Prostate Cancer Severity in Relation to Level of Food Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Data
2.3. Data Collection
2.4. Dietary Assessment
2.5. Ultraprocessed Food Intake
- Unprocessed or minimally processed foods: these are foods that have not undergone any processing or have undergone minimal processing, such as cleaning, milling, and refrigeration (i.e., fresh fruits and vegetables, whole grains, nuts, and legumes).
- Processed culinary ingredients: these are substances derived from unprocessed or minimally processed foods that are used in cooking to add flavor, texture, or other culinary properties (i.e., salt, sugar, honey, vinegar, and oil).
- Processed foods: these are foods that have undergone more extensive processing, such as canning, freezing, drying, or fermentation, to enhance their durability and safety or to make them more convenient to use (i.e., canned fruits and vegetables, frozen vegetables, and dried fruits).
- Ultra-processed foods: these are foods that have undergone industrial processing to create products that are often high in sugar, salt, and unhealthy fats and are typically low in nutrients (i.e., soft drinks, candy, packaged snacks, instant noodles, and ready-to-eat meals).
2.6. Endpoints
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Risk Factors Collaborators Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [CrossRef] [PubMed]
- Grosso, G.; Bella, F.; Godos, J.; Sciacca, S.; Del Rio, D.; Ray, S.; Galvano, F.; Giovannucci, E.L. Possible role of diet in cancer: Systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr. Rev. 2017, 75, 405–419. [Google Scholar] [CrossRef]
- GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990 2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [CrossRef] [PubMed]
- GBD 2019 Cancer Risk Factors Collaborators The global burden of cancer attributable to risk factors, 2010–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 563–591. [CrossRef]
- Jabbari, M.; Pourmoradian, S.; Eini-Zinab, H.; Mosharkesh, E.; Hosseini Balam, F.; Yaghmaei, Y.; Yadegari, A.; Amini, B.; Arman Moghadam, D.; Barati, M.; et al. Levels of evidence for the association between different food groups/items consumption and the risk of various cancer sites: An umbrella review. Int. J. Food Sci. Nutr. 2022, 73, 861–874. [Google Scholar] [CrossRef]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Gasbarrini, A.; Mele, M.C. Food additives, gut microbiota, and irritable bowel syndrome: A hidden track. Int. J. Environ. Res. Public Health 2020, 17, 8816. [Google Scholar] [CrossRef]
- Lucas, C.; Barnich, N.; Nguyen, H.T.T. Microbiota, inflammation and colorectal cancer. Int. J. Mol. Sci. 2017, 18, 1310. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, C.; Long, Y.; Chen, Q.; Zhang, W.; Liu, G. Food additives: From functions to analytical methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 8497–8517. [Google Scholar] [CrossRef]
- Ebner, P.; Frank, K.; Christodoulou, A.; Davidou, S. How are the processing and nutrient dimensions of foods interconnected? an issue of hierarchy based on three different food scores. Int. J. Food Sci. Nutr. 2022, 73, 770–785. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Botelho, R.; Araújo, W.; Pineli, L. Food formulation and not processing level: Conceptual divergences between public health and food science and technology sectors. Crit. Rev. Food Sci. Nutr. 2018, 58, 639–650. [Google Scholar] [CrossRef]
