Prediction of Early and Long-Term Hospital Readmission in Patients with Severe Obesity: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Population
3.2. Predictive Factors for Hospital Readmission within 30 Days
3.3. Predictive Factors for Hospital Readmission within 90 Days
3.4. Predictive Factors for Any Hospital Readmission
3.5. Evaluation of Model Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wharton, S.; Lau, D.C.W.; Vallis, M.; Sharma, A.M.; Biertho, L.; Campbell-Scherer, D.; Adamo, K.; Alberga, A.; Bell, R.; Boulé, N.; et al. Obesity in adults: A clinical practice guideline. Can. Med. Assoc. J. 2020, 192, E875–E891. [Google Scholar] [CrossRef] [PubMed]
- Prospective Studies Collaboration; Whitlock, G.; Lewington, S.; Sherliker, P.; Clarke, R.; Embertson, J.; Halsey, J.; Qizilbash, N.; Collins, R.; Peto, R. Body-mass index and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. Lancet 2009, 373, 1083–1096. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, K.R.; Redden, D.T.; Wang, C.; Westfall, A.O.; Allison, D.B. Years of life lost due to obesity. J. Am. Med. Assoc. 2003, 289, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Wolin, K.Y.; Carson, K.; Colditz, G.A. Obesity and cancer. Oncologist 2010, 15, 556–565. [Google Scholar] [CrossRef]
- Abdullah, A.; Peeters, A.; de Courten, M.; Stoelwinder, J. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Res. Clin. Pract. 2010, 89, 309–319. [Google Scholar] [CrossRef]
- Grover, S.A.; Kaouache, M.; Rempel, P.; Joseph, L.; Dawes, M.; Lau, D.C.W.; Lowensteyn, I. Years of life lost and healthy life-years lost from diabetes and cardiovascular disease in overweight and obese people: A modelling study. Lancet Diabetes Endocrinol. 2015, 3, 114–122. [Google Scholar] [CrossRef]
- Ackerman, S.E.; Blackburn, O.A.; Marchildon, F.; Cohen, P. Insights into the Link between Obesity and Cancer. Curr. Obes. Rep. 2017, 6, 195–203. [Google Scholar] [CrossRef]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef]
- Anis, A.H.; Zhang, W.; Bansback, N.; Guh, D.P.; Amarsi, Z.; Birmingham, C.L. Obesity and overweight in Canada: An updated cost-of-illness study. Obes. Rev. 2010, 11, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Withrow, D.; Alter, D.A. The economic burden of obesity worldwide: A systematic review of the direct costs of obesity. Obes. Rev. 2011, 12, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; McPherson, K.; Marsh, T.; Gortmaker, S.L.; Brown, M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 2011, 378, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, E.A.; Fiebelkorn, I.C.; Wang, G. National medical spending attributable to overweight and obesity: How much, and who’s paying? Healht Aff. 2003, 22 (Suppl. S1), W3–W219. [Google Scholar] [CrossRef]
- Raebel, M.A.; Malone, D.C.; Conner, D.A.; Xu, S.; Porter, J.A.; Lanty, F.A. Health services use and health care costs of obese and nonobese individuals. Arch. Intern. Med. 2004, 164, 2135–2140. [Google Scholar] [CrossRef]
- Schafer, M.H.; Ferraro, K.F. Long-term obesity and avoidable hospitalization among younger, middle-aged, and older adults. Arch. Intern. Med. 2007, 167, 2220–2225. [Google Scholar] [CrossRef]
