Exploring the Effects of Short-Term Daily Intake of Nitraria retusa Tea on Lipid Profile: A Pre-Post, Uncontrolled Pilot Study in Both Healthy and Overweight/Obese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of NRE and Quantification of Its Active Compounds
2.3. Study Settings and Recruitments
2.4. Study Participants
2.4.1. Inclusion Criteria
2.4.2. Exclusion Criteria
2.5. Study Design, Assessments, and Study Outcomes
2.6. Statistical Analysis
2.7. Ethical Consideration
3. Results
3.1. Enrollment of Study Participants
3.2. Baseline Characteristics
3.3. Safety Assessment of NRE Infusion
3.4. Effects of NRE Intervention on Lipid Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Censani, M.; Hammad, H.T.; Christos, P.J.; Schumaker, T. Vitamin D deficiency associated with markers of cardiovascular disease in children with obesity. Glob. Pediatr. Health 2018, 5, 2333794X17751773. [Google Scholar] [CrossRef]
- Nikparvar, M.; Khaladeh, M.; Yousefi, H.; Vahidi Farashah, M.; Moayedi, B.; Kheirandish, M. Dyslipidemia and its associated factors in southern Iranian women, Bandare-Kong Cohort study, a cross-sectional survey. Sci. Rep. 2021, 11, 9125. [Google Scholar] [CrossRef] [PubMed]
- Jemaa, R.; Razgallah, R.; Ben Ghorbel, I.; Rais, L.; Kallel, A. Prevalence of cardiovascular risk factors in the Tunisian population: The ATERA-survey. Arch. Cardiovasc. Dis. Suppl. 2020, 12, 159. [Google Scholar] [CrossRef]
- Tang, N.; Ma, J.; Tao, R.; Chen, Z.; Yang, Y.; He, Q.; Lv, Y.; Lan, Z.; Zhou, J. The effects of the interaction between BMI and dyslipidemia on hypertension in adults. Sci. Rep. 2022, 12, 927. [Google Scholar] [CrossRef]
- Toselli, S.; Gualdi-Russo, E.; Boulos, D.N.; Anwar, W.A.; Lakhoua, C.; Jaouadi, I.; Khyatti, M.; Hemminki, K. Prevalence of overweight and obesity in adults from North Africa. Eur. J. Public Health 2014, 24 (Suppl. 1), 31–39. [Google Scholar] [CrossRef]
- Holdsworth, M.; El Ati, J.; Bour, A.; Kameli, Y.; Derouiche, A.; Millstone, E.; Delpeuch, F. Developing national obesity policy in middle-income countries: A case study from North Africa. Health Policy Plan. 2013, 28, 858–870. [Google Scholar] [CrossRef]
- Shamai, L.; Lurix, E.; Shen, M.; Novaro, G.M.; Szomstein, S.; Rosenthal, R.; Hernandez, A.V.; Asher, C.R. Association of body mass index and lipid profiles: Evaluation of a broad spectrum of body mass index patients including the morbidly obese. Obes. Surg. 2011, 21, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef]
- She, Y.; Mangat, R.; Tsai, S.; Proctor, S.D.; Richard, C. The interplay of obesity, dyslipidemia and immune dysfunction: A brief overview on pathophysiology, animal models, and nutritional modulation. Front. Nutr. 2022, 9, 840209. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, I.; Kaleem, W.A.; Yasmeen, F. Correlation between Body Mass Index and Lipid Profile in patients with Type 2 Diabetes attending a tertiary care hospital in Peshawar. Pak. J. Med. Sci. 2019, 35, 591–597. [Google Scholar] [CrossRef]
