Population Interest in Information on Obesity, Nutrition, and Occupational Health and Its Relationship with the Prevalence of Obesity: An Infodemiological Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Source of Information
2.3. Investigation Process
2.4. Variables under Study
- Relative search volume (RSV): monthly result obtained through GT and normalized on a scale of 0 (RSV less than 1% of the volume) to 100 (maximum RSV). For example, an RSV of 25 indicates 25% of the highest observed search rate during the study period;
- Temporal evolution: long-term behaviors or trends for searches carried out on a specific topic;
- Milestone: one-off and prominent RSV event;
- Seasonality: periodic and predictable variation in a time series with a period less than or equal to one year.
2.5. Periods Analyzed
2.6. Data Analysis
2.7. Related Queries
3. Results
3.1. Related Queries
3.2. Temporal Evolution of RSVs
3.3. Main Milestones
3.4. Seasonality
3.5. Relationship between the Prevalence of Obesity and the RSV Studied
4. Discussion
4.1. Temporal Evolution of RSVs
4.2. Milestones
4.3. Seasonality
4.4. Relationship between the Prevalence of Obesity and the RSVs Studied
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Obesity and Overweight; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Wright, S.M.; Aronne, L.J. Causes of Obesity. Abdom. Imaging 2012, 37, 730–732. [Google Scholar] [CrossRef]
- Organization for Economic Co-Operation and Development (OECD). The Heavy Burden of Obesity: The Economics of Prevention; OECD: Paris, France, 2019. [Google Scholar]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. In Obesity and Lipotoxicity; Springer: Cham, Switzerland, 2017; Volume 960. [Google Scholar] [CrossRef]
- Goettler, A.; Grosse, A.; Sonntag, D. Productivity Loss Due to Overweight and Obesity: A Systematic Review of Indirect Costs. BMJ Open 2017, 7, e014632. [Google Scholar] [CrossRef]
- Oladeji, O.; Zhang, C.; Moradi, T.; Tarapore, D.; Stokes, A.C.; Marivate, V.; Sengeh, M.D.; Nsoesie, E.O. Monitoring Information-Seeking Patterns and Obesity Prevalence in Africa With Internet Search Data: Observational Study. JMIR Public Health Surveill. 2021, 7, e24348. [Google Scholar] [CrossRef]
- Sanz-Lorente, M.; Sanz-Valero, J.; Castejón-Bolea, R.; Wanden-Berghe, C. Association between Disease Data and Searching for Information in Spain: The Case of Syphilis and Gonorrhea. Rev. Esp. Comun. Salud 2020, 11, 34–43. [Google Scholar] [CrossRef]
- Sanz-Lorente, M.; Castejón Bolea, R. Social Networks: Interactive Resources and Health Information. Hosp. Domic. 2019, 3, 269–277. [Google Scholar] [CrossRef]
- Eysenbach, G. Infodemiology and Infoveillance: Framework for an Emerging Set of Public Health Informatics Methods to Analyze Search, Communication and Publication Behavior on the Internet. J. Med. Internet Res. 2009, 11, e11. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Lorente, M. Infodemiology & Occupational Health. Med. Segur. Trab. 2022, 68, 6–10. [Google Scholar] [CrossRef]
- Eysenbach, G. Infodemiology and Infoveillance Tracking Online Health Information and Cyberbehavior for Public Health. Am. J. Prev. Med. 2011, 40, S154–S158. [Google Scholar] [CrossRef]
- Mavragani, A.; Ochoa, G.; Tsagarakis, K.P. Assessing the Methods, Tools and Statistical Approaches in Google Trends Research: Systematic Review. J. Med. Internet Res. 2018, 20, e270. [Google Scholar] [CrossRef]
- Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting Influenza Epidemics Using Search Engine Query Data. Nature 2009, 457, 1012–1014. [Google Scholar] [CrossRef]
- Google Trends. Available online: https://trends.google.es/trends/?geo=&hl=es (accessed on 6 July 2023).
- FAQ about Google Trends Data—Trends Help. Available online: https://support.google.com/trends/answer/4365533?hl=en&ref_topic=6248052&sjid=18199514205152203284-EU (accessed on 6 July 2023).
