Nutritional Risk and Sarcopenia Features in Patients with Crohn’s Disease: Relation to Body Composition, Physical Performance, Nutritional Questionnaires and Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethics
2.3. Measurements
2.3.1. Anthropometrics
2.3.2. Body Composition
2.3.3. Physical Performance Measurements
- 30-s Chair Stand Test
- One Leg Standing Test (OLST) for Both Legs
- 6-m Walk Test (Slow and Fast)
- Hand-grip Strength Test (HGS)
2.4. Malnutrition Assessment
- Global Leadership Initiative on Malnutrition (GLIM) tool
- Malnutrition Inflammation Risk Tool (MIRT)
- (i)
- BMI: >20 kg/m2 (0 points), 28.5–20 kg/m2 (1 point), <18.5 kg/m2 (2 points).
- (ii)
- Weight loss in the previous 3 months: <5% (0 points), 5–10% (2 points), ≥10% (3 points).
- (iii)
- CRP: <5 (0 points), 5–50 (2 points), ≥50 (3 points).
2.5. Sarcopenia Evaluation
2.6. Questionnaires
2.7. Biomarkers and Other Variables Assessed
2.8. Statistical Analysis
2.9. Sample Size Calculation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chang, J.T. Pathophysiology of Inflammatory Bowel Diseases. N. Engl. J. Med. 2020, 383, 2652–2664. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.J.; Dhawan, A.; Saeed, S.A. Inflammatory Bowel Disease in Children and Adolescents. JAMA Pediatr. 2015, 169, 1053. [Google Scholar] [CrossRef] [PubMed]
- Burisch, J.; Zhao, M.; Odes, S.; De Cruz, P.; Vermeire, S.; Bernstein, C.N.; Kaplan, G.G.; Duricova, D.; Greenberg, D.; Melberg, H.O.; et al. The Cost of Inflammatory Bowel Disease in High-Income Settings: A Lancet Gastroenterology & Hepatology Commission. Lancet Gastroenterol. Hepatol. 2023, 8, 458–492. [Google Scholar] [CrossRef] [PubMed]
- Huppertz-Hauss, G.; Høivik, M.L.; Langholz, E.; Odes, S.; Småstuen, M.; Stockbrugger, R.; Hoff, G.; Moum, B.; Bernklev, T. Health-Related Quality of Life in Inflammatory Bowel Disease in a European-Wide Population-Based Cohort 10 Years after Diagnosis. Inflamm. Bowel Dis. 2015, 21, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Sigall Boneh, R.; Wine, E. Evolving Role of Diet in the Pathogenesis and Treatment of Inflammatory Bowel Diseases. Gut 2018, 67, 1726–1738. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Qiu, Y.; Yang, H.S.; Li, M.Y.; Zhuang, X.J.; Zhang, S.H.; Feng, R.; Chen, B.L.; He, Y.; Zeng, Z.R.; et al. Systematic Review and Meta-analysis: Association of a Pre-illness Western Dietary Pattern with the Risk of Developing Inflammatory Bowel Disease. J. Dig. Dis. 2020, 21, 362–371. [Google Scholar] [CrossRef]
- Forbes, A.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN Guideline: Clinical Nutrition in Inflammatory Bowel Disease. Clin. Nutr. 2017, 36, 321–347. [Google Scholar] [CrossRef]
- Balestrieri, P.; Ribolsi, M.; Guarino, M.P.L.; Emerenziani, S.; Altomare, A.; Cicala, M. Nutritional Aspects in Inflammatory Bowel Diseases. Nutrients 2020, 12, 372. [Google Scholar] [CrossRef]
- Jabłońska, B.; Mrowiec, S. Nutritional Status and Its Detection in Patients with Inflammatory Bowel Diseases. Nutrients 2023, 15, 1991. [Google Scholar] [CrossRef]
- Cabré, E.; Gassull, M.A. Nutrition in Inflammatory Bowel Disease: Impact on Disease and Therapy. Curr. Opin. Gastroenterol. 2001, 17, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.; Prager, M.; Valentini, L.; Büning, C. Inflammation-Driven Malnutrition: A New Screening Tool Predicts Outcome in Crohn’s Disease. Br. J. Nutr. 2016, 116, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Fiorindi, C.; Luceri, C.; Dragoni, G.; Piemonte, G.; Scaringi, S.; Staderini, F.; Nannoni, A.; Ficari, F.; Giudici, F. GLIM Criteria for Malnutrition in Surgical IBD Patients: A Pilot Study. Nutrients 2020, 12, 2222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Gao, X.; Dai, C.; Huang, Y.; Wu, Y.; Zhou, W.; Cao, Q.; Jing, X.; Jiang, H.; et al. Validation of the GLIM Criteria for Diagnosis of Malnutrition and Quality of Life in Patients with Inflammatory Bowel Disease: A Multicenter, Prospective, Observational Study. Clin. Nutr. 2022, 41, 1297–1306. [Google Scholar] [CrossRef]
