Micronutrient Status and Other Correlates of Hemoglobin among Children with Stunting: A Cross-Sectional Study in Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Study Setting
2.3. Study Participants and Data Collection
2.4. Hb Measurement
2.5. Malaria, Inflammation, and Biomarkers of Micronutrient Status Measurements
2.6. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scott, S.P.; Chen-Edinboro, L.P.; Caulfield, L.E.; Murray-Kolb, L.E. The impact of anemia on child mortality: An updated review. Nutrients 2014, 6, 5915–5932. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Jasrasaria, R.; Naghavi, M.; Wulf, S.K.; Johns, N.; Lozano, R.; Regan, M.; Weatherall, D.; Chou, D.P.; Eisele, T.P.; et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014, 123, 615–624. [Google Scholar] [CrossRef]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; De Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J.; Maternal and Child Undernutrition Study Group. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Balarajan, Y.; Ramakrishnan, U.; Özaltin, E.; Shankar, A.H.; Subramanian, S. Anaemia in low-income and middle-income countries. Lancet 2011, 378, 2123–2135. [Google Scholar] [CrossRef]
- World Health Organization; United Nations Children’s Fund; The World Bank. Levels and Trends in Child Malnutrition: UNICEF/WHO/The World Bank Group Joint Child Malnutrition Estimates: Key Findings of the 2021 Edition; World Health Organization: Geneva, Swizterland, 2021; p. 15. [Google Scholar]
- Stevens, G.A.; Paciorek, C.J.; Flores-Urrutia, M.C.; Borghi, E.; Namaste, S.; Wirth, J.P.; Suchdev, P.S.; Ezzati, M.; Rohner, F.; Flaxman, S.R.; et al. National, regional, and global estimates of anaemia by severity in women and children for 2000–19: A pooled analysis of population-representative data. Lancet Glob. Health 2022, 10, e627–e639. [Google Scholar] [CrossRef]
- Rahman, M.S.; Mushfiquee, M.; Masud, M.S.; Howlader, T. Association between malnutrition and anemia in under-five children and women of reproductive age: Evidence from Bangladesh Demographic and Health Survey 2011. PLoS ONE 2019, 14, e0219170. [Google Scholar] [CrossRef] [PubMed]
- Gari, T.; Loha, E.; Deressa, W.; Solomon, T.; Atsbeha, H.; Assegid, M.; Hailu, A.; Lindtjørn, B. Anaemia among children in a drought affected community in south-central Ethiopia. PLoS ONE 2017, 12, e0170898. [Google Scholar] [CrossRef] [PubMed]
- Gaston, R.T.; Habyarimana, F.; Ramroop, S. Joint modelling of anaemia and stunting in children less than five years of age in Lesotho: A cross-sectional case study. BMC Public Health 2022, 22, 285. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.P.; Wachs, T.D.; Gardner, J.M.; Lozoff, B.; Wasserman, G.A.; Pollitt, E.; Carter, J.A. Child development: Risk factors for adverse outcomes in developing countries. Lancet 2007, 369, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, A.J.; Humphrey, J.H. The stunting syndrome in developing countries. Paediatr. Int. Child Health 2014, 34, 250–265. [Google Scholar] [CrossRef]