- Mohamed Elfadil, O.; Patel, J.; Patel, I.; Ewy, M.W.; Hurt, R.T.; Mundi, M.S. Processed Foods-Getting Back to The Basics. Curr. Gastroenterol. Rep. 2021, 23, 20. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Moodie, R.; Bennett, E.; Kwong, E.J.L.; Santos, T.M.; Pratiwi, L.; Williams, J.; Baker, P. Ultra-Processed Profits: The Political Economy of Countering the Global Spread of Ultra-Processed Foods-A Synthesis Review on the Market and Political Practices of Transnational Food Corporations and Strategic Public Health Responses. Int. J. Health Policy Manag. 2021, 10, 968–982. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, E.; Esposito, S.; Costanzo, S.; Di Castelnuovo, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M. INHES Study Investigators Ultra-processed food consumption and its correlates among Italian children, adolescents and adults from the Italian Nutrition & Health Survey (INHES) cohort study. Public Health Nutr. 2021, 24, 6258–6271. [Google Scholar] [CrossRef]
- Rauber, F.; da Costa Louzada, M.L.; Steele, E.M.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-Processed Food Consumption and Chronic Non-Communicable Diseases-Related Dietary Nutrient Profile in the UK (2008–2014). Nutrients 2018, 10, 587. [Google Scholar] [CrossRef]
- Martínez Steele, E.; Popkin, B.M.; Swinburn, B.; Monteiro, C.A. The share of ultra-processed foods and the overall nutritional quality of diets in the US: Evidence from a nationally representative cross-sectional study. Popul. Health Metr. 2017, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Moubarac, J.-C.; Batal, M.; Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 2017, 108, 512–520. [Google Scholar] [CrossRef]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; Sui, Z.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open 2019, 9, e029544. [Google Scholar] [CrossRef]
- Grosso, G. Role of food processing on human health and current limitations. Int. J. Food Sci. Nutr. 2023, 74, 1–2. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Yang, H.; Qiu, P.; Wang, H.; Wang, F.; Zhao, Q.; Fang, J.; Nie, J. Consumption of ultra-processed foods and health outcomes: A systematic review of epidemiological studies. Nutr. J. 2020, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Gamage, E.; Travica, N.; Dissanayaka, T.; Ashtree, D.N.; Gauci, S.; Lotfaliany, M.; O’Neil, A.; Jacka, F.N.; Marx, W. Ultra-Processed Food Consumption and Mental Health: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2022, 14, 2568. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Gunter, M.J.; Rauber, F.; Levy, R.B.; Huybrechts, I.; Kliemann, N.; Millett, C.; Vamos, E.P. Ultra-processed food consumption, cancer risk and cancer mortality: A large-scale prospective analysis within the UK Biobank. EClinicalMedicine 2023, 56, 101840. [Google Scholar] [CrossRef]
- Angelino, D.; Godos, J.; Ghelfi, F.; Tieri, M.; Titta, L.; Lafranconi, A.; Marventano, S.; Alonzo, E.; Gambera, A.; Sciacca, S.; et al. Fruit and vegetable consumption and health outcomes: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2019, 70, 652–667. [Google Scholar] [CrossRef] [PubMed]
