: 16.7 ± 9.8 ng/mL; LGA: 22.0 ± 11.9 ng/mL; NS | SGA: 3.5 ng/mL; AGA: 6.3 ng/mL; LGA: 9.8 ng/mL; p < 0.05 | n = 56 | ELISA | [122] | ||||
PE: 21.7 ng/mL; HP: 4.4 ng/mL; p < 0.05 | PE: 11.5 ng/mL; HP: 3.3 ng/mL; p < 0.05 | PE n = 45; HP n = 45 | ELISA | [123] | ||||
EGWG: 14.9 ng/mL; HP 10.4 ng/mL; NS | EGWG: 11.0 ng/mL; HP 7.5 ng/mL; p < 0.001 | EGWG n = 38; HP n = 28 | ELISA | [121] | ||||
IUGR: 16.0 ± 9.8 ng/mL; Normal: 19.7 ± 16.3 ng/mL; p > 0.05 | IUGR: 18.0 ± 13.1 ng/mL; Normal: 15.0 ± 8.0 ng/mL; p > 0.05 | IUGR n = 16; HP n = 16 | ELISA | [115] | ||||
Lean: 9.3 ng/mL; Obese: 46.0 ng/mL; Obese GDM: 42.2 ng/mL; p < 0.001 | Lean: 5.9 ng/mL; Obese: 7.6 ng/mL; Obese GDM: 6.8 ng/mL; NS | Obese GDM n = 16; Obese non-GDM; n = 13; HP n = 15 | ELISA | [118] | ||||
PE: 34.4 ± 3.2 ng/mL; HP: 22.7 ± 2.1 ng/mL; p < 0.05 | mRNA of leptin in PE > HP | PE n = 15; HP n = 23 | RIA | [77] | ||||
Resistin | 8.0 ng/mL | 17.7 ng/mL | n = 109 women and neonates | ELISA | [126] | |||
10.1 ± 1.1 ng/mL | 21.3 ± 1.1 ng/mL; p < 0.05 in relation to maternal serum | n = 37 women and neonates | ELISA | [125] | ||||
GDM: ~18.0 ng/mL; non-GDM: ~12.0 ng/mL; p < 0.05 | GDM: ~14.0 ng/mL; non-GDM: ~12.0 ng/mL; p < 0.05 | GDM 12.0 ng/mg placenta; Non-GDM 9.0 ng/mg placenta | GDM n = 105; Non-GDM n = 103 | ELISA | [113] | |||
HP: 2.6 ± 0.4 ng/mL; Mild PE: 3.3 ± 0.6 ng/mL; Severe PE: 3.8 ± 0.4 ng/mL; p < 0.05 | Severe PE > Mild PE > HP | HP n = 50; Mild PE n = 50; Severe PE n = 48 | ELISA; Placenta: IHC staining | [124] | ||||
PE: 5.7 ± 0.4 ng/mL; HP: 4.7 ± 0.3 ng/mL; p < 0.05 | PE ≈ HP | PE n = 15; HP n = 23 | ELISA | [77] | ||||
Irisine | 662.7 ± 169.5 ng/mL | 191 (641.9–30.7) ng/mL | n = 81 | ELISA | [133] | |||
151.4 ± 127.0 ng/mL | 94.8 ± 77.1 ng/mL; p < 0.05 in relation to maternal serum | n = 28 pairs mother/newborn | ELISA | [132] | ||||
Non-GDM: 7.7 ± 4.5 pg/mL; GDM: 5.3 ± 0.4 ng/mL; p < 0.05 | Non-GDM: 5.0 ± 2.1 ng/mL; GDM: 4.9 ± 3.1 ng/mL; NS | GDM n = 21; Non-GDM n = 21 | ELISA | [137] | ||||
28th week GDM 42.1 ± 3.2 pg/mL; Non-GDM 72.9 ± 9.1 pg/mL 6th week postpartum GDM 138.3 ± 6.8 pg/mL; Non-GDM 265.0 ± 40.9 pg/mL; p < 0.05 | GDM C10.4 ± 4.7 pg/mL; Non-GDM C 57.1 ± 8.3 pg/mL; GDM MM 15.4 ± 0.4 pg/mL; Non-GDM MM 56.4 ± 9.6 pg/mL; p < 0.05 | GDM n = 33; Non-GDM n = 22 | ELISA | [136] | ||||
GDM: 1679 (13,081–2171) ng/mL; Non-GDM 1880 (1519–2312) ng/mL; p < 0.05 | GDM: 1723 (1460–1988) ng/mL; Non-GDM: 1257 (1153–1415) ng/mL; p > 0.05 | GDM n = 93; Non-GDM n = 97 | ELISA | [128] | ||||