- Millward, D.J. Nutrition, infection and stunting: The roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr. Res. Rev. 2017, 30, 50–72. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Nutrition Targets 2025: Stunting Policy Brief (WHO/NMH/NHD/14.3); World Health Organization: Geneva, Switzerland, 2014; pp. 5–6. [Google Scholar]
- Mutumba, R.; Pesu, H.; Mbabazi, J.; Greibe, E.; Olsen, M.F.; Briend, A.; Mølgaard, C.; Ritz, C.; Nabukeera-Barungi, N.; Mupere, E.; et al. Correlates of Iron, Cobalamin, Folate, and Vitamin A Status among Stunted Children: A Cross-Sectional Study in Uganda. Nutrients 2023, 15, 3429. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995-2011: A systematic analysis of population-representative data. Lancet Glob. Health 2013, 1, e16–e25. [Google Scholar] [CrossRef]
- Fishman, S.M.; Christian, P.; West, K.P. The role of vitamins in the prevention and control of anaemia. Public Health Nutr. 2000, 3, 125–150. [Google Scholar] [CrossRef]
- Semba, R.D.; Bloem, M.W. The anemia of vitamin A deficiency: Epidemiology and pathogenesis. Eur. J. Clin. Nutr. 2002, 56, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Michelazzo, F.B.; Oliveira, J.M.; Stefanello, J.; Luzia, L.A.; Rondó, P.H. The influence of vitamin A supplementation on iron status. Nutrients 2013, 5, 4399–4413. [Google Scholar] [CrossRef] [PubMed]
- White, N.J. Anaemia and malaria. Malar. J. 2018, 17, 371. [Google Scholar] [CrossRef]
- Smith, J.L.; Brooker, S. Impact of hookworm infection and deworming on anaemia in non-pregnant populations: A systematic review. Trop. Med. Int. Health 2010, 15, 776–795. [Google Scholar] [CrossRef]
- Gujo, A.B.; Kare, A.P. Prevalence of Intestinal Parasite Infection and its Association with Anemia among Children Aged 6 to 59 Months in Sidama National Regional State, Southern Ethiopia. Clin. Med. Insights Pediatr. 2021, 15, 11795565211029259. [Google Scholar] [CrossRef]
- Nairz, M.; Theurl, I.; Wolf, D.; Weiss, G. Iron deficiency or anemia of inflammation?: Differential diagnosis and mechanisms of anemia of inflammation. Wien. Med. Wochenschr. 2016, 166, 411–423. [Google Scholar] [CrossRef]
- Modell, B.; Darlison, M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull. World Health Organ. 2008, 86, 480–487. [Google Scholar] [CrossRef]
- World Health Organization. The Global Prevalence of Anaemia in 2011; World Health Organization: Geneva, Switzerland, 2015; pp. 5–6. [Google Scholar]
- Engle-Stone, R.; Aaron, G.J.; Huang, J.; Wirth, J.P.; Namaste, S.M.; Williams, A.M.; Peerson, J.M.; Rohner, F.; Varadhan, R.; Addo, O.Y.; et al. Predictors of anemia in preschool children: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 402s–415s. [Google Scholar] [CrossRef]
- Mbabazi, J.; Pesu, H.; Mutumba, R.; Filteau, S.; Lewis, J.I.; Wells, J.C.; Olsen, M.F.; Briend, A.; Michaelsen, K.F.; Mølgaard, C.; et al. Effect of milk protein and whey permeate in large quantity lipid-based nutrient supplement on linear growth and body composition among stunted children: A randomized 2 × 2 factorial trial in Uganda. PLOS Med. 2023, 20, e1004227. [Google Scholar] [CrossRef] [PubMed]
- Uganda Bureau of Statistcs (UBOS); ICF. Uganda Demographic and Health Survey 2016: Key Indicators Report; Uganda Bureau of Statistics: Kampala, Uganda, 2017; pp. 206, 213. [Google Scholar]