- Meyer, F.; Valentini, L. Disease-Related Malnutrition and Sarcopenia as Determinants of Clinical Outcome. Visc. Med. 2019, 35, 282–291. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Quinlan, J.I.; Overthrow, K.; Greig, C.; Lord, J.M.; Armstrong, M.J.; Cooper, S.C. Sarcopenia in Inflammatory Bowel Disease: A Narrative Overview. Nutrients 2021, 13, 656. [Google Scholar] [CrossRef]
- Nishikawa, H.; Nakamura, S.; Miyazaki, T.; Kakimoto, K.; Fukunishi, S.; Asai, A.; Nishiguchi, S.; Higuchi, K. Inflammatory Bowel Disease and Sarcopenia: Its Mechanism and Clinical Importance. J. Clin. Med. 2021, 10, 4214. [Google Scholar] [CrossRef]
- Ünal, N.G.; Oruç, N.; Tomey, O.; Ömer Özütemiz, A. Malnutrition and Sarcopenia Are Prevalent among Inflammatory Bowel Disease Patients with Clinical Remission. Eur. J. Gastroenterol. Hepatol. 2021, 33, 1367–1375. [Google Scholar] [CrossRef]
- Ryan, E.; McNicholas, D.; Creavin, B.; Kelly, M.E.; Walsh, T.; Beddy, D. Sarcopenia and Inflammatory Bowel Disease: A Systematic Review. Inflamm. Bowel Dis. 2019, 25, 67–73. [Google Scholar] [CrossRef]
- Ding, N.S.; Tassone, D.; Al Bakir, I.; Wu, K.; Thompson, A.J.; Connell, W.R.; Malietzis, G.; Lung, P.; Singh, S.; Choi, C.R.; et al. Systematic Review: The Impact and Importance of Body Composition in Inflammatory Bowel Disease. J. Crohn’s Colitis 2022, 16, 1475–1492. [Google Scholar] [CrossRef]
- Grillot, J.; D’Engremont, C.; Parmentier, A.-L.; Lakkis, Z.; Piton, G.; Cazaux, D.; Gay, C.; De Billy, M.; Koch, S.; Borot, S.; et al. Sarcopenia and Visceral Obesity Assessed by Computed Tomography Are Associated with Adverse Outcomes in Patients with Crohn’s Disease. Clin. Nutr. 2020, 39, 3024–3030. [Google Scholar] [CrossRef] [PubMed]
- McGing, J.J.; Radford, S.J.; Francis, S.T.; Serres, S.; Greenhaff, P.L.; Moran, G.W. Review Article: The Aetiology of Fatigue in Inflammatory Bowel Disease and Potential Therapeutic Management Strategies. Aliment. Pharmacol. Ther. 2021, 54, 368–387. [Google Scholar] [CrossRef] [PubMed]
- Ackermans, L.L.G.C.; Rabou, J.; Basrai, M.; Schweinlin, A.; Bischoff, S.C.; Cussenot, O.; Cancel-Tassin, G.; Renken, R.J.; Gómez, E.; Sánchez-González, P.; et al. Screening, Diagnosis and Monitoring of Sarcopenia: When to Use Which Tool? Clin. Nutr. ESPEN 2022, 48, 36–44. [Google Scholar] [CrossRef]
- Subramaniam, K.; Fallon, K.; Ruut, T.; Lane, D.; McKay, R.; Shadbolt, B.; Ang, S.; Cook, M.; Platten, J.; Pavli, P.; et al. Infliximab Reverses Inflammatory Muscle Wasting (Sarcopenia) in Crohn’s Disease. Aliment. Pharmacol. Ther. 2015, 41, 419–428. [Google Scholar] [CrossRef]
- Fuentes-García, A. Katz Activities of Daily Living Scale. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 3465–3468. ISBN 978-94-007-0752-8. [Google Scholar]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Publishers: Champaign, IL, USA, 1988. [Google Scholar]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference Values for Body Composition and Anthropometric Measurements in Athletes. PLoS ONE 2014, 9, e97846. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, N.Y.; Krakauer, J.C. An Anthropometric Risk Index Based on Combining Height, Weight, Waist, and Hip Measurements. J. Obes. 2016, 2016, 8094275. [Google Scholar] [CrossRef] [PubMed]
- Cambridge Biomedical Research Centre Bioelectric Impedance Analysis.Anthropometry—Objective Methods. Measurement Toolkit. Available online: https://www.measurement-toolkit.org/anthropometry/objective-methods/bioelectric-impedence-analysis#collapseOn (accessed on 8 August 2023).