GDM: 258.3 ± 127.9 ng/mL; Non-GDM: 393 ± 178.9 ng/mL; p < 0.05 | GDM: 357.2 ± 248.0; Non-GDM: 333.2 ± 173.4 ng/mL NS | GDM n = 20; Non-GDM n = 20 | ELISA | [131] | ||||
GDM: 482.1 ng/mL; HP: 466.6 ng/mL; POSTPARTUM GDM 446.3 ng/mL; HP 378.0 ng/mL; p < 0.05 | 246.5 ng/mL | 53.3 µg/g total protein | GDM n = 74; Non-GDM n = 74 | ELISA | [127] | |||
Non-lactating: ~400 ng/mL; Lactating GDM at colostral and TM: 250 ng/mL and 360 ng/mL; Lactating Non-GDM at colostral and TM: ~520 ng/mL and 500 ng/mL; p < 0.05 | C Non-GDM ~550 ng/mL; C GDM ~350 ng/mL; TM Non-GDM ~520 ng/mL; TM GDM ~410 ng/mL; MM Non-GDM ~460 ng/mL; MM GDM ~540 ng/mL; p < 0.05 | GDM n = 15; HP n = 15; Non-lactating women n = 14 | ELISA | [130] | ||||
PT 12.0 ± 2.4 ng/mL; FT 11.5 ± 1.5 ng/mL; p > 0.05 | PT: 7.7 ± 2.2 ng/mL; FT: 6.8 ± 1.5 ng/mL; p > 0.05 | PT n = 30; FT n = 35 | ELISA | [135] | ||||
PT 1st week 1.5 μg/mL; 5th week 2.3 μg/mL; FT 1st week 2.2 μg/mL; 5th week 3.5 μg/mL; p < 0.05 | PT 1st week: 3.2 μg/mL; 5th week: 3.6 μg/mL; FT 1st week: 2.9 μg/mL; 5th week: 3.4 μg/mL; p > 0.05, NS | VLBW n = 53; FT: n = 19 | ELISA | [129] | ||||
mild PE VD: during 726.3 ± 102.6 ng/mL, after 834.9 ± 98.0 ng/mL; mild PE CS during 629.9 ± 107.1 ng/mL, after 676.6 ± 99.5 ng/mL; HP VD: during 914.0 ± 90.3 ng/mL, after 975.9 ± 63.7 ng/mL; p < 0.05 | HP: 97.1 ± 15.7 ng/mL; mild PE VD: 120.9 ± 14.8 ng/mL; mild PE CS: 97.3 ± 16.6 ng/mL; p < 0.05 | n = 150 women and neonates pairs | ELISA | [134] | ||||
Ghrelin | HP: 933 pg/mL; EGWG: 1187 pg/mL; NS | HP: 19.5 pg/mL; EGWG: 525 pg/mL; p < 0.001 | EGWG n = 38; HP n = 28 | ELISA | [121] | |||
Non-GDM: 439 pg/mL; GDM: 273 pg/mL; T2DM: 239 pg/mL; p < 0.001 | Non-GDM: 889 pg/mL; GDM: 872 pg/mL; T2DM: 832 pg/mL; NS | GDM n = 24; T2DM n = 18; Non-GDM n = 36 | RIA | [139] | ||||
4–5 fmol/mL | 15 fmol/mL | VLBW n = 25 | ELISA | [138] | ||||
Nesfatin-1 | GDM: 5.5 ± 8.1 ng/mL; Non-GDM: 8.1 ± 23.9 ng/mL; p < 0.05 | GDM: 5.4 ± 4.0 ng/mL; Non-GDM: 6.2 ± 10.3 ng/mL; NS | GDM n = 30; Non-GDM n = 30 | ELISA | [141] | |||
non-GDM: 0.9 ± 0.4 ng/mL; GDM: 0.7 ± 0.2 ng/mL; 2nd week of lactation non-GDM: 1.1 ± 0.3 ng/mL; GDM: 0.9 ± 0.2 ng/mL | GDM C: 0.8 ± 0.3 ng/mL; MM: 1.0 ± 0.3 ng/mL; Non-GDM C: 1.6 ± 0.2 ng/mL; MM 1.2 ± 0.4 ng/mL | GDM n = 10; Non-GDM n = 10 | ELISA | [140] | ||||
Vaspin | GDM: 0.5 ± 0.2 ng/mL; Non-GDM: 0.8 ± 0.3 ng/mL; 3rd day GDM: 0.4 ± 0.1 ng/mL; Non-GDM: 0.7 ± 0.3 ng/mL; p < 0.05 | GDM: 0.6 ± 0.3; Non-GDM: 0.7 ± 0.3 | GDM n = 30; Non-GDM n = 27 | ELISA RT-qPCR | [142] | |||
Visfatin | 2.5–10.7 ng/mL | 854–1851 ng/mL | n = 24 | Not provided | [145] | |||