- Centers for Disease Control and Prevention; World Health Organization; Nutrition International; UNICEF. Micronutrient Survey Manual; World Health Organization: Geneva, Switzerland, 2020; pp. 33–54. [Google Scholar]
- Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J. Nutr. 2004, 134, 3127–3132. [Google Scholar] [CrossRef] [PubMed]
- Cichon, B.; Ritz, C.; Fabiansen, C.; Christensen, V.B.; Filteau, S.; Friis, H.; Kæstel, P. Assessment of Regression Models for Adjustment of Iron Status Biomarkers for Inflammation in Children with Moderate Acute Malnutrition in Burkina Faso. J. Nutr. 2017, 147, 125–132. [Google Scholar] [CrossRef]
- Allen, L.H.; Miller, J.W.; de Groot, L.; Rosenberg, I.H.; Smith, A.D.; Refsum, H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND): Vitamin B-12 Review. J. Nutr. 2018, 148, 1995S–2027S. [Google Scholar] [CrossRef]
- Heil, S.G.; de Jonge, R.; de Rotte, M.C.; van Wijnen, M.; Heiner-Fokkema, R.M.; Kobold, A.C.; Pekelharing, J.M.; Adriaansen, H.J.; Sanders, E.; Trienekens, P.H.; et al. Screening for metabolic vitamin B12 deficiency by holotranscobalamin in patients suspected of vitamin B12 deficiency: A multicentre study. Ann. Clin. Biochem. 2012, 49, 184–189. [Google Scholar] [CrossRef]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, folate, and the methionine remethylation cycle—Biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Anemia of Inflammation. N. Engl. J. Med. 2019, 381, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Krungkrai, J.; Webster, H.K.; Yuthavong, Y. Characterization of cobalamin-dependent methionine synthase purified from the human malarial parasite, Plasmodium falciparum. Parasitol. Res. 1989, 75, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Muriuki, J.M.; Mentzer, A.J.; Mitchell, R.; Webb, E.L.; Etyang, A.O.; Kyobutungi, C.; Morovat, A.; Kimita, W.; Ndungu, F.M.; Macharia, A.W.; et al. Malaria is a cause of iron deficiency in African children. Nat. Med. 2021, 27, 653–658. [Google Scholar] [CrossRef]
- Mohammed, S.H.; Larijani, B.; Esmaillzadeh, A. Concurrent anemia and stunting in young children: Prevalence, dietary and non-dietary associated factors. Nutr. J. 2019, 18, 10. [Google Scholar] [CrossRef]
- Okebe, J.; Mwesigwa, J.; Agbla, S.C.; Sanya-Isijola, F.; Abubakar, I.; D’Alessandro, U.; Jaye, A.; Bojang, K. Seasonal variation in haematological and biochemical reference values for healthy young children in The Gambia. BMC Pediatr. 2016, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Hollowell, J.G.; van Assendelft, O.W.; Gunter, E.W.; Lewis, B.G.; Najjar, M.; Pfeiffer, C. Hematological and iron-related analytes--reference data for persons aged 1 year and over: United States, 1988–1994. Vital Health Stat. 2005, 11, 1–156. [Google Scholar]