- Tkachenko, N.; Chotvijit, S.; Gupta, N.; Bradley, E.; Gilks, C.; Guo, W.; Crosby, H.; Shore, E.; Thiarai, M.; Procter, R.; et al. Google Trends Can Improve Surveillance of Type 2 Diabetes. Sci. Rep. 2017, 7, e4993. [Google Scholar] [CrossRef]
- Basteris, A.; Mansourvar, M.; Kock Wiil, U. Google Trends and Seasonal Effects in Infodemiology: A Use Case About Obesity. Stud. Health Technol. Inform. 2020, 272, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Pawar, A.S.; Nagpal, S.; Pawar, N.; Lerman, L.O.; Eirin, A. General Public’s Information-Seeking Patterns of Topics Related to Obesity: Google Trends Analysis. JMIR Public Health Surveill. 2020, 6, e20923. [Google Scholar] [CrossRef]
- Kamiński, M.; Skonieczna-Żydecka, K.; Nowak, J.K.; Stachowska, E. Global and Local Diet Popularity Rankings, Their Secular Trends, and Seasonal Variation in Google Trends Data. Nutrition 2020, 79–80, 110759. [Google Scholar] [CrossRef] [PubMed]
- Bragazzi, N.L.; Dini, G.; Toletone, A.; Brigo, F.; Durando, P. Leveraging Big Data for Exploring Occupational Diseases-Related Interest at the Level of Scientific Community, Media Coverage and Novel Data Streams: The Example of Silicosis as a Pilot Study. PLoS ONE 2016, 11, e0166051. [Google Scholar] [CrossRef] [PubMed]
- Palomo-Llinares, R.; Sánchez-Tormo, J.; Wanden-Berghe, C.; Sanz-Valero, J. Trends and Seasonality of Information Searches Carried Out through Google on Nutrition and Healthy Diet in Relation to Occupational Health: Infodemiological Study. Nutrients 2021, 13, 4300. [Google Scholar] [CrossRef] [PubMed]
- Rahiri, J.-L.; Barazanchi, A.; Furukawa, S.; MacCormick, A.D.; Harwood, M.; Hill, A.G. Using Google Trends to Explore the New Zealand Public’s Interest in Bariatric Surgery. ANZ J. Surg. 2018, 88, 1274–1278. [Google Scholar] [CrossRef]
- Sanz-Lorente, M.; Wanden-Berghe, C. Temporary Trends in Information Search Patterns about “Home Care” or Hospital Care “Hospital Care” through Google. Hosp. Domic. 2018, 2, 93–99. [Google Scholar] [CrossRef]
- Kardeş, S. Seasonal Variation in the Internet Searches for Gout: An Ecological Study. Clin. Rheumatol. 2019, 38, 769–775. [Google Scholar] [CrossRef]
- Johnson, A.K.; Mehta, S.D. A Comparison of Internet Search Trends and Sexually Transmitted Infection Rates Using Google Trends. Sex. Transm. Dis. 2014, 41, 61–63. [Google Scholar] [CrossRef]
- Sanz-Lorente, M.; Sanz-Valero, J.; Wanden-Berghe, C. Temporal Trends in the Search of Information about HIV/AIDS in Spain. Rev. Esp. Comun. Salud 2019, S52–S60. [Google Scholar] [CrossRef]
- Nuti, S.V.; Wayda, B.; Ranasinghe, I.; Wang, S.; Dreyer, R.P.; Chen, S.I.; Murugiah, K. The Use of Google Trends in Health Care Research: A Systematic Review. PLoS ONE 2014, 9, e109583. [Google Scholar] [CrossRef]
- Gizzi, F.T.; Potenza, M.R. Earthquake Insurance in California, USA: What Does Community-Generated Big Data Reveal to Us? Big Data Cogn. Comput. 2022, 6, 60. [Google Scholar] [CrossRef]
- Kandula, S.; Shaman, J. Reappraising the Utility of Google Flu Trends. PLoS Comput. Biol. 2019, 15, e1007258. [Google Scholar] [CrossRef]
- Martin, L.J.; Xu, B.; Yasui, Y. Improving Google Flu Trends Estimates for the United States through Transformation. PLoS ONE 2014, 9, e109209. [Google Scholar] [CrossRef] [PubMed]
- Obeidat, R.; Alsmadi, I.; Bani Bakr, Q.; Obeidat, L. Can Users Search Trends Predict People Scares or Disease Breakout? An Examination of Infectious Skin Diseases in the United States. Infect. Dis. 2020, 13, 1178633720928356. [Google Scholar] [CrossRef]