- Tieri, M.; Ghelfi, F.; Vitale, M.; Vetrani, C.; Marventano, S.; Lafranconi, A.; Godos, J.; Titta, L.; Gambera, A.; Alonzo, E.; et al. Whole grain consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2020, 71, 668–677. [Google Scholar] [CrossRef]
- Martini, D.; Godos, J.; Marventano, S.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; Trigueiro, H.; Gambera, A.; Alonzo, E.; et al. Nut and legume consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2021, 72, 871–878. [Google Scholar] [CrossRef]
- Grosso, G.; Godos, J.; Galvano, F.; Giovannucci, E.L. Coffee, caffeine, and health outcomes: An umbrella review. Annu. Rev. Nutr. 2017, 37, 131–156. [Google Scholar] [CrossRef]
- Kim, T.L.; Jeong, G.H.; Yang, J.W.; Lee, K.H.; Kronbichler, A.; van der Vliet, H.J.; Grosso, G.; Galvano, F.; Aune, D.; Kim, J.Y.; et al. Tea Consumption and Risk of Cancer: An Umbrella Review and Meta-Analysis of Observational Studies. Adv. Nutr. 2020, 11, 1437–1452. [Google Scholar] [CrossRef]
- Marventano, S.; Godos, J.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; Gambera, A.; Alonzo, E.; Sciacca, S.; Buscemi, S.; et al. Egg consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2020, 71, 325–331. [Google Scholar] [CrossRef]
- Jurek, J.; Owczarek, M.; Godos, J.; La Vignera, S.; Condorelli, R.A.; Marventano, S.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; et al. Fish and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2022, 73, 851–860. [Google Scholar] [CrossRef]
- Grosso, G.; La Vignera, S.; Condorelli, R.A.; Godos, J.; Marventano, S.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; Gambera, A.; et al. Total, red and processed meat consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2022, 73, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Tieri, M.; Ghelfi, F.; Titta, L.; Marventano, S.; Lafranconi, A.; Gambera, A.; Alonzo, E.; Sciacca, S.; Buscemi, S.; et al. Dairy foods and health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2020, 71, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, N.; Markozannes, G.; Kanellopoulou, A.; Critselis, E.; Alhardan, S.; Karafousia, V.; Kasimis, J.C.; Katsaraki, C.; Papadopoulou, A.; Zografou, M.; et al. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat. Commun. 2021, 12, 4579. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Soltani, S.; Abdolshahi, A.; Shab-Bidar, S. Healthy and unhealthy dietary patterns and the risk of chronic disease: An umbrella review of meta-analyses of prospective cohort studies. Br. J. Nutr. 2020, 124, 1133–1144. [Google Scholar] [CrossRef]
- Gleason, D.F. Classification of prostatic carcinomas. Cancer Chemother. Rep. 1966, 50, 125–128. [Google Scholar]
- Schröder, F.H.; Hermanek, P.; Denis, L.; Fair, W.R.; Gospodarowicz, M.K.; Pavone-Macaluso, M. The TNM classification of prostate cancer. Prostate Suppl. 1992, 4, 129–138. [Google Scholar] [CrossRef]