- Han, E.; Truesdale, K.P.; Taber, D.R.; Cai, J.; Juhaeri, J.; Stevens, J. Impact of overweight and obesity on hospitalization: Race and gender differences. Int. J. Obes. 2009, 33, 249–256. [Google Scholar] [CrossRef]
- Migliore, E.; Pagano, E.; Mirabelli, D.; Baldi, I.; Gregori, D.; Zocchetti, C.; Tuzzi, C.; Balzola, F.; Petroni, M.L.; Merletti, F. Hospitalization rates and cost in severe or complicated obesity: An Italian cohort study. BMC Public Health 2013, 13, 544. [Google Scholar] [CrossRef]
- Ringbäck Weitoft, G.; Eliasson, M.; Rosén, M. Underweight, overweight and obesity as risk factors for mortality and hospitalization. Scand. J. Public Health 2008, 36, 169–176. [Google Scholar] [CrossRef]
- Borg, S.; Persson, U.; Ödegaard, K.; Berglund, G.; Nilsson, J.Å.; Nilsson, P.M. Obesity, survival, and hospital costs—Findings from a screening project in Sweden. Value Health 2005, 8, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Vellinga, A.; O’Donovan, D.; De La Harpe, D. Length of stay and associated costs of obesity related hospital admissions in Ireland. BMC Health Serv. Res. 2008, 8, 88. [Google Scholar] [CrossRef] [PubMed]
- Migliore, E.; Brunani, A.; Ciccone, G.; Pagano, E.; Arolfo, S.; Rosso, T.; Pellegrini, M.; Capodaglio, P.; Morino, M.; Ghigo, E.; et al. Effect of bariatric surgery on survival and hospitalizations in patients with severe obesity. A retrospective cohort study. Nutrients 2021, 13, 3150. [Google Scholar] [CrossRef]
- Benbassat, J.; Taragin, M. Hospital readmissions as a measure of quality of health care: Advantages and limitations. Arch. Intern. Med. 2000, 160, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Zook, C.J.; Moore, F.D. High-cost users of medical care. N. Engl. J. Med. 1980, 302, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Axon, R.N.; Williams, M.V. Hospital readmission as an accountability measure. JAMA 2011, 305, 504–505. [Google Scholar] [CrossRef]
- Dimick, J.B.; Ghaferi, A.A. Hospital readmission as a quality measure in surgery. JAMA 2015, 313, 348–354. [Google Scholar] [CrossRef]
- Khan, A.; Nakamura, M.M.; Zaslavsky, A.M.; Jang, J.; Berry, J.G.; Feng, J.Y.; Schuster, M.A. Same-hospital readmission rates as a measure of pediatric quality of care. JAMA Pediatr. 2015, 169, 905–912. [Google Scholar] [CrossRef]
- Corrigan, J.M.; Kazandjian, V.A. Characteristics of multiple admissions. J. Am. Med. Rec. Assoc. 1991, 62, 37–47. [Google Scholar]
- Henderson, J.; Graveney, M.J.; Goldacre, M.J. Should emergency readmissions be used as health service indicators and in medical audit? Health Serv. Manag. Res. 1993, 6, 109–116. [Google Scholar] [CrossRef]
- Frankl, S.E.; Breeling, J.L.; Goldman, L. Preventability of emergent hospital readmission. Am. J. Med. 1991, 90, 667–674. [Google Scholar] [CrossRef]
- Sibbritt, D.W. Validation of a 28 day interval between discharge and readmission for emergency readmission rates. J. Qual. Clin. Pract. 1995, 15, 211–220. [Google Scholar] [PubMed]
- Wray, N.P.; DeBehnke, R.D.; Ashton, C.M.; Dunn, J.K. Characteristics of the recurrently hospitalized adult. An information synthesis. Med. Care 1988, 26, 1046–1056. [Google Scholar] [CrossRef]
- Ashton, C.M.; Del Junco, D.J.; Souchek, J.; Wray, N.P.; Mansyur, C.L. The association between the quality of inpatient care and early readmission: A meta-analysis of the evidence. Med. Care 1997, 35, 1044–1059. [Google Scholar] [CrossRef] [PubMed]