- Rajan, A.; Sharaf, R.; Brown, R.S.; Sharaiha, R.Z.; Lebwohl, B.; Mahadev, S. Association of Search Query Interest in Gastrointestinal Symptoms With COVID-19 Diagnosis in the United States: Infodemiology Study. JMIR Public Health Surveill. 2020, 6, e19354. [Google Scholar] [CrossRef]
- Higgins, T.S.; Wu, A.W.; Sharma, D.; Illing, E.A.; Rubel, K.; Ting, J.Y. Snot Force Alliance Correlations of Online Search Engine Trends With Coronavirus Disease (COVID-19) Incidence: Infodemiology Study. JMIR Public Health Surveill. 2020, 6, e19702. [Google Scholar] [CrossRef]
- Carneiro, H.A.; Mylonakis, E. Google Trends: A Web-Based Tool for Real-Time Surveillance of Disease Outbreaks. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2009, 49, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Mavragani, A.; Ochoa, G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health Surveill. 2019, 5, e13439. [Google Scholar] [CrossRef] [PubMed]
- Harvard University, School of Public Health Obesity Prevention Source: Prevalence and Incidence Defined. Available online: https://bit.ly/3OMnDfm (accessed on 30 May 2023).
- Bojo-Canales, C.; Sanz-Lorente, M.; Sanz-Valero, J. Trends in the Searching Information on the Collections SciELO, Redalyc and Dialnet Conducted through Google. Rev. Esp. Doc. Cient. 2021, 44, e294. [Google Scholar] [CrossRef]
- Ayala Aguirre, P.E.A.; Strieder, A.P.; Lotto, M.; Oliveira, T.M.; Rios, D.; Pereira Cruvinel, A.F.P.; Cruvinel, T. Are the Internet Users Concerned about Molar Incisor Hypomineralization? An Infoveillance Study. Int. J. Paediatr. Dent. 2020, 30, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, W.R.L.; Goldsmith, G.R. Public Interest in Climate Change over the Past Decade and the Effects of the ‘Climategate’ Media Event. Environ. Res. Lett. 2014, 9, 054005. [Google Scholar] [CrossRef]
- Gizzi, F.T.; Kam, J.; Porrini, D. Time Windows of Opportunities to Fight Earthquake Under-Insurance: Evidence from Google Trends. Humanit. Soc. Sci. Commun. 2020, 7, 61. [Google Scholar] [CrossRef]
- Zeraatkar, K.; Ahmadi, M. Trends of Infodemiology Studies: A Scoping Review. Health Inf. Libr. J. 2018, 35, 91–120. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Ng, S.W. The Nutrition Transition to a Stage of High Obesity and Noncommunicable Disease Prevalence Dominated by Ultra-Processed Foods Is Not Inevitable. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2022, 23, e13366. [Google Scholar] [CrossRef]
- Schulte, P.A.; Wagner, G.R.; Ostry, A.; Blanciforti, L.A.; Cutlip, R.G.; Krajnak, K.M.; Luster, M.; Munson, A.E.; O’Callaghan, J.P.; Parks, C.G.; et al. Work, Obesity, and Occupational Safety and Health. Am. J. Public Health 2007, 97, 428–436. [Google Scholar] [CrossRef]
- Ogden, C.L.; Fryar, C.D.; Martin, C.B.; Freedman, D.S.; Carroll, M.D.; Gu, Q.; Hales, C.M. Trends in Obesity Prevalence by Race and Hispanic Origin-1999–2000 to 2017–2018. JAMA 2020, 324, 1208–1210. [Google Scholar] [CrossRef] [PubMed]
- Regional Office for Latin America and the Caribbean. Food and Nutrition Security in Latin America and the Caribbean; Food and Agriculture Organization of the United Nations (FAO): Santiago, Chile, 1995. [Google Scholar]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean Diet in the Management and Prevention of Obesity. Exp. Gerontol. 2023, 174, e112121. [Google Scholar] [CrossRef] [PubMed]
- Walters, V.; Haines, T. Workers’ Perceptions, Knowledge and Responses Regarding Occupational Health and Safety: A Report on a Canadian Study. Soc. Sci. Med. 1988, 27, 1189–1196. [Google Scholar] [CrossRef]