- Sakr, W.A.; Wheeler, T.M.; Blute, M.; Bodo, M.; Calle-Rodrigue, R.; Henson, D.E.; Mostofi, F.K.; Seiffert, J.; Wojno, K.; Zincke, H. Staging and reporting of prostate cancer--sampling of the radical prostatectomy specimen. Cancer 1996, 78, 366–368. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in Italian adults living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14 (Suppl. 2), 21–28. [Google Scholar] [CrossRef]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Isaksen, I.M.; Dankel, S.N. Ultra-processed food consumption and cancer risk: A systematic review and meta-analysis. Clin. Nutr. 2023, 42, 919–928. [Google Scholar] [CrossRef]
- Romaguera, D.; Fernández-Barrés, S.; Gracia-Lavedán, E.; Vendrell, E.; Azpiri, M.; Ruiz-Moreno, E.; Martín, V.; Gómez-Acebo, I.; Obón, M.; Molinuevo, A.; et al. Consumption of ultra-processed foods and drinks and colorectal, breast, and prostate cancer. Clin. Nutr. 2021, 40, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Trudeau, K.; Rousseau, M.-C.; Parent, M.-É. Extent of food processing and risk of prostate cancer: The proteus study in montreal, canada. Nutrients 2020, 12, 637. [Google Scholar] [CrossRef] [PubMed]
- Oczkowski, M.; Dziendzikowska, K.; Pasternak-Winiarska, A.; Włodarek, D.; Gromadzka-Ostrowska, J. Dietary factors and prostate cancer development, progression, and reduction. Nutrients 2021, 13, 496. [Google Scholar] [CrossRef]
- Mamede, A.C.; Tavares, S.D.; Abrantes, A.M.; Trindade, J.; Maia, J.M.; Botelho, M.F. The role of vitamins in cancer: A review. Nutr. Cancer 2011, 63, 479–494. [Google Scholar] [CrossRef]
- Coletro, H.N.; Bressan, J.; Diniz, A.P.; Hermsdorff, H.H.M.; Pimenta, A.M.; Meireles, A.L.; de D. Mendonça, R.; Carraro, J.C.C. Habitual polyphenol intake of foods according to NOVA classification: Implications of ultra-processed foods intake (CUME study). Int. J. Food Sci. Nutr. 2023, 74, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res. 2017, 61, 1600930. [Google Scholar] [CrossRef]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef]
- Micek, A.; Godos, J.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose-Response Meta-Analysis. Mol. Nutr. Food Res. 2021, 65, e2001019. [Google Scholar] [CrossRef]
- Micek, A.; Godos, J.; Brzostek, T.; Gniadek, A.; Favari, C.; Mena, P.; Libra, M.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary phytoestrogens and biomarkers of their intake in relation to cancer survival and recurrence: A comprehensive systematic review with meta-analysis. Nutr. Rev. 2021, 79, 42–65. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Allkanjari, O.; Busetto, G.M.; Cai, T.; Larganà, G.; Magri, V.; Perletti, G.; Robustelli Della Cuna, F.S.; Russo, G.I.; Stamatiou, K.; et al. Nutraceutical treatment and prevention of benign prostatic hyperplasia and prostate cancer. Arch. Ital. Urol. Androl. 2019, 91. [Google Scholar] [CrossRef]
- Ansari, M.S.; Ansari, S. Lycopene and prostate cancer. Future Oncol. 2005, 1, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Mirahmadi, M.; Azimi-Hashemi, S.; Saburi, E.; Kamali, H.; Pishbin, M.; Hadizadeh, F. Potential inhibitory effect of lycopene on prostate cancer. Biomed. Pharmacother. 2020, 129, 110459. [Google Scholar] [CrossRef] [PubMed]