- Gorodeski, E.Z.; Starling, R.C.; Blackstone, E.H. Are All Readmissions Bad Readmissions? N. Engl. J. Med. 2010, 363, 297–298. [Google Scholar] [CrossRef] [PubMed]
- Rajaguru, V.; Kim, T.H.; Han, W.; Shin, J.; Lee, S.G. LACE Index to Predict the High Risk of 30-Day Readmission in Patients with Acute Myocardial Infarction at a University Affiliated Hospital. Front. Cardiovasc. Med. 2022, 9, 925965. [Google Scholar] [CrossRef] [PubMed]
- Keenan, P.S.; Normand, S.L.T.; Lin, Z.; Drye, E.E.; Bhat, K.R.; Ross, J.S.; Schuur, J.D.; Stauffer, B.D.; Bernheim, S.M.; Epstein, A.J.; et al. An administrative claims measure suitable for profiling hospital performance on the basis of 30-day all-cause readmission rates among patients with heart failure. Circ. Cardiovasc. Qual. Outcomes 2008, 1, 29–37. [Google Scholar] [CrossRef]
- Riester, M.R.; Mcauliffe, L.; Collins, C.; Zullo, A.R. Development and validation of the Tool for Pharmacists to Predict 30-day hospital readmission in patients with Heart Failure (ToPP-HF). Am. J. Health Pharm. 2021, 78, 1691–1700. [Google Scholar] [CrossRef]
- Polo Friz, H.; Esposito, V.; Marano, G.; Primitz, L.; Bovio, A.; Delgrossi, G.; Bombelli, M.; Grignaffini, G.; Monza, G.; Boracchi, P. Machine learning and LACE index for predicting 30-day readmissions after heart failure hospitalization in elderly patients. Intern. Emerg. Med. 2022, 17, 1727–1737. [Google Scholar] [CrossRef]
- Soh, J.G.S.; Mukhopadhyay, A.; Mohankumar, B.; Quek, S.C.; Tai, B.C. Predicting and Validating 30-day Hospital Readmission in Adults with Diabetes Whose Index Admission Is Diabetes-related. J. Clin. Endocrinol. Metab. 2022, 107, 2865–2873. [Google Scholar] [CrossRef]
- Shaka, H.; Aguilera, M.; Aucar, M.; El-Amir, Z.; Wani, F.; Muojieje, C.C.; Kichloo, A. Rate and Predictors of 30-day Readmission following Diabetic Ketoacidosis in Type 1 Diabetes Mellitus: A US Analysis. J. Clin. Endocrinol. Metab. 2021, 106, 2592–2599. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, J.S.; Aldabayan, Y.S.; Aldhahir, A.M.; Rajeh, A.M.A.; Mandal, S.; Hurst, J.R. Predictors of 30-and 90-day copd exacerbation readmission: A prospective cohort study. Int. J. COPD 2021, 16, 2769–2781. [Google Scholar] [CrossRef] [PubMed]
- Gadre, S.K.; Shah, M.; Mireles-Cabodevila, E.; Patel, B.; Duggal, A. Epidemiology and Predictors of 30-Day Readmission in Patients with Sepsis. Chest 2019, 155, 483–490. [Google Scholar] [CrossRef]
- Grek, A.A.; Rogers, E.R.; Peacock, S.H.; Hartjes, T.M.; White, L.J.; Li, Z.; Naessens, J.M.; Franco, P.M. REadmission PREvention in SepSis: Development and Validation of a Prediction Model. J. Healthc. Qual. 2022, 44, 161–168. [Google Scholar] [CrossRef]
- Amorim, L.D.A.F.; Cai, J. Modelling recurrent events: A tutorial for analysis in epidemiology. Int. J. Epidemiol. 2015, 44, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. Ann. Intern. Med. 2015, 162, 55–63. [Google Scholar] [CrossRef]
- Säfström, E.; Årestedt, K.; Liljeroos, M.; Nordgren, L.; Jaarsma, T.; Strömberg, A. Associations between continuity of care, perceived control and self-care and their impact on health-related quality of life and hospital readmission—A structural equation model. J. Adv. Nurs. 2023, 79, 2305–2315. [Google Scholar] [CrossRef]