- Gallagher, C.; Underhill, E.; Rimmer, M. Occupational Safety and Health Management Systems in Australia: Barriers to Success. Policy Pract. Health Saf. 2003, 1, 67–81. [Google Scholar] [CrossRef]
- Pichon, E. The Horn of Africa; European Parliamentary Research Service (EPRS): Strasbourg, France, 2022. [Google Scholar]
- Kamiński, M.; Kręgielska-Narożna, M.; Bogdański, P. Determination of the Popularity of Dietary Supplements Using Google Search Rankings. Nutrients 2020, 12, 908. [Google Scholar] [CrossRef] [PubMed]
- Gea Cabrera, A.; Caballero, P.; Wanden-Berghe, C.; Sanz-Lorente, M.; López-Pintor, E. Effectiveness of Workplace-Based Diet and Lifestyle Interventions on Risk Factors in Workers with Metabolic Syndrome: A Systematic Review, Meta-Analysis and Meta-Regression. Nutrients 2021, 13, 4560. [Google Scholar] [CrossRef]
- Melián-Fleitas, L.; Franco-Pérez, Á.; Caballero, P.; Sanz-Lorente, M.; Wanden-Berghe, C.; Sanz-Valero, J. Influence of Nutrition, Food and Diet-Related Interventions in the Workplace: A Meta-Analysis with Meta-Regression. Nutrients 2021, 13, 3945. [Google Scholar] [CrossRef]
- Muttarak, R. Normalization of plus Size and the Danger of Unseen Overweight and Obesity in England. Obesity 2018, 26, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Afful, A.A.; Ricciardelli, R. Shaping the Online Fat Acceptance Movement: Talking about Body Image and Beauty Standards. J. Gend. Stud. 2015, 24, 453–472. [Google Scholar] [CrossRef]
- Griffin, M.; Bailey, K.A.; Lopez, K.J. #BodyPositive? A Critical Exploration of the Body Positive Movement within Physical Cultures Taking an Intersectionality Approach. Front. Sports Act. Living 2022, 4, 908580. [Google Scholar] [CrossRef]
- Tantengco, O.A.G. Decreased Global Online Interest in Obesity from 2004 to 2021: An Infodemiology Study. Obes. Med. 2022, 30, 100389. [Google Scholar] [CrossRef]
- Chiu, A.P.Y.; Lin, Q.; He, D. News Trends and Web Search Query of HIV/AIDS in Hong Kong. PLoS ONE 2017, 12, e0185004. [Google Scholar] [CrossRef]
- World Obesity Day Global Advisory Group. World Obesity Day. Available online: https://es.worldobesityday.org/ (accessed on 3 March 2023).
- Centers for Disease Control and Prevention (CDC). National Diabetes Prevention Program: Key National DPP Milestones. Available online: http://bit.ly/3Uu3Zpz (accessed on 3 March 2023).
- Rodríguez-Mencía, M.L.; Hernández-Paz, A.; Sanz-Lorente, M.; Sanz-Valero, J. Population Interest, through Search Trends Related to Workplace and Sexual Harassment in Spain and Its Relationship with Global Search Data. Med. Segur. Trab. 2022, 68, 90–104. [Google Scholar] [CrossRef]
- Aleman, R.; Milla-Matute, C.; Mora, M.F.; Gomez, C.O.; Blanco, D.G.; Lo Menzo, E.; Szomstein, S.; Rosenthal, R.J. Google Trends as a Resource for Bariatric Education: What Do Patients Want to Know? Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2020, 16, 1948–1953. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-W.; Chen, D.-R. Economic Recession and Obesity-Related Internet Search Behavior in Taiwan: Analysis of Google Trends Data. JMIR Public Health Surveill. 2018, 4, e37. [Google Scholar] [CrossRef] [PubMed]
- Pimentel Araujo, M.Á.; Villarreal Ríos, E.; Galicia Rodríguez, L.; Vargas Daza, E.R. Association between Work Related Factors with Obesity and Overweight in Young Workers. Rev. Asoc. Esp. Espec. En Med. Trab. 2021, 30, 318–327. [Google Scholar]
- Mavragani, A. Infodemiology and Infoveillance: Scoping Review. J. Med. Internet Res. 2020, 22, e16206. [Google Scholar] [CrossRef]
- Fernández, R. Market Share of the Main Online Search Engines Worldwide in 2021 and 2022. Available online: https://bit.ly/3uluEqF (accessed on 3 August 2023).