- Gibney, M.J.; Forde, C.G. Nutrition research challenges for processed food and health. Nat. Food 2022, 3, 104–109. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Ruggiero, E.; Costanzo, S.; Grosso, G.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Moli-sani Study Investigators Joint association of food nutritional profile by Nutri-Score front-of-pack label and ultra-processed food intake with mortality: Moli-sani prospective cohort study. BMJ 2022, 378, e070688. [Google Scholar] [CrossRef]
- Kliemann, N.; Al Nahas, A.; Vamos, E.P.; Touvier, M.; Kesse-Guyot, E.; Gunter, M.J.; Millett, C.; Huybrechts, I. Ultra-processed foods and cancer risk: From global food systems to individual exposures and mechanisms. Br. J. Cancer 2022, 127, 14–20. [Google Scholar] [CrossRef]
- Rietjens, I.M.C.M.; Dussort, P.; Günther, H.; Hanlon, P.; Honda, H.; Mally, A.; O’Hagan, S.; Scholz, G.; Seidel, A.; Swenberg, J.; et al. Exposure assessment of process-related contaminants in food by biomarker monitoring. Arch. Toxicol. 2018, 92, 15–40. [Google Scholar] [CrossRef]
- Chou, Y.-E.; Hsieh, M.-J.; Wang, S.-S.; Lin, C.-Y.; Chen, Y.-Y.; Ho, Y.-C.; Yang, S.-F. The impact of receptor of advanced glycation end-products polymorphisms on prostate cancer progression and clinicopathological characteristics. J. Cell. Mol. Med. 2021, 25, 10761–10769. [Google Scholar] [CrossRef]
- Ishiguro, H.; Nakaigawa, N.; Miyoshi, Y.; Fujinami, K.; Kubota, Y.; Uemura, H. Receptor for advanced glycation end products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate 2005, 64, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Broggi, G.; Lo Giudice, A.; Di Mauro, M.; Pricoco, E.; Piombino, E.; Ferro, M.; Caltabiano, R.; Morgia, G.; Russo, G.I. Insulin signaling, androgen receptor and PSMA immunohistochemical analysis by semi-automated tissue microarray in prostate cancer with diabetes (DIAMOND study). Transl. Res. 2021, 238, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.I.; Asmundo, M.G.; Lo Giudice, A.; Trefiletti, G.; Cimino, S.; Ferro, M.; Lombardo, R.; De Nunzio, C.; Morgia, G.; Piombino, E.; et al. Is there a role of warburg effect in prostate cancer aggressiveness? analysis of expression of enzymes of lipidic metabolism by immunohistochemistry in prostate cancer patients (DIAMOND study). Cancers 2023, 15, 948. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.I.; Bonacci, P.; Bivona, D.; Privitera, G.F.; Broggi, G.; Caltabiano, R.; Vella, J.; Lo Giudice, A.; Asmundo, M.G.; Cimino, S.; et al. Genomic Landscape Alterations in Primary Tumor and Matched Lymph Node Metastasis in Hormone-Naïve Prostate Cancer Patients. Cancers 2022, 14, 4212. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.I.; Soeterik, T.; Puche-Sanz, I.; Broggi, G.; Lo Giudice, A.; De Nunzio, C.; Lombardo, R.; Marra, G.; Gandaglia, G. European Association of Urology Young Academic Urologists Oncological outcomes of cribriform histology pattern in prostate cancer patients: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2022. [Google Scholar] [CrossRef]
- Broggi, G.; Lo Giudice, A.; Di Mauro, M.; Asmundo, M.G.; Pricoco, E.; Piombino, E.; Caltabiano, R.; Morgia, G.; Russo, G.I. SRSF-1 and microvessel density immunohistochemical analysis by semi-automated tissue microarray in prostate cancer patients with diabetes (DIAMOND study). Prostate 2021, 81, 882–892. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Asmundo, M.G.; Broggi, G.; Cimino, S.; Morgia, G.; Di Trapani, E.; Luzzago, S.; Musi, G.; Ferro, M.; de Cobelli, O.; et al. The clinical role of SRSF1 expression in cancer: A review of the current literature. Appl. Sci. 2022, 12, 2268. [Google Scholar] [CrossRef]