18.8 ± 34.3 ng/mL | 19.4 ± 4.9 ng/mL | n = 20 pairs | Not provided | [144] | ||||
GDM G1: 50.7 ± 14.2 ng/mL; GDM G2: 48.5 ± 14.5 ng/mL; Non-GDM: 31.1 ± 7.5 ng/mL; p < 0.05 | GDM G1: 35.4 ± 10.4 ng/mL; GDM G2: 36.7 ± 12.0 ng/mL; Non-GDM: 21.0 ± 5.8 ng/mL; p < 0.05 | GDM G1 52.7 ± 17.3; GDM G2 52.5 ± 9.5; HP 31.8 ± 8.3 | GDM n = 68; HP n = 42 | ELISA IHC staining | [143] | |||
SGA: 1.6 ng/mL; AGA: 4.4 ng/mL; LGA: 1.7 ng/mL; p < 0.05 | SGA: 5.8 ng/mL; AGA: 3.2 ng/mL; LGA: 5.7 ng/mL; p < 0.05 | FT n = 56 | ELISA | [122] | ||||
1st week VLBW ~6.5 ng/mL; FT ~8.5 ng/mL 5th week VLBW 7.5 ng/mL; FT 6.5 ng/mL | approx. 8–10 ng/mL | VLBW n = 53; FT n = 19 | ELISA | [129] | ||||
PE 3.0 ng/m; HP 0.6 ng/mL; p < 0.05 | PE 3.6 ng/mL; HP 1.0 ng/mL; p < 0.05 | PE n = 45; HP n = 45 | ELISA | [123] | ||||
Chemerin | 8–25 ng/mL | C 25–35 ng/mL; TM 20–23 ng/mL; MM 10–20 ng/mL | GDM n = 26; Non-GDM n = 27 | ELISA | [147] | |||
Lean 125.7 ± 7.4 ng/mL; Overweight 115.1 ± 5.9 ng/mL; Obese 128.3 ± 6.6 ng/mL; Non-GDM 124.2 ± 4.0 ng/mL; GDM 117.6 ± 3.5 ng/mL; NS | Lean 115.0 ± 8.3 ng/mL; Overweight 132.9 ± 8.5 ng/mL; Obese 141.6 ± 7.7 ng/mL; Non-GDM 132.5 ± 4.9 ng/mL; GDM 141.2 ± 4.2 ng/mL; p < 0.05 | Non-Obese 9 ng/mg protein; Obese 10 ng/mg protein | Non-GDM n = 62; GDM n = 69; Placenta Non-GDM n = 22; GDM n = 22 | ELISA | [146] | |||
Apelin | Non-obese: approx. 0.3 ng/mL; Obese: approx. 0.3 ng/mL; NS | Non-obese: 0.4 ng/mL; Obese: 0.2 ng/mL; p < 0.05 | Non-obese 1.0 AU Obese1.3 AU | Non-obese n = 36; Obese n = 30 | ELISA quantitative PCR | [148] | ||
Non-obese ~0.24 ng/mL; Obese ~0.19 ng/mL; Obese GDM ~0.15 ng/mL; p < 0.05 | Non-obese: ~12 ng/mL; Obese: ~25 ng/mL; Obese GDM~30 ng/mL | Mother n = 13/22; Milk: n = 23/25 | ELISA | [150] | ||||
GDM: 0.1 ± 0.05 ng/mL; Non-GDM: 0.2 ± 0.09 ng/mL; NS | GDM: 0.1 ± 0.03 ng/mL; Non-GDM: 0.3 ± 0.1 ng/mL; p < 0.05 | GDM n = 24; HP n = 21 | ELISA | [149] | ||||
GDM: 13.5 ± 8.3 ng/mL; Non-GDM: 9.6 ± 5.9 ng/mL; p < 0.05 | GDM: 8.8 ± 4.3 ng/mL; Non-GDM: 8.2 ± 1.9 ng/mL; NS | GDM n = 30; Non-GDM n = 30 | ELISA | [141] | ||||
Adropin | 2.1 ± 0.7 ng/mL | 13.7 (30.3–5.2) ng/mL | n = 81 | ELISA | [133] | |||
Non-lactating: ~14 ng/mL; Lactating non-GDM: ~16 ng/mL; Lactating GDM: ~7.5 ng/mL; p < 0.05 | Non-GDM 18 ng/mL; TM 17 ng/mL; MM 15 ng/mL; GDM C 8 ng/mL; TM 13 ng/mL; MM 13 ng/mL | GDM n = 15; HP n = 15; Non-lactating n = 4 | ELISA | [130] | ||||
GDM: 2.4 ± 2.0 ng/mL; Non-GDM: 3.3 ± 1.3 ng/mL; p < 0.05 | GDM: 1.5 ± 0.9 ng/mL; Non-GDM 3.3 ± 1.3 ng/mL; p < 0.05 | GDM n = 20; non-GDM n = 20 | CLIA | [151] | ||||