- Goldberg, A.C. Combination therapy of dyslipidemia. Curr. Treat. Options Cardiovasc. Med. 2007, 9, 249–258. [Google Scholar] [CrossRef]
- Hashempur, M.H.; Mosavat, S.H.; Heydari, M.; Shams, M. Medicinal plants’ use among patients with dyslipidemia: An Iranian cross-sectional survey. J. Complement. Integr. Med. 2019, 16, 20180101. [Google Scholar] [CrossRef]
- Upadya, H.; Prabhu, S.; Prasad, A.; Subramanian, D.; Gupta, S.; Goel, A. A randomized, double blind, placebo controlled, multicenter clinical trial to assess the efficacy and safety of Emblica officinalis extract in patients with dyslipidemia. BMC Complement. Altern. Med. 2019, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Majd, F.S.; Talebi, S.S.; Ahmad Abadi, A.N.; Poorolajal, J.; Dastan, D. Efficacy of a standardized herbal product from Pistacia atlantica subsp. Kurdica in type 2 diabetic patients with hyperlipidemia: A triple-blind randomized clinical trial. Complement. Ther. Clin. Pract. 2022, 48, 101613. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.J.; Liu, C.Y.; Chiu, J.P.; Hsu, C.H. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2016, 35, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Iida, A.; Usui, T.; Zar Kalai, F.; Han, J.; Isoda, H.; Nagumo, Y. Protective effects of Nitraria retusa extract and its constituent isorhamnetin against amyloid β-induced cytotoxicity and amyloid β aggregation. Biosci. Biotechnol. Biochem. 2015, 79, 1548–1551. [Google Scholar] [CrossRef] [PubMed]
- Rjeibi, I.; Feriani, A.; Hentati, F.; Hfaiedh, N.; Michaud, P.; Pierre, G. Structural characterization of water-soluble polysaccharides from Nitraria retusa fruits and their antioxidant and hypolipidemic activities. Int. J. Biol. Macromol. 2019, 129, 422–432. [Google Scholar] [CrossRef]
- Chaâbane, M.; Koubaa, M.; Soudani, N.; Elwej, A.; Grati, M.; Jamoussi, K.; Boudawara, T.; Ellouze Chaabouni, S.; Zeghal, N. Nitraria retusa fruit prevents penconazole-induced kidney injury in adult rats through modulation of oxidative stress and histopathological changes. Pharm. Biol. 2017, 55, 1061–1073. [Google Scholar] [CrossRef]
- Song, L.; Liu, S.; Zhang, L.; Pan, L.; Xu, L. Polysaccharides from Nitraria retusa Fruit: Extraction, Purification, Structural Characterization, and Antioxidant Activities. Molecules 2023, 28, 1266. [Google Scholar] [CrossRef]
- Mariem, C.; Sameh, M.; Nadhem, S.; Soumaya, Z.; Najiba, Z.; Raoudha, E.G. Antioxidant and antimicrobial properties of the extracts from Nitraria retusa fruits and their applications to meat product preservation. Ind. Crops Prod. 2014, 55, 295–303. [Google Scholar] [CrossRef]