- Santomassino, M.; Costantini, G.D.; McDermott, M.; Primiano, D.; Slyer, J.T.; Singleton, J.K. A systematic review on the effectiveness of continuity of care and its role in patient satisfaction and decreased hospital readmissions in the adult patient receiving home care services. JBI Libr. Syst. Rev. 2012, 10, 1214–1259. [Google Scholar] [CrossRef]
- Stefan, M.S.; Pekow, P.S.; Nsa, W.; Priya, A.; Miller, L.E.; Bratzler, D.W.; Rothberg, M.B.; Goldberg, R.J.; Baus, K.; Lindenauer, P.K. Hospital performance measures and 30-day readmission rates. J. Gen. Intern. Med. 2013, 28, 377–385. [Google Scholar] [CrossRef]
- Wish, J.B. The role of 30-day readmission as a measure of quality. Clin. J. Am. Soc. Nephrol. 2014, 9, 440–442. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Barua, R.S. The Pathophysiology of Cigarette Smoking and Cardiovascular Disease: An update. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Burney, P.; Patel, J.; Minelli, C.; Gnatiuc, L.; Amaral, A.F.S.; Kocabaş, A.; Cherkaski, H.H.; Gulsvik, A.; Nielsen, R.; Bateman, E.; et al. Prevalence and Population-Attributable Risk for Chronic Airflow Obstruction in a Large Multinational Study. Am. J. Respir. Crit. Care Med. 2021, 203, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Botteri, E.; Iodice, S.; Boniol, M.; Lowenfels, A.B.; Maisonneuve, P.; Boyle, P. Tobacco smoking and cancer: A meta-analysis. Int. J. Cancer 2008, 122, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zong, G.; Liu, G.; Wang, M.; Rosner, B.; Pan, A.; Willett, W.C.; Manson, J.E.; Hu, F.B.; Sun, Q. Smoking Cessation, Weight Change, Type 2 Diabetes, and Mortality. N. Engl. J. Med. 2018, 379, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Jencks, S.F.; Williams, M.V.; Coleman, E.A. Rehospitalizations among Patients in the Medicare Fee-for-Service Program. N. Engl. J. Med. 2009, 360, 1418–1428. [Google Scholar] [CrossRef]
- Brzan, P.P.; Obradovic, Z.; Stiglic, G. Contribution of temporal data to predictive performance in 30-day readmission of morbidly obese patients. PeerJ 2017, 2017, e3230. [Google Scholar] [CrossRef]
- Ben-Assuli, O.; Padman, R.; Leshno, M.; Shabtai, I. Analyzing Hospital Readmissions Using Creatinine Results for Patients with Many Visits. Procedia Comput. Sci. 2016, 58, 357–361. [Google Scholar] [CrossRef]
- Nematshahi, M.; Soroosh, D.; Neamatshahi, M.; Attarian, F.; Rahimi, F. Factors predicting readmission in patients with COVID-19. BMC Res. Notes 2021, 14, 374. [Google Scholar] [CrossRef]
- Wang, N.; Gallagher, R.; Sze, D.; Hales, S.; Tofler, G. Predictors of Frequent Readmissions in Patients with Heart Failure. Heart Lung Circ. 2019, 28, 277–283. [Google Scholar] [CrossRef]
- Wasung, M.E.; Chawla, L.S.; Madero, M. Biomarkers of renal function, which and when? Clin. Chim. Acta 2015, 438, 350–357. [Google Scholar] [CrossRef]