- Cervellin, G.; Comelli, I.; Lippi, G. Is Google Trends a Reliable Tool for Digital Epidemiology? Insights from Different Clinical Settings. J. Epidemiol. Glob. Health 2017, 7, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; Manson, J.E.; Qi, L.; Malik, V.S.; Rimm, E.B.; Sun, Q.; Willett, W.C.; Hu, F.B. Determinants and Consequences of Obesity. Am. J. Public Health 2016, 106, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
Year | RSV Obesity | RSV Nutrition | RSV Occupational Health and Safety | World Obesity Prevalence |
---|---|---|---|---|
2004 | 1007 | 950 | 749 | 9.30 |
2005 | 911 | 878 | 657 | 9.50 |
2006 | 894 | 882 | 549 | 9.80 |
2007 | 894 | 911 | 537 | 10.10 |
2008 | 844 | 910 | 538 | 10.40 |
2009 | 833 | 915 | 516 | 10.70 |
2010 | 832 | 922 | 493 | 11.00 |
2011 | 796 | 880 | 465 | 11.40 |
2014 | 787 | 888 | 453 | 11.70 |
2015 | 805 | 920 | 476 | 12.10 |
2016 | 810 | 983 | 476 | 12.40 |
Topic | Mean ± σ | Median | AIQ | Maximum | Minimum |
---|---|---|---|---|---|
Obesity | 71.24 ± 0.57 | 71 | 9 | 96 | 51 |
Nutrition | 81.00 ± 0.62 | 81 | 13 | 100 | 57 |
Occupational health and safety | 42.02 ± 0.54 | 40 | 8 | 69 | 29 |
Obesity | Nutrition | Occupational Health and Safety | |||
---|---|---|---|---|---|
Terms | % | Terms | % | Terms | % |
Obesity | 100 | Nutrition | 100 | Health | 100 |
Obese | 55 | Nutriçao | 38 | Health Safety | 98 |
Overweight | 39 | Beslemne | 30 | Safety | 96 |
Obesidade | 16 | Nutricionista | 29 | Salud | 31 |
BMI | 10 | Valori nutrizionali | 13 | Occupational health | 28 |
Diabetes | 7 | Nutrisi | 11 | Work safety | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melián-Fleitas, L.; Franco-Pérez, Á.; Sanz-Valero, J.; Wanden-Berghe, C. Population Interest in Information on Obesity, Nutrition, and Occupational Health and Its Relationship with the Prevalence of Obesity: An Infodemiological Study. Nutrients 2023, 15, 3773. https://doi.org/10.3390/nu15173773
Melián-Fleitas L, Franco-Pérez Á, Sanz-Valero J, Wanden-Berghe C. Population Interest in Information on Obesity, Nutrition, and Occupational Health and Its Relationship with the Prevalence of Obesity: An Infodemiological Study. Nutrients. 2023; 15(17):3773. https://doi.org/10.3390/nu15173773
Chicago/Turabian StyleMelián-Fleitas, Liliana, Álvaro Franco-Pérez, Javier Sanz-Valero, and Carmina Wanden-Berghe. 2023. "Population Interest in Information on Obesity, Nutrition, and Occupational Health and Its Relationship with the Prevalence of Obesity: An Infodemiological Study" Nutrients 15, no. 17: 3773. https://doi.org/10.3390/nu15173773
APA StyleMelián-Fleitas, L., Franco-Pérez, Á., Sanz-Valero, J., & Wanden-Berghe, C. (2023). Population Interest in Information on Obesity, Nutrition, and Occupational Health and Its Relationship with the Prevalence of Obesity: An Infodemiological Study. Nutrients, 15(17), 3773. https://doi.org/10.3390/nu15173773