- Zar Kalai, F.; Dakhlaoui, S.; Hammami, M.; Mkadmini, K.; Ksouri, R.; Isoda, H. Phenolic compounds and biological activities of different organs from aerial part of Nitraria retusa (Forssk.) Asch.: Effects of solvents. Int. J. Food Prop. 2022, 25, 1524–1538. [Google Scholar] [CrossRef]
- Kalai, F.Z.; Mkadmini, K.; Hammami, M.; Isoda, H.; Ksouri, R. Intensification of phenolic compounds extraction from Nitraria retusa leaves by Ultrasound-Assisted System Using Box–Behnken Design and Evaluation of Biological Activities. In Biological and Chemical Research; Science Signpost Publishing: Newark, DE, USA, 2022; Volume 9, ISSN 2312-0088. [Google Scholar]
- Zar Kalai, F.; Han, J.; Ksouri, R.; El Omri, A.; Abdelly, C.; Isoda, H. Antiobesity effects of an edible halophyte Nitraria retusa Forssk in 3T3-L1 preadipocyte differentiation and in C57B6J/L mice fed a high fat diet-induced obesity. Evid.-Based Complement. Altern. Med. 2013, 2013, 368658. [Google Scholar] [CrossRef] [PubMed]
- Kalai, F.Z.; Han, J.; Ksouri, R.; Abdelly, C.; Isoda, H. Oral administration of Nitraria retusa ethanolic extract enhances hepatic lipid metabolism in db/db mice model ‘BKS. Cg-Dock7m+/+ Leprdb/J’through the modulation of lipogenesis–lipolysis balance. Food Chem. Toxicol. 2014, 72, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, J.; Tang, X.; Luo, Q.; Xu, D.; Yu, B. Interaction between adipocytes and high-density lipoprotein:new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis. 2019, 18, 223. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Stevenson, J.C.; Crook, D.; Johnston, D.G.; Godsland, I.F. Effects of menopause, gender and age on lipids and high-density lipoprotein cholesterol subfractions. Maturitas 2015, 81, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.; Anderson, K.M.; Harri, T.; Kannel, W.B.; Castelli, W.P. Determinants of change in total cholesterol and HDL-C with age: The Framingham Study. J. Gerontol. 1994, 49, M252–M257. [Google Scholar] [CrossRef]
- Bayram, F.; Kocer, D.; Gundogan, K.; Kaya, A.; Demir, O.; Coskun, R.; Sabuncu, T.; Karaman, A.; Cesur, M.; Rizzo, M.; et al. Prevalence of dyslipidemia and associated risk factors in Turkish adults. J. Clin. Lipidol. 2014, 8, 206–216. [Google Scholar] [CrossRef]
- Nofer, J.-R.; Kehrel, B.; Fobker, M.; Levkau, B.; Assmann, G.; von Eckardstein, A. HDL and arteriosclerosis: Beyond reverse cholesterol transport. Atherosclerosis 2002, 161, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Harman, J.L.; Griswold, M.E.; Jeffries, N.O.; Sumner, A.E.; Sarpong, D.F.; Akylbekova, E.L.; Walker, E.R.; Wyatt, S.B.; Taylor, H.A., Jr. Age is positively associated with high-density lipoprotein cholesterol among African Americans in cross-sectional analysis: The Jackson Heart Study. J. Clin. Lipidol. 2011, 5, 173–178. [Google Scholar] [CrossRef]