- Koch, V.H. Obesity Facts and Their Influence on Renal Function across the Life Span. Front. Med. 2021, 8, 704409. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Jung, H.W.; Kim, C.H.; Kim, K.I.; Chin, H.J.; Lee, H. A new equation to estimate muscle mass from creatinine and cystatin C. PLoS ONE 2016, 11, e148495. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.L.; da Mulder, A.P. Sarcopenia and poor muscle quality associated with severe obesity in young adults and middle-aged adults. Clin. Nutr. ESPEN 2021, 45, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.J. Hospital Readmission of Patients with Diabetes. Curr. Diab. Rep. 2015, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, V.A.; Ferraris, S.P.; Harmon, R.C.; Evans, B.D.; Linkus, K. Risk factors for early hospital readmission after cardiac operations. J. Thorac. Cardiovasc. Surg. 2001, 122, 278–286. [Google Scholar] [CrossRef]
- Greenberg, B.H.; Abraham, W.T.; Albert, N.M.; Chiswell, K.; Clare, R.; Stough, W.G.; Gheorghiade, M.; O’Connor, C.M.; Sun, J.L.; Yancy, C.W.; et al. Influence of diabetes on characteristics and outcomes in patients hospitalized with heart failure: A report from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am. Heart J. 2007, 154, 277.e1–277.e8. [Google Scholar] [CrossRef]
- Kwok, C.S.; Capers, Q.; Savage, M.; Gulati, M.; Potts, J.; Mohamed, M.O.; Nagaraja, V.; Patwala, A.; Heatlie, G.; Kontopantelis, E.; et al. Unplanned hospital readmissions after acute myocardial infarction: A nationwide analysis of rates, trends, predictors and causes in the United States between 2010 and 2014. Coron. Artery Dis. 2020, 31, 354–364. [Google Scholar] [CrossRef]
- Lichtman, J.H.; Leifheit-Limson, E.C.; Jones, S.B.; Watanabe, E.; Bernheim, S.M.; Phipps, M.S.; Bhat, K.R.; Savage, S.V.; Goldstein, L.B. Predictors of hospital readmission after stroke: A systematic review. Stroke 2010, 41, 2525–2533. [Google Scholar] [CrossRef]
- Berman, K.; Tandra, S.; Forssell, K.; Vuppalanch, R.; Burton, J.R.; Nguyen, J.; Mullis, D.; Kwo, P.; Chalasani, N. Incidence and Predictors of 30-Day Readmission among Patients Hospitalized for Advanced Liver Disease. Clin. Gastroenterol. Hepatol. 2011, 9, 254–259. [Google Scholar] [CrossRef]
- Barba, R.; Marco, J.; Ruiz, J.; Canora, J.; Hinojosa, J.; Plaza, S.; Zapatero-Gaviria, A. The obesity paradox in stroke: Impact on mortality and short-term readmission. J. Stroke Cerebrovasc. Dis. 2015, 24, 766–770. [Google Scholar] [CrossRef]
- Channick, J.E.; Jackson, N.J.; Zeidler, M.R.; Buhr, R.G. Effects of Obstructive Sleep Apnea and Obesity on 30-Day Readmissions in Patients with Chronic Obstructive Pulmonary Disease: A Cross-Sectional Mediation Analysis. Ann. Am. Thorac. Soc. 2022, 19, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Lengfelder, L.; Mahlke, S.; Moore, L.; Zhang, X.; Williams, G.; Lee, J. Prevalence and impact of malnutrition on length of stay, readmission, and discharge destination. J. Parenter. Enter. Nutr. 2022, 46, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value in the Overall Cohort (n = 1136) |
---|---|
Age (years), mean ± SD | 46.8 ± 10.8 |
Sex | |
Male, n (%) | 428 (37.7) |
Female, n (%) | 708 (62.3) |
Education level | |
High school or higher, n (%) | 443 (39.0) |
Intermediate school, n (%) | 572 (50.4) |
Elementary school or less, n (%) | 121 (10.6) |
Weight (kg), mean ± SD | 128.0 ± 24.0 |
Height (cm), mean ± SD | 163.6 ± 10.2 |
BMI (kg/m2), mean ± SD | 47.4 ± 6.9 |
Waist (cm), mean ± SD | 131.8 ± 14.7 |
Smoking habit | |
No, n (%) | 835 (73.5) |
Yes, n (%) | 301 (26.5) |
Alcohol consumption | |
No, n (%) | 686 (60.4) |
Yes, n (%) | 450 (39.6) |
Charlson Index | |