Unprocessed/Minimally Processed Foods | Processed Culinary Ingredients | Processed Foods | UPFs | |||||
---|---|---|---|---|---|---|---|---|
Low (n = 78) | High (n = 42) | Low (n = 74) | High (n = 46) | Low (n = 46) | High (n = 74) | Low (n = 55) | High (n = 65) | |
Age groups, n (%) | ||||||||
<60 y | 6 (7.7) | 3 (7.1) | 6 (8.1) | 3 (6.5) | 4 (8.7) | 5 (6.8) | 5 (9.1) | 4 (6.2) |
60–70 y | 35 (44.9) | 19 (45.2) | 29 (39.2) | 25 (54.3) | 19 (41.3) | 35 (47.3) | 20 (36.4) | 34 (52.3) |
>70 y | 37 (47.4) | 20 (47.6) | 39 (52.7) | 18 (39.1) | 23 (50.0) | 34 (45.9) | 30 (54.5) | 27 (41.5) |
Smoking status, n (%) | ||||||||
Never smokers | 37 (47.4) | 29 (69.0) | 40 (54.1) | 26 (56.5) | 32 (69.6) | 34 (45.9) | 35 (63.6) | 31 (47.7) |
Current smokers | 41 (52.6) | 13 (31.0) * | 34 (45.9) | 20 (43.5) | 14 (30.4) | 40 (54.1) * | 20 (36.4) | 34 (52.3) |
Educational level, n (%) | ||||||||
Primary/secondary | 61 (78.2) | 33 (78.6) | 62 (83.8) | 32 (69.6) | 30 (65.2) | 64 (86.5) | 47 (85.5) | 47 (72.3) |
Tertiary | 17 (21.8) | 9 (21.4) | 12 (16.2) | 14 (30.4) | 16 (34.8) | 10 (13.5) * | 8 (14.5) | 18 (27.7) |
Physical activity level, n (%) | ||||||||
Low | 31 (40.8) | 10 (23.8) | 28 (37.8) | 13 (29.5) | 14 (31.8) | 27 (36.5) | 16 (29.1) | 25 (39.7) |
Medium | 38 (50.0) | 25 (59.5) | 39 (52.7) | 24 (54.5) | 24 (54.5) | 39 (52.7) | 31 (56.4) | 32 (50.8) |
High | 7 (9.2) | 7 (16.7) | 7 (9.5) | 7 (15.9) | 6 (13.6) | 8 (10.8) | 8 (14.5) | 6 (9.5) |
BMI status, n (%) | ||||||||
Normal | 24 (30.8) | 17 (40.5) | 24 (32.4) | 17 (37.0) | 17 (37.0) | 24 (32.4) | 19 (34.5) | 22 (33.8) |
Overweight | 42 (53.8) | 18 (42.9) | 37 (50.0) | 23 (50.0) | 19 (41.3) | 41 (55.4) | 28 (50.9) | 32 (49.2) |
Obese | 12 (15.4) | 7 (16.7) | 13 (17.6) | 6 (13.0) | 10 (21.7) | 9 (12.2) | 8 (14.5) | 11 (19.6) |
Family history of prostatic cancer, n (%) | ||||||||
Yes | 26 (33.3) | 17 (40.5) | 30 (40.5) | 13 (28.3) | 16 (34.8) | 27 (36.5) | 26 (47.3) | 17 (26.2) |
No | 52 (66.7) | 25 (59.5) | 44 (59.5) | 33 (71.7) | 30 (65.2) | 47 (63.5) | 29 (52.7) | 48 (73.8) * |
Unprocessed/Minimally Processed Foods | Processed Culinary Ingredients | Processed Foods | UPFs | |||||
---|---|---|---|---|---|---|---|---|
Low (n = 78) | High (n = 42) | Low (n = 74) | High (n = 46) | Low (n = 46) | High (n = 74) | Low (n = 55) | High (n = 65) | |
Gleason score, n (%) | ||||||||
<6 | 27 (34.6) | 24 (57.1) | 29 (39.2) | 22 (47.8) | 23 (50.0) | 28 (37.8) | 29 (52.7) | 22 (33.8) |
6–7 | 33 (42.3) | 12 (28.6) | 28 (37.8) | 17 (37.0) | 15 (32.6) | 30 (40.5) | 16 (29.1) | 29 (44.6) |
≥8 | 18 (23.1) | 6 (14.3) | 17 (23.0) | 7 (15.2) | 8 (17.4) | 16 (21.6) | 10 (18.2) | 14 (21.5) |
PSA, n (%) | ||||||||
<5 | 30 (38.5) | 27 (64.3) | 33 (44.6) | 24 (52.2) | 28 (60.9) | 29 (39.2) | 32 (58.2) | 25 (38.5) |
5–7 | 26 (33.3) | 12 (28.6) | 22 (29.7) | 16 (34.8) | 14 (30.4) | 24 (32.4) | 15 (27.3) | 23 (35.4) |
>7 | 22 (28.2) | 3 (7.1) * | 19 (25.7) | 6 (13.0) | 4 (8.7) | 21 (28.4) * | 8 (14.5) | 17 (26.2) |
Staging, n (%) | ||||||||