PE: 71.2 ± 22.2 ng/L; HP: 100.8 ± 27.0 ng/L; p < 0.05 | PE: 92.4 ng/L; HP: 106.2 ng/L; p < 0.05 | PE n = 38; HP n = 40 | ELISA | [152] | ||||
IUGR: 2.6 ± 1.8 ng/mL; HP 5.9 ± 5.9 ng/mL; p < 0.05 | IUGR: 1.8 ± 0.8 ng/mL; HP 2.8 ± 1.6 ng/mL; p < 0.05 | IUGR n = 16; HP n = 16 | ELISA | [115] | ||||
Copeptin | 0.3 ± 0.1 ng/mL | 0.6 (2.4–0.4) ng/mL | n = 81 | ELISA | [133] | |||
Pregnancy 115.1 ± 41.6 pg/mL; VD 291.7 ± 90.5 pg/mL; CS 215.1 ± 41.1 pg/mL; p < 0.05 | VD 96.4 ± 18.2 pg/mL; CS 80.8 ± 11.6 pg/mL; NS | n = 90 pairs | ELISA | [153] | ||||
10.4 ± 1.7 pmol/L | 103.4 ± 22.9 pmol/L | n = 66 pairs | FIA | [154] | ||||
Lactating non-GDM: ~8 ng/mL; Lactating GDM: ~8–12 ng/mL; Non-lactating: ~7 ng/mL; NS | Non-GDM C 9 ng/mL; TM 8 ng/mL; MM 9 ng/mL; GDM C 14 ng/mL; TM 11 ng/mL; MM 10 ng/mL | GDM n = 15; HP: n = 15; n = 14 non-lactating | EIA | [130] | ||||
HP: 9.3 ± 0.8 ng/mL; FD: 9.5 ± 2.0 ng/mL; NS | HP: 8.00 ± 4.38 ng/mL; FD: 8.76 ± 1.4 ng/mL; NS | HP n = 20; FD n = 24 | ELISA | [155] | ||||
Omentin | 26th week GDM 157 ± 83 ng/mL; Non-GDM 158 ± 93 ng/mL 32nd week GDM: 118 ± 77 ng/mL; Non-GDM: 150 ± 89; NS | GDM: 106 ± 61 ng/mL; Non-GDM: 134 ± 45 ng/mL; p < 0.05 | GDM: 106 ± 61 ng/mL; Non-GDM: 134 ± 45 ng/mL; p < 0.05 | GDM n = 96; Non-GDM n = 96 | ELISA | [157] | ||
Non-GDM obese 7.1 ± 0.9 ng/mL; Non-GDM non-obese: 19.5 ± 2.3 ng/mL; GDM obese: 8.2 ± 1.2 ng/mL; GDM non-obese 12.1 ± 1.4 ng/mL; p < 0.05 | Non-GDM obese 48.3 ± 9.0 ng/mL; Non-GDM non-obese 58.0 ± 6.0 ng/mL; GDM obese 58.3 ± 8.6 ng/mL; GDM non-obese 68.4 ± 8.3 ng/mL; NS | Obese and non-Obese 150 pg/mg protein | Non-GDM n = 44; GDM n = 39 | ELISA RT-PCR | [156] | |||
Dermcidin | ~20–25 ng/mL | C70–75 ng/mL; TM 45–55 ng/mL; MM 30–40 ng/mL | Non-GDM n = 27; GDM n = 28 | ELISA | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lis-Kuberka, J.; Pupek, M.; Orczyk-Pawiłowicz, M. The Mother–Child Dyad Adipokine Pattern: A Review of Current Knowledge. Nutrients 2023, 15, 4059. https://doi.org/10.3390/nu15184059
Lis-Kuberka J, Pupek M, Orczyk-Pawiłowicz M. The Mother–Child Dyad Adipokine Pattern: A Review of Current Knowledge. Nutrients. 2023; 15(18):4059. https://doi.org/10.3390/nu15184059
Chicago/Turabian StyleLis-Kuberka, Jolanta, Małgorzata Pupek, and Magdalena Orczyk-Pawiłowicz. 2023. "The Mother–Child Dyad Adipokine Pattern: A Review of Current Knowledge" Nutrients 15, no. 18: 4059. https://doi.org/10.3390/nu15184059
APA StyleLis-Kuberka, J., Pupek, M., & Orczyk-Pawiłowicz, M. (2023). The Mother–Child Dyad Adipokine Pattern: A Review of Current Knowledge. Nutrients, 15(18), 4059. https://doi.org/10.3390/nu15184059