- Scafoglieri, A.; Clarys, J.P.; Bauer, J.M.; Verlaan, S.; Van Malderen, L.; Vantieghem, S.; Cederholm, T.; Sieber, C.C.; Mets, T.; Bautmans, I. Predicting Appendicular Lean and Fat Mass with Bioelectrical Impedance Analysis in Older Adults with Physical Function Decline—The PROVIDE Study. Clin. Nutr. 2017, 36, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Martín-Martínez, J.P.; Collado-Mateo, D.; Domínguez-Muñoz, F.J.; Villafaina, S.; Gusi, N.; Pérez-Gómez, J. Reliability of the 30 s Chair Stand Test in Women with Fibromyalgia. Int. J. Environ. Res. Public Health 2019, 16, 2344. [Google Scholar] [CrossRef]
- Chomiak, T.; Pereira, F.V.; Hu, B. The Single-Leg-Stance Test in Parkinson’s Disease. J. Clin. Med. Res. 2015, 7, 182–185. [Google Scholar] [CrossRef]
- Lyons, J.G.; Heeren, T.; Stuver, S.O.; Fredman, L. Assessing the Agreement Between 3-Meter and 6-Meter Walk Tests in 136 Community-Dwelling Older Adults. J. Aging Health 2015, 27, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Huang, H.; Ni, C.; Feng, Y.; Yu, J.; Huang, Y.; Luo, L.; Jiang, Y.; Wang, A. Comparison of Five Expressions of Handgrip Strength for Predicting Cardiovascular Disease Risk Factors in Chinese Middle-Aged Community Residents. Front. Public Health 2022, 10, 903036. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Criteria for the Diagnosis of Malnutrition—A Consensus Report from the Global Clinical Nutrition Community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Best, W.R. Predicting the Crohn’s Disease Activity Index from the Harvey-Bradshaw Index. Inflamm. Bowel Dis. 2006, 12, 304–310. [Google Scholar] [CrossRef]
- Nishikawa, H.; Asai, A.; Fukunishi, S.; Takeuchi, T.; Goto, M.; Ogura, T.; Nakamura, S.; Kakimoto, K.; Miyazaki, T.; Nishiguchi, S.; et al. Screening Tools for Sarcopenia. In Vivo 2021, 35, 3001–3009. [Google Scholar] [CrossRef] [PubMed]
- Graf, C. The Lawton Instrumental Activities of Daily Living Scale. AJN Am. J. Nurs. 2008, 108, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Barusso-Grüninger, M.S.; Gianjoppe-Santos, J.; Sentanin, A.C.; Pires Di Lorenzo, V.A. Do London Chest Activity of Daily Living Scale and St George’s Respiratory Questionnaire Reflect Limitations During Activities of Daily Living in Patients With COPD? J. Cardiopulm. Rehabil. Prev. 2019, 39, 274–280. [Google Scholar] [CrossRef]
- Cereda, E. Mini Nutritional Assessment. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 29–41. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Grass, F.; Pache, B.; Martin, D.; Hahnloser, D.; Demartines, N.; Hübner, M. Preoperative Nutritional Conditioning of Crohn’s Patients—Systematic Review of Current Evidence and Practice. Nutrients 2017, 9, 562. [Google Scholar] [CrossRef]
- Sokulmez, P.; Demirbag, A.E.; Arslan, P.; Disibeyaz, S. Effects of Enteral Nutritional Support on Malnourished Patients with Inflammatory Bowel Disease by Subjective Global Assessment. Turk. J. Gastroenterol. 2014, 25, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Sandall, A.M.; Wall, C.L.; Lomer, M.C.E. Nutrition Assessment in Crohn’s Disease Using Anthropometric, Biochemical, and Dietary Indexes: A Narrative Review. J. Acad. Nutr. Diet. 2020, 120, 624–640. [Google Scholar] [CrossRef] [PubMed]
- Fiorindi, C.; Dragoni, G.; Scaringi, S.; Staderini, F.; Nannoni, A.; Ficari, F.; Giudici, F. Relationship between Nutritional Screening Tools and GLIM in Complicated IBD Requiring Surgery. Nutrients 2021, 13, 3899. [Google Scholar] [CrossRef] [PubMed]