- Anderson, R.A.; Broadhurst, C.L.; Polansky, M.M.; Schmidt, W.F.; Khan, A.; Flanagan, V.P.; Schoene, N.W.; Graves, D.J. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J. Agric. Food Chem. 2004, 52, 65–70. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Nabavi, S.F.; Eslami, S.; Moghaddam, A.H. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem. 2012, 132, 931–935. [Google Scholar] [CrossRef]
- Bansal, P.; Paul, P.; Mudgal, J.; Nayak, P.G.; Pannakal, S.T.; Priyadarsini, K.; Unnikrishnan, M. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp. Toxicol. Pathol. 2012, 64, 651–658. [Google Scholar] [CrossRef]
- Graf, D.; Seifert, S.; Jaudszus, A.; Bub, A.; Watzl, B. Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in fischer rats. PLoS ONE 2013, 8, e66690. [Google Scholar] [CrossRef]
- Alam, M.; Juraimi, A.S.; Rafii, M.; Abdul Hamid, A.; Aslani, F.; Hasan, M.; Mohd Zainudin, M.A.; Uddin, M. Evaluation of antioxidant compounds, antioxidant activities, and mineral composition of 13 collected purslane (Portulaca oleracea L.) accessions. BioMed Res. Int. 2014, 2014, 296063. [Google Scholar] [CrossRef]
- Okafor, I.A.; Ezejindu, D. Phytochemical studies on Portulaca oleracea (purslane) plant. GJBAHS 2014, 3, 132–136. [Google Scholar]
- Rodríguez-Rodríguez, C.; Torres, N.; Gutiérrez-Uribe, J.A.; Noriega, L.G.; Torre-Villalvazo, I.; Leal-Díaz, A.M.; Antunes-Ricardo, M.; Márquez-Mota, C.; Ordaz, G.; Chavez-Santoscoy, R.A. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity. Food Funct. 2015, 6, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yamashita, Y.; Nakamura, A.; Croft, K.; Ashida, H. Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Sci. Rep. 2019, 9, 2690. [Google Scholar] [CrossRef]
- Chbili, C.; Maoua, M.; Selmi, M.; Mrad, S.; Khairi, H.; Limem, K.; Mrizek, N.; Saguem, S.; Ben Fredj, M. Evaluation of Daily Laurus nobilis Tea Consumption on Lipid Profile Biomarkers in Healthy Volunteers. J. Am. Coll. Nutr. 2020, 39, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Zaman, G.; Anderson, R.A. Bay leaves improve glucose and lipid profile of people with type 2 diabetes. J. Clin. Biochem. Nutr. 2009, 44, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Ghislain, M.T.; Giséle, E.L.; Bertrand, P.M.J.; Mathieu, F.; Honoré, F.K.; Félicité, T.M.; Inocent, G. Effect of “Foléré” juice (calyx of Hibiscus sabdariffa Lin) on some biochemical parameters in humans. Pak. J. Nutr. 2011, 10, 755–759. [Google Scholar] [CrossRef]
- Sanguinetti, S.M.; Brites, F.D.; Fasulo, V.; Verona, J.; Elbert, A.; Wikinski, R.L.; Schreier, L.E. HDL oxidability and its protective effect against LDL oxidation in Type 2 diabetic patients. Diabetes Nutr. Metab. 2001, 14, 27–36. [Google Scholar] [PubMed]