pT1 | 42 (53.8) | 32 (76.2) | 44 (59.5) | 30 (65.2) | 34 (73.9) | 40 (54.1) | 39 (70.9) | 35 (53.8) |
pT2 | 18 (23.1) | 8 (19.0) | 13 (17.6) | 13 (28.3) | 9 (19.6) | 17 (23.0) | 9 (16.4) | 17 (26.2) |
pT3 | 18 (23.1) | 2 (4.8) * | 17 (23.0) | 3 (6.5) * | 3 (6.5) | 17 (23.0) * | 7 (12.7) | 13 (20.0) |
Severity, n (%) | ||||||||
Low | 25 (32.1) | 24 (57.1) | 27 (36.5) | 22 (47.8) | 23 (50.0) | 26 (35.1) | 28 (50.9) | 21 (32.3) |
Intermediate | 26 (33.3) | 12 (28.6) | 22 (29.7) | 16 (34.8) | 15 (32.6) | 23 (31.1) | 15 (27.3) | 23 (35.4) |
High | 27 (34.6) | 6 (14.3) * | 25 (33.8) | 8 (17.4) | 8 (17.4) | 25 (33.8) | 12 (21.8) | 21 (32.3) |
GPC, n (%) | ||||||||
<40% | 23 (29.5) | 26 (61.9) | 26 (35.1) | 23 (50.0) | 24 (52.2) | 25 (33.6) | 29 (52.7) | 20 (30.8) |
40–60% | 25 (32.1) | 6 (14.3) | 22 (29.7) | 9 (19.6) | 8 (17.4) | 23 (31.1) | 9 (16.4) | 22 (33.8) |
60–80% | 13 (16.7) | 4 (9.5) | 12 (16.2) | 5 (10.9) | 5 (10.9) | 12 (16.2) | 8 (14.5) | 9 (13.8) |
>80% | 17 (21.8) | 6 (14.3) * | 14 (18.9) | 9 (19.6) | 9 (19.6) | 14 (18.9) | 9 (16.4) | 14 (21.5) |
TPC, n (%) | ||||||||
<40% | 33 (42.3) | 30 (71.4) | 35 (47.3) | 28 (60.9) | 30 (65.2) | 33 (44.6) | 34 (61.8) | 29 (44.6) |
40–60% | 29 (37.2) | 10 (23.8) | 29 (39.2) | 10 (21.7) | 12 (26.1) | 27 (36.5) | 12 (21.8) | 27 (41.5) |
>60% | 16 (20.5) | 2 (4.8) * | 10 (13.5) | 8 (17.4) | 4 (8.7) | 14 (18.9) | 9 (16.4) | 9 (13.8) |
Margins | ||||||||
No | 69 (88.5) | 37 (88.1) | 64 (86.5) | 42 (91.3) | 41 (89.1) | 65 (87.8) | 52 (94.5) | 54 (83.1) |
Yes | 9 (11.5) | 5 (11.9) | 10 (13.5) | 4 (8.7) | 5 (10.9) | 9 (12.2) | 3 (5.5) | 11 (16.9) |
Prostate Cancer Severity | p-Value | |||
---|---|---|---|---|
Low | Intermediate | High | ||
WRs, median (SE) | ||||
Unprocessed or minimally processed foods | 66.3 (1.7) | 57.8 (1.9) | 52.5 (1.8) | 0.001 |
Red meat and poultry | 2.7 (0.3) | 3.7 (0.6) | 4.7 (0.5) | 0.036 |
Fish and seafoods | 2.8 (0.3) | 3.7 (0.6) | 4.7 (0.5) | 0.003 |
Milk and unprocessed dairy | 4.2 (1.0) | 0.9 (0.9) | 9.9 (1.0) | 0.042 |
Eggs | 0.1 (0.0) | 0.1 (0.0) | 0.1 (0.0) | 0.798 |
Grains and pasta | 4.5 (0.5) | 4.8 (0.5) | 4.6 (0.7) | 0.497 |
Fruits | 22.7 (1.6) | 21.6 (1.6) | 17.0 (1.1) | 0.003 |
Vegetables | 10.9 (1.1) | 11.0 (1.1) | 6.8 (1.0) | 0.070 |
Potatoes | 0.8 (0.1) | 1.4 (0.2) | 1.8 (0.2) | 0.003 |
Nuts | 0.9 (0.2) | 0.8 (0.2) | 0.4 (0.4) | 0.962 |
Legumes | 1.6 (0.3) | 1.1 (0.2) | 0.6 (0.1) | <0.001 |
Processed culinary ingredients | 1.1 (0.5) | 1.2 (1.0) | 0.9 (0.4) | 0.423 |
Plant oils | 0.5 (0.0) | 0.4 (0.1) | 0.4 (0.0) | 0.186 |
Animal fats | 0.0 (0.0) | 0.0 (0.0) | 0.1 (0.0) | 0.174 |
Table sugar | 0.2 (0.0) | 0.3 (0.0) | 0.3 (0.0) | 0.469 |
Fruit juice (natural) | 0.0 (0.5) | 0.0 (1.0) | 0.0 (0.4) | 0.444 |
Processed foods | 21.8 (1.5) | 25.9 (1.8) | 30.1 (1.8) | 0.011 |
Breads | 8.9 (0.9) | 8.9 (1.1) | 10.9 (0.8) | 0.945 |
Cheese | 1.7 (0.4) | 2.7 (0.4) | 5.2 (0.5) | 0.004 |
Beer, wine and liquors | 7.4 (1.1) | 6.7 (1.3) | 12.0 (1.3) | 0.194 |
Processed meats (cured) | 0.5 (0.1) | 0.8 (0.2) | 1.6 (0.3) | 0.001 |
Ultraprocessed foods | 7.7 (1.2) | 11.1 (1.4) | 11.1 (1.6) | 0.113 |
Fast foods | 0.0 (0.0) | 0.0 (0.0) | 0.0 (0.0) | 0.733 |
Ultraprocessed dairy | 0.6 (0.7) | 0.7 (0.5) | 0.9 (1.1) | 0.672 |