- Valentini, L.; Schaper, L.; Buning, C.; Hengstermann, S.; Koernicke, T.; Tillinger, W.; Guglielmi, F.W.; Norman, K.; Buhner, S.; Ockenga, J.; et al. Malnutrition and Impaired Muscle Strength in Patients with Crohn’s Disease and Ulcerative Colitis in Remission. Nutrition 2008, 24, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Nakahigashi, M.; Yamamoto, T. Increases in Body Mass Index during Infliximab Therapy in Patients with Crohn’s Disease: An Open Label Prospective Study. Cytokine 2011, 56, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Vadan, R.; Gheorghe, L.S.; Constantinescu, A.; Gheorghe, C. The Prevalence of Malnutrition and the Evolution of Nutritional Status in Patients with Moderate to Severe Forms of Crohn’s Disease Treated with Infliximab. Clin. Nutr. 2011, 30, 86–91. [Google Scholar] [CrossRef]
- Karachaliou, A.; Yannakoulia, M.; Bletsa, M.; Mantzaris, G.J.; Archavlis, E.; Karampekos, G.; Tzouvala, M.; Bamias, G.; Kokkotis, G.; Kontogianni, M.D. Assessment of Dietary Adequacy and Quality in a Sample of Patients with Crohn’s Disease. Nutrients 2022, 14, 5254. [Google Scholar] [CrossRef]
- Lee, C.H.; Yoon, H.; Oh, D.J.; Lee, J.M.; Choi, Y.J.; Shin, C.M.; Park, Y.S.; Kim, N.; Lee, D.H.; Kim, J.S. The Prevalence of Sarcopenia and Its Effect on Prognosis in Patients with Crohn’s Disease. Intest. Res. 2020, 18, 79–84. [Google Scholar] [CrossRef]
- Molnár, A.; Csontos, Á.A.; Kovács, I.; Anton, Á.D.; Pálfi, E.; Miheller, P. Body Composition Assessment of Crohn’s Outpatients and Comparison with Gender- and Age-Specific Multiple Matched Control Pairs. Eur. J. Clin. Nutr. 2017, 71, 1246–1250. [Google Scholar] [CrossRef]
- Gee, M.I.; Grace, M.G.; Wensel, R.H.; Sherbaniuk, R.; Thomson, A.B. Protein-Energy Malnutrition in Gastroenterology Outpatients: Increased Risk in Crohn’s Disease. J. Am. Diet. Assoc. 1985, 85, 1466–1474. [Google Scholar] [CrossRef]
- Okoro, N.I.; Kane, S.V. Gender-Related Issues in the Female Inflammatory Bowel Disease Patient. Expert Rev. Gastroenterol. Hepatol. 2009, 3, 145–154. [Google Scholar] [CrossRef]
- Lesuis, N.; Befrits, R.; Nyberg, F.; Van Vollenhoven, R.F. Gender and the Treatment of Immune-Mediated Chronic Inflammatory Diseases: Rheumatoid Arthritis, Inflammatory Bowel Disease and Psoriasis: An Observational Study. BMC Med. 2012, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Van Hogezand, R.A.; Bänffer, D.; Zwinderman, A.H.; McCloskey, E.V.; Griffioen, G.; Hamdy, N.A.T. Ileum Resection Is the Most Predictive Factor for Osteoporosis in Patients with Crohn’s Disease. Osteoporos. Int. 2006, 17, 535–542. [Google Scholar] [CrossRef]
- Papadopoulou, S.K.; Papadimitriou, K.; Voulgaridou, G.; Georgaki, E.; Tsotidou, E.; Zantidou, O.; Papandreou, D. Exercise and Nutrition Impact on Osteoporosis and Sarcopenia—The Incidence of Osteosarcopenia: A Narrative Review. Nutrients 2021, 13, 4499. [Google Scholar] [CrossRef] [PubMed]
- Detopoulou, P.; Nomikos, T.; Fragopoulou, E.; Stamatakis, G.; Panagiotakos, D.B.; Antonopoulou, S. PAF and Its Metabolic Enzymes in Healthy Volunteers: Interrelations and Correlations with Basic Characteristics. Prostaglandins Other Lipid Mediat. 2012, 97, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hermsdorff, H.H.M.; Volp, A.C.P.; Puchau, B.; Barbosa, K.B.F.; Zulet, M.Á.; Bressan, J.; Martínez, J.A. Contribution of Gender and Body Fat Distribution to Inflammatory Marker Concentrations in Apparently Healthy Young Adults. Inflamm. Res. 2012, 61, 427–435. [Google Scholar] [CrossRef]