- Gonzales, G.F.; Tapia, V.; Vásquez-Velásquez, C. Changes in hemoglobin levels with age and altitude in preschool-aged children in Peru: The assessment of two individual-based national databases. Ann. N. Y. Acad. Sci. 2021, 1488, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Wamani, H.; Åstrøm, A.N.; Peterson, S.; Tumwine, J.K.; Tylleskär, T. Boys are more stunted than girls in Sub-Saharan Africa: A meta-analysis of 16 demographic and health surveys. BMC Pediatr. 2007, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.L. Greater male vulnerability to stunting? Evaluating sex differences in growth, pathways and biocultural mechanisms. Ann. Hum. Biol. 2021, 48, 466–473. [Google Scholar] [CrossRef]
- Nankinga, O.; Aguta, D.; Kabahuma, C. Trends and Determinants of Anemia in Uganda: Further Analysis of the Demographic and Health Surveys; ICF: Rockville, MD, USA, 2019. [Google Scholar]
- Allen, L.H. Vitamin B-12. Adv. Nutr. 2012, 3, 54–55. [Google Scholar] [CrossRef]
Characteristics | N | Mean ± SD, Median [IQR], % (n) |
---|---|---|
Age (months) | 750 | 32 ± 11.7 |
12–23 | 30 (222) | |
24–35 | 34 (259) | |
36–59 | 36 (269) | |
Sex, Male | 750 | 55(412) |
Residence, Rural | 750 | 45 (335) |
Maternal education, primary and above | 737 | 54 (399) |
Breastfeeding, yes | 746 | 13 (95) |
Received deworming medication in past 6 months, yes | 750 | 52 (390) |
Height-for-age (z-score) | 750 | −3.02 ± 0.74 |
<−3 | 41.9 (314) | |
Mid-upper arm circumference (cm) | 750 | 14.4 ± 1.18 |
Malaria rapid test, positive | 737 | 40 (292) |
Serum C-reactive protein (mg/L) | 741 | 1.57 [0.33; 8.25] |
<2 | 53 (396) | |
2–<5 | 13 (94) | |
5-<10 | 12 (88) | |
10-<15 | 5 (35) | |
>15 | 17 (128) | |
Serum α1-acid glycoprotein (g/L) | 741 | 1.2 [0.88; 1.61] |
<0.8 | 19 (139) | |
0.8–1.2 | 32 (232) | |
>1.2 | 50 (370) | |
Inflammation-corrected serum ferritin 1 (µg/L) | 741 | 13.6 [7.61; 22.9] |
<12 | 43 (318) | |
Serum soluble transferrin receptor (mg/L) | 741 | 14.6 ± 10.4 |
>8.3 | 62 (457) | |
Plasma cobalamin (pmol/L) | 719 | 316 ± 133 |
<222 | 24 (169) | |
Plasma methylmalonic acid (µmol/L) | 733 | 0.32 [0.20; 0.55] |
>0.75 | 16 (116) | |
Plasma folate (nmol/L) | 692 | 34.7 ± 11.2 |
<20 | 9 (62) | |
Inflammation-corrected serum retinol-binding protein1 (µmol/L) | 741 | 0.85 [0.72; 1.0] |
<0.7 | 21 (158) | |
Hemoglobin (g/L) | 743 | 104 ±15 |
<110 g/L | 65 (479) |
Model 1 * | Model 2 § | ||||
---|---|---|---|---|---|
n | β (95% CI) | p | β (95% CI) | p | |
Age, months | |||||
36–59 | 268 | - | - | ||
24–35 | 257 | −2.4 (−4.9; 0.1) | 0.055 | −2.2 (−4.6; 0.1) | 0.061 |
12–23 | 218 | −4.7 (−7.3; −2.1) | <0.001 | −4.8 (−7.3; −2.4) | <0.001 |
Sex | |||||
Female | 334 | - | - | ||
Male | 409 | −2.9 (−5.1; −0.8) | 0.006 | −2.4 (−4.4; −0.5) | 0.016 |
Residence | |||||
Urban | 408 | - | - | ||
Rural | 335 | −5.4 (−7.5; −3.3) | <0.001 | −2.4 (−4.5; −0.3) | 0.027 |
Stunting degree | |||||
Moderate | 431 | - | - | ||
Severe | 312 | −3.6 (−5.7; −1.5) | 0.001 | −2.7 (−4.7; −0.6) | 0.010 |
Breastfeeding | |||||
No | 646 | - | - | ||
Yes | 93 | −2.5 (−6.2; 1.2) | 0.18 | −3.3 (−6.7; 0.2) | 0.06 |
Malaria rapid test | |||||
Negative | 444 | - | - | ||
Positive | 292 | −7.9 (−10; −5.8) | <0.001 | −4.1 (−6.3; −1.8) | <0.001 |
Model 1 * | Model 2 § | Model 3 ¶ | |||||
---|---|---|---|---|---|---|---|
n | β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | |
Serum ferritin (µg/L) | |||||||