- Brites, F.; Martin, M.; Guillas, I.; Kontush, A. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clin. 2017, 8, 66–77. [Google Scholar] [CrossRef]
- Soran, H.; Schofield, J.D.; Durrington, P.N. Antioxidant properties of HDL. Front. Pharmacol. 2015, 6, 222. [Google Scholar] [CrossRef]
- Cooney, M.; Dudina, A.; De Bacquer, D.; Wilhelmsen, L.; Sans, S.; Menotti, A.; De Backer, G.; Jousilahti, P.; Keil, U.; Thomsen, T. HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk. Atherosclerosis 2009, 206, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Ouimet, M.; Barrett, T.J.; Fisher, E.A. HDL and reverse cholesterol transport: Basic mechanisms and their roles in vascular health and disease. Circ. Res. 2019, 124, 1505–1518. [Google Scholar] [CrossRef]
- Chukwurah, M.I.; Miller, M. Fibrates, Hypertriglyceridemia, and CVD Risk: Where Do We Stand After the PROMINENT Trial for Triglyceride Lowering? Curr. Cardiol. Rep. 2023, 1–6. [Google Scholar] [CrossRef]
- Klimentidis, Y.C.; Chougule, A.; Arora, A.; Frazier-Wood, A.C.; Hsu, C.-H. Triglyceride-increasing alleles associated with protection against type-2 diabetes. PLoS Genet. 2015, 11, e1005204. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.N.; Zhang, Y.-L.; Hernandez-Ono, A. Regulation of Plasma Triglycerides in Insulin Resistance and Diabetes. Arch. Med. Res. 2005, 36, 232–240. [Google Scholar] [CrossRef]
- Yamashita, S.; Masuda, D.; Matsuzawa, Y. Pemafibrate, a new selective PPARα modulator: Drug concept and its clinical applications for dyslipidemia and metabolic diseases. Curr. Atheroscler. Rep. 2020, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.-P.; Afonso, M.; Berdaï, D.; Salles, N.; Bénard, A.; Gay, B.; Bonnet, F. Bénéfices et risques des statines en prévention primaire chez la personne âgée. La Presse Médicale 2015, 44, 1219–1225. [Google Scholar] [CrossRef]
- Lorenzati, B.; Zucco, C.; Miglietta, S.; Lamberti, F.; Bruno, G. Oral hypoglycemic drugs: Pathophysiological basis of their mechanism of actionoral hypoglycemic drugs: Pathophysiological basis of their mechanism of action. Pharmaceuticals 2010, 3, 3005–3020. [Google Scholar] [CrossRef]
- Harper, C.; Jacobson, T. Avoiding statin myopathy: Understanding key drug interactions. Clin. Lipidol. 2011, 6, 665–674. [Google Scholar] [CrossRef]
- Sorrentino, M.J. An update on statin alternatives and adjuncts. Clin. Lipidol. 2012, 7, 721–730. [Google Scholar]
- van Dam, R.M.; Willett, W.C.; Manson, J.E.; Hu, F.B. The relationship between overweight in adolescence and premature death in women. Ann. Intern. Med. 2006, 145, 91–97. [Google Scholar] [CrossRef] [PubMed]
Low-Dose Group (n = 15) | High-Dose Group (n = 15) | p Value a | ||||
---|---|---|---|---|---|---|
Variables | Mean | (SD) | Mean | (SD) | ||
Age, y (range) | 36.4 | (25–56) | 29.0 | (19–59) | 0.013 | |
Sex, N (%) | Male | 4 | (26.7) | 2 | (13.3) | 0.65 |