Breakfast cereals | 0.0 (0.1) | 0.0 (0.0) | 0.0 (0.1) | 0.816 |
Biscuits, pastries, cakes | 0.6 (0.2) | 0.5 (0.3) | 0.7 (0.1) | 0.821 |
Confectionery and creams | 0.1 (0.0) | 0.1 (0.1) | 0.1 (0.0) | 0.072 |
Ice creams | 1.2 (0.4) | 1.0 (0.4) | 1.2 (0.7) | 0.628 |
Salty snacks | 0.3 (0.1) | 0.5 (0.2) | 1.2 (0.2) | 0.001 |
Carbonated soft drinks | 0.0 (0.6) | 0.6 (0.6) | 1.8 (0.9) | 0.185 |
Margarine | 0.0 (0.0) | 0.0 (0.0) | 0.0 (0.0) | 0.620 |
Distilled alcoholic drinks | 0.0 (0.0) | 0.0 (0.0) | 0.2 (0.0) | 0.142 |
Confectioned juices | 0.0 (0.2) | 0.0 (0.4) | 0.0 (0.4) | 0.348 |
Soy products | 0.0 (0.5) | 0.0 (0.7) | 0.0 (0.0) | 0.388 |
OR (95% CI) | p-Value | ||
---|---|---|---|
Low Consumption | High Consumption | ||
Intermediate/high vs. low risk prostate cancers | |||
Unprocessed/minimally foods | |||
Unadjusted | 1 | 0.35 (0.16, 0.77) | 0.009 |
Energy-adjusted | 1 | 0.38 (1.17, 0.84) | 0.017 |
Multivariate * | 1 | 0.46 (0.18, 1.20) | 0.111 |
Processed culinary ingredients | |||
Unadjusted | 1 | 0.63 (0.30, 1.32) | 0.220 |
Energy-adjusted | 1 | 0.70 (0.32, 1.53) | 0.371 |
Multivariate * | 1 | 0.69 (0.26, 1.81) | 0.444 |
Processed foods | |||
Unadjusted | 1 | 1.85 (0.87, 3.91) | 0.109 |
Energy-adjusted | 1 | 1.69 (0.78, 3.67) | 0.184 |
Multivariate * | 1 | 1.39 (0.54, 3.56) | 0.499 |
UPFs | |||
Unadjusted | 1 | 2.17 (1.04, 4.56) | 0.040 |
Energy-adjusted | 1 | 2.11 (0.998, 4.44) | 0.051 |
Multivariate * | 1 | 1.92 (0.78, 4.75) | 0.158 |
High vs. intermediate/low risk prostate cancers | |||
Unprocessed/minimally foods | |||
Unadjusted | 1 | 0.32 (0.12, 0.84) | 0.021 |
Energy-adjusted | 1 | 0.33 (0.12, 0.91) | 0.032 |
Multivariate * | 1 | 0.53 (0.17, 1.59) | 0.256 |
Processed culinary ingredients | |||
Unadjusted | 1 | 0.41 (0.17, 1.02) | 0.054 |
Energy-adjusted | 1 | 0.44 (0.17, 1.12) | 0.086 |
Multivariate * | 1 | 0.38 (0.13, 1.18) | 0.093 |
Processed foods | |||
Unadjusted | 1 | 2.42 (0.98, 5.97) | 0.054 |
Energy-adjusted | 1 | 2.27 (0.90, 5.73) | 0.082 |
Multivariate * | 1 | 2.27 (0.73, 7.10) | 0.159 |
UPFs | |||
Unadjusted | 1 | 1.71 (0.75, 3.90) | 0.202 |
Energy-adjusted | 1 | 1.65 (0.72, 3.78) | 0.239 |
Multivariate * | 1 | 1.45 (0.56, 3.76) | 0.450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciacca, S.; Lo Giudice, A.; Asmundo, M.G.; Cimino, S.; Alshatwi, A.A.; Morgia, G.; Ferro, M.; Russo, G.I. Prostate Cancer Severity in Relation to Level of Food Processing. Nutrients 2023, 15, 4010. https://doi.org/10.3390/nu15184010
Sciacca S, Lo Giudice A, Asmundo MG, Cimino S, Alshatwi AA, Morgia G, Ferro M, Russo GI. Prostate Cancer Severity in Relation to Level of Food Processing. Nutrients. 2023; 15(18):4010. https://doi.org/10.3390/nu15184010
Chicago/Turabian StyleSciacca, Salvatore, Arturo Lo Giudice, Maria Giovanna Asmundo, Sebastiano Cimino, Ali A. Alshatwi, Giuseppe Morgia, Matteo Ferro, and Giorgio Ivan Russo. 2023. "Prostate Cancer Severity in Relation to Level of Food Processing" Nutrients 15, no. 18: 4010. https://doi.org/10.3390/nu15184010
APA StyleSciacca, S., Lo Giudice, A., Asmundo, M. G., Cimino, S., Alshatwi, A. A., Morgia, G., Ferro, M., & Russo, G. I. (2023). Prostate Cancer Severity in Relation to Level of Food Processing. Nutrients, 15(18), 4010. https://doi.org/10.3390/nu15184010