≥12 | 615 | - | - | - | |||
<12 | 122 | −4.2 (−7.1; −1.2) | 0.006 | −8.9 (−12; −6.0) | <0.001 | −5.6 (−8.6; −2.6) | <0.001 |
Serum soluble transferrin receptor (mg/L) | |||||||
≤8.3 | 282 | - | - | - | |||
>8.3 | 455 | −8.8 (−11; −6.7) | <0.001 | −7.3 (−9.4; −5.2) | <0.001 | −6.2 (−8.4; −4.0) | <0.001 |
Plasma cobalamin (pmol/L) | |||||||
≥222 | 547 | - | - | - | |||
<222 | 169 | −2.7 (−5.2; −0.2) | 0.034 | −1.6 (−4.0; 0.7) | 0.16 | −3.0 (−5.4: −0.7) | 0.012 |
Plasma methylmalonic acid (µmol/L) | 730 | ||||||
≤0.75 | 614 | - | - | - | |||
>0.75 | 116 | −0.7 (−3.5; 2.2) | 0.65 | −0.2 (−2.9; 2.5) | 0.87 | 0.1 (−2.7; 2.8) | 0.96 |
Plasma folate (nmol/L) | |||||||
>30 | 424 | - | - | - | |||
20–30 | 203 | −4.4 (−6.8; −2.0) | <0.001 | −3.0 (−5.3; −0.8) | 0.009 | −2.8 (−5.0; −0.6) | 0.012 |
<20 | 62 | −8.3 (−12; −4.5) | <0.001 | −6.6 (−10; −3.0) | <0.001 | −4.6 (−8.1; −1.1) | 0.010 |
Serum retinol binding protein (µmol/L) | |||||||
≥0.7 | 397 | - | - | - | |||
<0.7 | 340 | −5.8 (−7.9; −3.8) | <0.001 | −2.0 (−4.2; 0.1) | 0.06 | −2.0 (−4.1; 0.2) | 0.06 |
Serum C-reactive protein (mg/L) | |||||||
<2 | 393 | - | - | - | - | ||
2–<5 | 93 | −4.3 (−7.4; −1.2) | 0.006 | −2.9 (−6.1; 0.3) | 0.078 | −2.6 (−5.8; 0.6) | 0.106 |
5–<10 | 88 | −5.6 (−8.8; −2.5) | 0.001 | −3.7 (−7.1; −0.4) | 0.028 | −4.9 (−8.2; −1.5) | 0.004 |
10–15 | 35 | −7.9 (−13; −3.2) | 0.001 | −5.9 (−11; −1.0) | 0.018 | −5.8 (−11; −0.9) | 0.021 |
>15 | 128 | −13 (−16; −10) | <0.001 | −10 (−14; −7.3) | <0.001 | −10 (−13; −6.6) | <0.001 |
Serum α1-acid glycoprotein (g/L) | |||||||
<0.8 | 138 | - | - | - | - | ||
0.8–1.2 | 231 | −3.2 (−6.1; −0.2) | 0.034 | −2.2 (−5.1; 0.7) | 0.141 | −1.6 (−4.4; 1.2) | 0.25 |
>1.2 | 368 | −9.6 (−12; −6.9) | <0.001 | −4.9 (−8.0; −1.8) | 0.002 | −3.5 (−6.7; −1.1) | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutumba, R.; Mbabazi, J.; Pesu, H.; Greibe, E.; Olsen, M.F.; Briend, A.; Mølgaard, C.; Ritz, C.; Mupere, E.; Filteau, S.; et al. Micronutrient Status and Other Correlates of Hemoglobin among Children with Stunting: A Cross-Sectional Study in Uganda. Nutrients 2023, 15, 3785. https://doi.org/10.3390/nu15173785
Mutumba R, Mbabazi J, Pesu H, Greibe E, Olsen MF, Briend A, Mølgaard C, Ritz C, Mupere E, Filteau S, et al. Micronutrient Status and Other Correlates of Hemoglobin among Children with Stunting: A Cross-Sectional Study in Uganda. Nutrients. 2023; 15(17):3785. https://doi.org/10.3390/nu15173785
Chicago/Turabian StyleMutumba, Rolland, Joseph Mbabazi, Hannah Pesu, Eva Greibe, Mette F. Olsen, André Briend, Christian Mølgaard, Christian Ritz, Ezekiel Mupere, Suzanne Filteau, and et al. 2023. "Micronutrient Status and Other Correlates of Hemoglobin among Children with Stunting: A Cross-Sectional Study in Uganda" Nutrients 15, no. 17: 3785. https://doi.org/10.3390/nu15173785
APA StyleMutumba, R., Mbabazi, J., Pesu, H., Greibe, E., Olsen, M. F., Briend, A., Mølgaard, C., Ritz, C., Mupere, E., Filteau, S., Friis, H., & Grenov, B. (2023). Micronutrient Status and Other Correlates of Hemoglobin among Children with Stunting: A Cross-Sectional Study in Uganda. Nutrients, 15(17), 3785. https://doi.org/10.3390/nu15173785