0, n (%) | 621 (54.7) |
1, n (%) | 388 (34.1) |
≥2, n (%) | 127 (11.2) |
Cardiovascular disease | |
No, n (%) | 1125 (99.0) |
Yes, n (%) | 11 (1.0) |
COPD | |
No, n (%) | 1073 (94.5) |
Yes, n (%) | 63 (5.5) |
Creatinine (mg/dL), mean ± SD | 0.79 ± 0.39 |
End-stage kidney disease | |
No, n (%) | 1119 (98.5) |
Yes, n (%) | 17 (1.5) |
Type 2 diabetes mellitus | |
No, n (%) | 817 (71.9) |
Yes, n (%) | 319 (28.1) |
N. of hospital admissions in the previous 2 years, mean (range) | 0.7 (0–22) |
Parameter | Univariate Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
HR | 95%CI | p-Value | HR | 95%CI | p-Value | |
Age (per year) | 1.03 | 0.99–1.06 | 0.106 | 1.02 | 1.00–1.05 | 0.024 |
Sex | ||||||
Male | 1 (ref) | |||||
Female | 0.84 | 0.53–1.34 | 0.467 | |||
Education level | ||||||
High school or higher | 1 (ref) | |||||
Intermediate school | 1.31 | 0.81–2.13 | 0.276 | |||
Elementary school or less | 1.44 | 0.85–2.44 | 0.170 | |||
Weight (per unit, kg) | 1.00 | 0.99–1.01 | 0.464 | |||
Height (per unit, cm) | 0.99 | 0.98–1.01 | 0.451 | |||
BMI (per unit, kg/m2) | 0.99 | 0.96–1.02 | 0.479 | |||
Waist (per unit, cm) | 1.00 | 0.99–1.02 | 0.726 | |||
Smoking habit | ||||||
No | 1 (ref) | 1 (ref) | ||||
Yes | 1.14 | 0.74–1.74 | 0.555 | 1.36 | 0.96–1.94 | 0.086 |
Alcohol consumption | ||||||
No | 1 (ref) | |||||
Yes | 0.88 | 0.56–1.37 | 0.558 | |||
Charlson Index | ||||||
0 | 1 (ref) | |||||
1 | 0.90 | 0.57–1.45 | 0.676 | |||
≥2 | 1.28 | 0.71–2.31 | 0.418 | |||
Cardiovascular disease | ||||||
No | 1 (ref) | |||||
Yes | 1.67 | 0.63–4.46 | 0.306 | |||
COPD | ||||||
No | 1 (ref) | |||||
Yes | 1.26 | 0.68–2.35 | 0.466 | |||
Creatinine (per unit, mg/dL) | 1.53 | 1.12–2.10 | 0.008 | 1.34 | 1.12–1.60 | 0.001 |
End-stage kidney disease | ||||||
No | 1 (ref) | |||||
Yes | 1.91 | 0.98–3.72 | 0.056 | |||
Type 2 diabetes mellitus | ||||||
No | 1 (ref) | |||||
Yes | 1.20 | 0.79–1.80 | 0.393 | |||
N. of hospital admissions in the previous 2 years (per unit) | 1.23 | 1.17–1.29 | <0.001 | 1.23 | 1.16–1.30 | <0.001 |
Parameter | Univariate Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
HR | 95%CI | p-Value | HR | 95%CI | p-Value | |
Age (per year) | 1.02 | 1.00–1.03 | 0.092 | 1.01 | 1.00–1.02 | 0.055 |
Sex | ||||||
Male | 1 (ref) | |||||
Female | 0.93 | 0.69–1.26 | 0.637 | |||
Education level | ||||||
High school or higher | 1 (ref) | |||||
Intermediate school | 1.24 | 0.91–1.70 | 0.178 | |||
Elementary school or less | 1.45 | 0.97–2.17 | 0.069 | |||
Weight (per unit, kg) | 1.00 | 0.99–1.01 | 0.989 | |||
Height (per unit, cm) | 1.00 | 0.99–1.01 | 0.926 | |||
BMI (per unit, kg/m2) | 1.00 | 0.98–1.02 | 0.856 | |||
Waist (per unit, cm) | 1.01 | 1.00–1.02 | 0.188 | |||
Smoking habit | ||||||
No | 1 (ref) | 1 (ref) | ||||
Yes | 1.13 | 0.84–1.51 | 0.422 | 1.27 | 0.98–1.63 | 0.066 |
Alcohol consumption | ||||||
No | 1 (ref) | |||||
Yes | 0.96 | 0.72–1.29 | 0.801 | |||
Charlson Index | ||||||
0 | 1 (ref) | |||||
1 | 0.87 | 0.63–1.19 | 0.378 | |||
≥2 | 1.41 | 0.98–2.03 | 0.064 | |||
Cardiovascular disease | ||||||
No | 1 (ref) | |||||
Yes | 1.01 | 0.54–1.89 | 0.981 | |||
COPD | ||||||
No | 1 (ref) | |||||
Yes | 1.28 | 0.89–1.83 | 0.175 | |||
Creatinine (per unit, mg/dL) | 1.37 | 1.09–1.72 | 0.008 | 1.30 | 1.11–1.55 | 0.002 |
End-stage kidney disease | ||||||