Female | 11 | (73.3) | 13 | (86.7) | ||
Height, cm | 164.8 | (7.4) | 168.4 | (7.2) | 0.58 | |
Weight, kg | 62.6 | (8.8) | 64.3 | (8.1) | 0.19 | |
BMI, kg/m2 | 22.9 | (1.8) | 22.6 | (1.7) | 0.56 |
Low-Dose Group (n = 20) | High-Dose Group (n = 32) | p Value a | ||||
---|---|---|---|---|---|---|
Variables | Mean | (SD)/(Range) | Mean | (SD) | ||
Age, y | 44.0 | (26–55) | 43.7 | (22–64) | 0.91 | |
Sex, N (%) | Male | 4 | (26.7) | 5 | (13.3) | 0.72 |
Female | 16 | (73.3) | 27 | (86.7) | ||
Height, cm | 163.8 | (8.0) | 164.5 | (9.4) | 0.79 | |
Weight, kg | 85.45 | (66–110) | 90.9 | (50–147) | 0.42 | |
BMI, kg/m2 | 31.8 | (26–40) | 33.3 | (25–52) | 0.65 |
Low-Dose Group a (n = 15) | High-Dose Group a (n = 15) | Between Group p Value d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | Day 10 | Δ b | p Value c | Baseline | Day 10 | Δ b | p Value c | Baseline | Day 10 | Δ | |
Variables | |||||||||||
SBP, mmHg | 111.9 (10.6) | 109.9 (8.9) | −2.0 (4.6) | 0.11 | 107.3 (10.3) | 108.7 (9.9) | 1.3 (6.4) | 0.43 | 0.25 | 0.73 | 0.20 |
DBP, mmHg | 63.7 (21.0) | 63.5 (20.3) | −0.2 (23.9) | 0.61 | 60.7 (10.3) | 60 (11.3) | −0. 7 (2.6) | 0.33 | 0.16 | 0.56 | 0.90 |
Pulse rate | 74.7 (5.5) | 73.5 (5.5) | −1.3 (4.2) | 0.26 | 76.7 (9.1) | 77.9 (9.1) | 1.1 (6.9) | 0.53 | 0.47 | 0.12 | 0.26 |
Hematological Parameters | |||||||||||
RBC, 1012/L | 4.8 (0.5) | 4.7 (0.7) | −0.1 (0.6) | 0.62 | 4.3 (0.4) | 4.5 (0.5) | 0.2 (0.4) | 0.05 | 0.002 | 0.37 | 0.10 |
WBC, 109/L | 6.6 (2.2) | 6.3 (1.6) | −0.4 (1.0) | 0.16 | 6.8 (1.7) | 6.5 (1.7) | −0.3 (1.5) | 0.45 | 0.80 | 0.67 | 0.87 |
Hb, gm/dL | 13.4 (0.8) | 13.5 (0.8) | 0.1 (1.2) | 0.75 | 12.2 (1.1) | 12.7 (0.7) | 0.5 (1. 1) | 0.10 | 0.003 | 0.009 | 0.37 |
Ht, % | 37.6 (7.4) | 38.5 (2.3) | 0.9 (7.2) | 0.62 | 36.7 (2.9) | 37.2 (2.8) | 0.5 (2.6) | 0.46 | 0.65 | 0.17 | 0.83 |
PLT, 109/L | 291.3 (73.4) | 308 (52.1) | 6.7 (102.5) | 0.54 | 251.9 (55.8) | 287.6 (41.8) | 35.7 (64.7) | 0.05 | 0.11 | 0.25 | 0.55 |
RBS, mmol/L | 4.4 (0.5) | 4.2 (0.5) | −0.1 (0.9) | 0.55 | 4.9 (0.7) | 4.7 (0.6) | −0.1 (0.9) | 0.62 | 0.04 | 0.02 | 0.95 |
Liver Function Test | |||||||||||
ALT, UI/L | 8.4 (3.3) | 6.8 (2.3) | −1.6 (2.5) | 0.03 | 8.7 (4.6) | 8.5 (3.4) | −0.1 (5.3) | 0.92 | 0.86 | 0.12 | 0.34 |
AST, UI/L | 13.4 (2.8) | 14.9 (3.6) | 1.5 (3.5) | 0.13 | 21.3 (6.3) | 19.7 (4.2) | −1.6 (7.5) | 0.42 | <0.001 | 0.002 | 0.17 |
ALP, UI/L | 38.7 (10.8) | 45.2 (11.6) | 6.5 (14.1) | 0.09 | 53.4 (12.1) | 52.1 (12.6) | −1.3 (7.5) | 0.50 | 0.002 | 0.132 | 0.08 |
GGT, UI/L | 15.5 (5.8) | 16.7 (10.4) | 0.5 (6.9) | 0.21 | 11.6 (6.9) | 11.9 (5.2) | 0.3 (4.5) | 0.78 | 0.10 | 0.05 | 0.93 |
BT, μmol/L | 9.1 (7.7) | 8.9 (7.1) | −0.1 (5.9) | 0.65 | 8.1 (4.1) | 6.3 (2.8) | −1.7 (4.5) | 0.16 | 0.67 | 0.21 | 0.41 |