- Rusman, T.; Van Vollenhoven, R.F.; Van Der Horst-Bruinsma, I.E. Gender Differences in Axial Spondyloarthritis: Women Are Not So Lucky. Curr. Rheumatol. Rep. 2018, 20, 35. [Google Scholar] [CrossRef]
- Ivey, F.M.; Roth, S.M.; Ferrell, R.E.; Tracy, B.L.; Lemmer, J.T.; Hurlbut, D.E.; Martel, G.F.; Siegel, E.L.; Fozard, J.L.; Metter, E.J.; et al. Effects of Age, Gender, and Myostatin Genotype on the Hypertrophic Response to Heavy Resistance Strength Training. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M641–M648. [Google Scholar] [CrossRef]
- Geerling, B.; Badart-Smook, A.; Stockbrügger, R.; Brummer, R. Comprehensive Nutritional Status in Patients with Long-Standing Crohn Disease Currently in Remission. Am. J. Clin. Nutr. 1998, 67, 919–926. [Google Scholar] [CrossRef]
- Ghoshal, U.C.; Shukla, A. Malnutrition in Inflammatory Bowel Disease Patients in Northern India: Frequency and Factors Influencing Its Development. Trop. Gastroenterol. 2008, 29, 95–97. [Google Scholar]
- Dong, J.; Chen, Y.; Tang, Y.; Xu, F.; Yu, C.; Li, Y.; Pankaj, P.; Dai, N. Body Mass Index Is Associated with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0144872. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Loftus, E. Obesity in Inflammatory Bowel Disease: A Review of Its Role in the Pathogenesis, Natural History, and Treatment of IBD. Saudi J. Gastroenterol. 2021, 27, 183. [Google Scholar] [CrossRef] [PubMed]
- Bertin, B.; Desreumaux, P.; Dubuquoy, L. Obesity, Visceral Fat and Crohn’s Disease. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Pringle, P.L.; Stewart, K.O.; Peloquin, J.M.; Sturgeon, H.C.; Nguyen, D.; Sauk, J.; Garber, J.J.; Yajnik, V.; Ananthakrishnan, A.N.; Chan, A.T.; et al. Body Mass Index, Genetic Susceptibility, and Risk of Complications Among Individuals with Crohn’s Disease. Inflamm. Bowel Dis. 2015, 21, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Principi, M. Differences in Dietary Habits between Patients with Inflammatory Bowel Disease in Clinical Remission and a Healthy Population. Ann. Gastroenterol. 2018, 31, 469. [Google Scholar] [CrossRef]
- Filippi, J.; Al-Jaouni, R.; Wiroth, J.-B.; Hébuterne, X.; Schneider, S.M. Nutritional Deficiencies in Patients with Crohn’s Disease in Remission. Inflamm. Bowel Dis. 2006, 12, 185–191. [Google Scholar] [CrossRef]
- Papadimitriou, K. Effect of Resistance Exercise Training on Crohn’s Disease Patients. Intest. Res. 2021, 19, 275–281. [Google Scholar] [CrossRef]
- Russell, D.M.; Walker, P.M.; Leiter, L.A.; Sima, A.A.F.; Tanner, W.K.; Mickle, D.A.G.; Whitwell, J.; Marliss, E.B.; Jeejeebhoy, K.N. Metabolic and Structural Changes In Skeletal Muscle during Hypocaloric Dieting. Am. J. Clin. Nutr. 1984, 39, 503–513. [Google Scholar] [CrossRef]
- Lu, Z.L.; Wang, T.R.; Qiao, Y.Q.; Zheng, Q.; Sun, Y.; Lu, J.T.; Han, X.X.; Fan, Z.P.; Ran, Z.H. Handgrip Strength Index Predicts Nutritional Status as a Complement to Body Mass Index in Crohn’s Disease. J. Crohn's Colitis 2016, 10, 1395–1400. [Google Scholar] [CrossRef]