No | 1 (ref) | |||||
Yes | 2.01 | 1.06–3.80 | 0.032 | |||
Type 2 diabetes mellitus | ||||||
No | 1 (ref) | 1 (ref) | ||||
Yes | 1.25 | 0.94–1.68 | 0.128 | 1.24 | 1.00–1.55 | 0.050 |
N. of hospital admissions in the previous 2 years (per unit) | 1.20 | 1.16–1.25 | <0.001 | 1.20 | 1.16–1.25 | <0.001 |
Parameter | Univariate Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
HR | 95%CI | p-Value | HR | 95%CI | p-Value | |
Age (per year) | 1.02 | 1.01–1.03 | <0.001 | 1.02 | 1.01–1.03 | <0.001 |
Sex | ||||||
Male | 1 (ref) | |||||
Female | 0.94 | 0.80–1.10 | 0.427 | |||
Education level | ||||||
High school or higher | 1 (ref) | |||||
Intermediate school | 1.03 | 0.87–1.21 | 0.743 | |||
Elementary school or less | 1.27 | 0.99–1.62 | 0.056 | |||
Weight (per unit, kg) | 1.00 | 1.00–1.01 | 0.118 | |||
Height (per unit, cm) | 1.00 | 0.99–1.01 | 0.840 | |||
BMI (per unit, kg/m2) | 1.01 | 1.00–1.02 | 0.057 | 1.02 | 1.01–1.03 | 0.001 |
Waist (per unit, cm) | 1.01 | 1.00–1.01 | 0.047 | |||
Smoking habit | ||||||
No | 1 (ref) | 1 (ref) | ||||
Yes | 1.03 | 0.87–1.23 | 0.736 | 1.17 | 0.99–1.38 | 0.060 |
Alcohol consumption | ||||||
No | 1 (ref) | |||||
Yes | 1.02 | 0.87–1.20 | 0.790 | |||
Charlson Index | ||||||
0 | 1 (ref) | |||||
1 | 1.02 | 0.86–1.20 | 0.833 | |||
≥2 | 1.29 | 1.00–1.66 | 0.048 | |||
Cardiovascular disease | ||||||
No | 1 (ref) | |||||
Yes | 1.07 | 0.63–1.82 | 0.807 | |||
COPD | ||||||
No | 1 (ref) | |||||
Yes | 1.29 | 0.99–1.68 | 0.060 | |||
Creatinine (per unit, mg/dL) | 1.30 | 1.08–1.56 | 0.005 | 1.22 | 1.04–1.44 | 0.016 |
End-stage kidney disease | ||||||
No | 1 (ref) | |||||
Yes | 2.30 | 1.39–3.81 | 0.001 | |||
Type 2 diabetes mellitus | ||||||
No | 1 (ref) | 1 (ref) | ||||
Yes | 1.24 | 1.05–1.46 | 0.010 | 1.17 | 1.00–1.36 | 0.045 |
N. of hospital admissions in the previous 2 years (per unit) | 1.15 | 1.07–1.24 | <0.001 | 1.15 | 1.07–1.23 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bioletto, F.; Evangelista, A.; Ciccone, G.; Brunani, A.; Ponzo, V.; Migliore, E.; Pagano, E.; Comazzi, I.; Merlo, F.D.; Rahimi, F.; et al. Prediction of Early and Long-Term Hospital Readmission in Patients with Severe Obesity: A Retrospective Cohort Study. Nutrients 2023, 15, 3648. https://doi.org/10.3390/nu15163648
Bioletto F, Evangelista A, Ciccone G, Brunani A, Ponzo V, Migliore E, Pagano E, Comazzi I, Merlo FD, Rahimi F, et al. Prediction of Early and Long-Term Hospital Readmission in Patients with Severe Obesity: A Retrospective Cohort Study. Nutrients. 2023; 15(16):3648. https://doi.org/10.3390/nu15163648
Chicago/Turabian StyleBioletto, Fabio, Andrea Evangelista, Giovannino Ciccone, Amelia Brunani, Valentina Ponzo, Enrica Migliore, Eva Pagano, Isabella Comazzi, Fabio Dario Merlo, Farnaz Rahimi, and et al. 2023. "Prediction of Early and Long-Term Hospital Readmission in Patients with Severe Obesity: A Retrospective Cohort Study" Nutrients 15, no. 16: 3648. https://doi.org/10.3390/nu15163648
APA StyleBioletto, F., Evangelista, A., Ciccone, G., Brunani, A., Ponzo, V., Migliore, E., Pagano, E., Comazzi, I., Merlo, F. D., Rahimi, F., Ghigo, E., & Bo, S. (2023). Prediction of Early and Long-Term Hospital Readmission in Patients with Severe Obesity: A Retrospective Cohort Study. Nutrients, 15(16), 3648. https://doi.org/10.3390/nu15163648