BD, μmol/L | 1.9 (1.3) | 1.9 (1.1) | −0.1 (1.0) | 1.00 | 1.7 (1.1) | 1.5 (0.7) | −0.3 (1.4) | 0.55 | 0.81 | 0.32 | 0.68 |
sAlb, g/L | 42.4 (3.2) | 42.1 (3.2) | −0.2 (3.4) | 0.78 | 41.8 (4.2) | 42.7 (2.6) | 0.9 (2.9) | 0.24 | 0.68 | 0.56 | 0.32 |
Renal Function Test | |||||||||||
sCr, μmol/L | 63.4 (11.6) | 61.6 (12.1) | −1.8 (4.4) | 0.14 | 59.5 (6.1) | 58.3 (5.4) | −1.2 (5.3) | 0.39 | 0.27 | 0.35 | 0.74 |
BUN, mmol/L | 4.8 (1.9) | 4.5 (1.3) | −0.3 (1.4) | 0.41 | 3.8 (1.1) | 3.7 (1.2) | −0.1 (1.1) | 0.68 | 0.08 | 0.08 | 0.97 |
Lipid Profile | |||||||||||
TC, mmol/L | 4.3 (0.6) | 4.3 (0.7) | 0.05 (0.5) | 0.69 | 4.3 (0.9) | 4.4 (0.8) | 0.1 (0.4) | 0.23 | 0.92 | 0.70 | 0.66 |
TG, mmol/L | 0.9 (0.3) | 0.8 (0.3) | −0.1 (0.2) | 0.07 | 0.8 (0.3) | 0.9 (0.3) | 0.02 (0.2) | 0.57 | 0.78 | 0.36 | 0.07 |
HDL, mmol/L | 1.4 (0.6) | 1.5 (0.5) | 0.02 (0.5) | 0.81 | 1.3 (0.2) | 1.2 (0.2) | −0.05 (0.2) | 0.40 | 0.31 | 0.09 | 0.57 |
LDL, mmol/L | 2.4 (0.8) | 2.4 (0.6) | 0.01 (0.6) | 0.92 | 2.7 (0.8) | 2.8 (0.7) | 0.2 (0.4) | 0.18 | 0.43 | 0.13 | 0.46 |
Low-Dose Group a (n = 20) | High-Dose Group a (n = 32) | Between Group p Value d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | Day 10 | Δ b | p Value c | Baseline | Day 10 | Δ b | p Value c | Baseline | Day 10 | Δ | |
Variables | |||||||||||
SBP, mmHg | 115.2 (7.5) | 111.5 (6.7) | −3.7 (6.7) | 0.03 | 120.0 (13.7) | 116.6 (10.9) | −3.4 (9.0) | 0.04 | 0.13 | 0.03 | 0.82 |
DBP, mmHg | 74.7 (6.4) | 69.5 (10.9) | −5.2 (12.1) | 0.08 | 68.1 (10.6) | 63.1 (10.3) | −5.0 (9.5) | 0.006 | 0.02 | 0.02 | 0.98 |
Pulse rate | 76.5 (7.8) | 76.6 (5.4) | 0.05 (4.2) | 0.96 | 78.8 (6.9) | 78.2 (5.2) | −0.6 (3.8) | 0.36 | 0.27 | 0.29 | 0.71 |
Hematological Parameters | |||||||||||
RBC, 1012/L | 4.5 (0.8) | 4.6 (0.8) | 0.05 (0.4) | 0.62 | 4.5 (0.5) | 4.4 (0.5) | −0.04 (0.2) | 0.52 | 0.80 | 0.48 | 0.78 |
WBC, 109/L | 7.3 (1.5) | 7.4 (1.3) | 0.05 (0.3) | 0.42 | 6.6 (1.5) | 7.0 (1.9) | 0.4 (1.7) | 0.22 | 0.12 | 0.47 | 0.60 |
Hb, gm/dL | 11.3 (1.9) | 11.3 (1.5) | −0.04 (0.6) | 0.75 | 12.9 (1.7) | 12.9 (1.6) | 0.002 (0.7) | 0.99 | 0.004 | 0.001 | 0.73 |
Ht, % | 37.1 (5.4) | 37.5 (5.9) | 0.4 (3.9) | 0.66 | 37.6 (5.2) | 37.9 (4.9) | 0.3 (1.9) | 0.44 | 0.75 | 0.81 | 0.59 |
PLT, 109/L | 253.9 (52.2) | 252.4 (53.3) | −1.4 (36.3) | 0.65 | 245.0 (57.8) | 230.5 (55.2) | −14.6 (38.9) | 0.19 | 0.57 | 0.20 | 0.73 |
RBS, mmol/L | 5.3 (1.8) | 5.4 (1.9) | 0.1 (0.5) | 0.38 | 4.9 (0.8) | 5.1 (0.7) | 0.2 (0.8) | 0.11 | 0.23 | 0.52 | 0.41 |
Liver Function Test | |||||||||||
ALT, UI/L | 11.8 (5.5) | 15.3 (15.0) | 3.5 (13.2) | 0.25 | 12.7 (10.8) | 15.1 (8.1) | 2.4 (8.4) | 0.05 | 0.73 | 0.19 | 0.35 |
AST, UI/L | 20.4 (14.3) | 18.0 (7.6) | −2.4 (13.8) | 0.44 | 21.8 (5.5) | 22.5 (6.2) | 0.7 (7.1) | 0.57 | 0.008 | 0.02 | 0.73 |
ALP, UI/L | 52.9 (17.3) | 55.4 (16.9) | 2.4 (12.1) | 0.38 | 58.3 (19.2) | 59.5 (24.3) | 1.1 (20.8) | 0.77 | 0.31 | 0.51 | 0.53 |
GGT, UI/L | 22.1 (10.4) | 24.3 (15.4) | 2.2 (15.1) | 0.52 | 24.2 (16.5) | 23.3 (14.9) | −0.9 (5.7) | 0.27 | 0.89 | 0.68 | 0.39 |
BT, μmol/L | 10.6 (5.3) | 9.5 (6.3) | −1.1 (6.7) | 0.42 | 6.7 (2.8) | 7.5 (4.2) | 0.8 (2.7) | 0.06 | 0.005 | 0.42 | 0.23 |
BD, μmol/L | 1.8 (1.0) | 1.9 (2.2) | 0.07 (2.3) | 0.51 | 1.4 (0.9) | 1.5 (0.7) | 0.03 (0.8) | 0.62 | 0.03 | 0.72 | 0.23 |
sAlb, g/L | 40.8 (2.5) | 41.1 (2.6) | 0.2 (2.5) | 0.65 | 40.5 (2.4) | 39.8 (7.3) | −0.8 (7.8) | 0.58 | 0.68 | 0.44 | 0.57 |
Renal Function Test | |||||||||||
sCr, μmol/L | 54.4 (15.5) | 53.3 (16.6) | −1.1 (5.7) | 0.38 | 60.2 (13.9) | 59.0 (12.5) | −1.2 (5.3) | 0.19 | 0.17 | 0.17 | 0.95 |
BUN, mmol/L | 4.1 (0.9) | 4.5 (1.5) | 0.4 (1.3) | 0.21 | 4.2 (1.3) | 4.4 (1.1) | 0.2 (0.9) | 0.22 | 0.86 | 0.73 | 0.54 |
Lipid Profile | |||||||||||
TC, mmol/L | 4.7 (0.9) | 4.8 (1.1) | 0.1 (0.6) | 0.37 | 5.1 (0.9) | 5.1 (0.9) | 0.03 (0.5) | 0.69 | 0.13 | 0.28 | 0.56 |
TG, mmol/L | 1.4 (0.6) | 1.4 (0.7) | −0.07 (0.3) | 0.38 | 1.3 (0.5) | 1.2 (0.5) | −0.1 (0.3) | 0.004 | 0.58 | 0.32 | 0.56 |
HDL, mmol/L | 1.1 (0.2) | 1.1 (0.3) | −0.01 (0.2) | 0.69 | 1.2 (0.3) | 1.4 (0.3) | 0.1 (0.1) | <0.001 | 0.15 | 0.004 | 0.003 |
LDL, mmol/L | 2.9 (0.7) | 2.9 (0.8) | 0.08 (0.5) | 0.52 | 3.2 (0.7) | 3.2 (0.7) | −0.07 (0.5) | 0.37 | 0.09 | 0.39 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laouani, A.; Nasrallah, H.; Sassi, A.; Ferdousi, F.; Kalai, F.Z.; Hasni, Y.; Limem, K.; Isoda, H.; Saguem, S. Exploring the Effects of Short-Term Daily Intake of Nitraria retusa Tea on Lipid Profile: A Pre-Post, Uncontrolled Pilot Study in Both Healthy and Overweight/Obese Adults. Nutrients 2023, 15, 3649. https://doi.org/10.3390/nu15163649
Laouani A, Nasrallah H, Sassi A, Ferdousi F, Kalai FZ, Hasni Y, Limem K, Isoda H, Saguem S. Exploring the Effects of Short-Term Daily Intake of Nitraria retusa Tea on Lipid Profile: A Pre-Post, Uncontrolled Pilot Study in Both Healthy and Overweight/Obese Adults. Nutrients. 2023; 15(16):3649. https://doi.org/10.3390/nu15163649
Chicago/Turabian StyleLaouani, Aicha, Hana Nasrallah, Awatef Sassi, Farhana Ferdousi, Feten Zar Kalai, Yosra Hasni, Khalifa Limem, Hiroko Isoda, and Saad Saguem. 2023. "Exploring the Effects of Short-Term Daily Intake of Nitraria retusa Tea on Lipid Profile: A Pre-Post, Uncontrolled Pilot Study in Both Healthy and Overweight/Obese Adults" Nutrients 15, no. 16: 3649. https://doi.org/10.3390/nu15163649
APA StyleLaouani, A., Nasrallah, H., Sassi, A., Ferdousi, F., Kalai, F. Z., Hasni, Y., Limem, K., Isoda, H., & Saguem, S. (2023). Exploring the Effects of Short-Term Daily Intake of Nitraria retusa Tea on Lipid Profile: A Pre-Post, Uncontrolled Pilot Study in Both Healthy and Overweight/Obese Adults. Nutrients, 15(16), 3649. https://doi.org/10.3390/nu15163649