- Wiroth, J.-B.; Filippi, J.; Schneider, S.M.; Al-Jaouni, R.; Horvais, N.; Gavarry, O.; Bermon, S.; Hébuterne, X. Muscle Performance in Patients with Crohn’s Disease in Clinical Remission. Inflamm. Bowel Dis. 2005, 11, 296–303. [Google Scholar] [CrossRef]
- Bin, C.M.; Flores, C.; Álvares-da-Silva, M.R.; Francesconi, C.F.M. Comparison Between Handgrip Strength, Subjective Global Assessment, Anthropometry, and Biochemical Markers in Assessing Nutritional Status of Patients with Crohn’s Disease in Clinical Remission. Dig. Dis. Sci. 2010, 55, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Zaltman, C.; Braulio, V.B.; Outeiral, R.; Nunes, T.; Natividade De Castro, C.L. Lower Extremity Mobility Limitation and Impaired Muscle Function in Women with Ulcerative Colitis. J. Crohn’s Colitis 2014, 8, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Vogelaar, L.; Van Den Berg-Emons, R.; Bussmann, H.; Rozenberg, R.; Timman, R.; Van Der Woude, C.J. Physical Fitness and Physical Activity in Fatigued and Non-Fatigued Inflammatory Bowel Disease Patients. Scand. J. Gastroenterol. 2015, 50, 1357–1367. [Google Scholar] [CrossRef]
- Graungaard, S.; Geisler, L.; Andersen, J.R.; Rasmussen, H.H.; Vinter-Jensen, L.; Holst, M. Personalized Exercise Intervention in HPN Patients—A Feasibility Study. Clin. Nutr. ESPEN 2021, 45, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Neal, W.N.; Jones, C.D.; Pekmezi, D.; Motl, R.W. Physical Activity in Adults with Crohn’s Disease: A Scoping Review. Crohn’s Colitis 360 2022, 4, otac022. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K. The Influence of Aerobic Type Exercise on Active Crohn’s Disease Patients: The Incidence of an Elite Athlete. Healthcare 2022, 10, 713. [Google Scholar] [CrossRef]
- Pashmdarfard, M.; Azad, A. Assessment Tools to Evaluate Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) in Older Adults: A Systematic Review. Med. J. Islam. Repub. Iran 2020, 34, 33. [Google Scholar] [CrossRef]
- Cabalzar, A.L.; Azevedo, F.M.D.; Lucca, F.D.A.; Reboredo, M.D.M.; Malaguti, C.; Chebli, J.M.F. Physical Activity in Daily Life, Exercise Capacity and Quality of Life in Patients with Crohn’s Disease on Infliximab-Induced Remission: A Preliminary Study. Arq. Gastroenterol. 2019, 56, 351–356. [Google Scholar] [CrossRef]
- Julio, C.; Liliana, C.; Fernando, L.; Carla, M.; Isaac, O.; Pedro, G.; Tarsila, R. P011 Physical Activity Levels in Daily Life of Patients with Moderate-to-Severe Crohn’s Disease Before and After Infliximab-Induced Remission. Am. J. Gastroenterol. 2020, 115, S3. [Google Scholar] [CrossRef]
- Piotrowicz, K.; Głuszewska, A.; Czesak, J.; Fedyk-Łukasik, M.; Klimek, E.; Sánchez-Rodríguez, D.; Skalska, A.; Gryglewska, B.; Grodzicki, T.; Gąsowski, J. SARC-F as a Case-Finding Tool for Sarcopenia According to the EWGSOP2. National Validation and Comparison with Other Diagnostic Standards. Aging Clin. Exp. Res. 2021, 33, 1821–1829. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Qi, W.; Liu, W.; Chen, M.; Zhu, H.; Xiang, J.; Xie, Q.; Chen, P. Body Mass Index Is a Practical Preoperative Nutritional Index for Postoperative Infectious Complications after Intestinal Resection in Patients with Crohn’s Disease. Medicine 2017, 96, e7113. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Guo, D.; Gong, J.; Zhu, W.; Zuo, L.; Sun, J.; Li, N.; Li, J. Preoperative Nutritional Therapy Reduces the Risk of Anastomotic Leakage in Patients with Crohn’s Disease Requiring Resections. Gastroenterol. Res. Pract. 2016, 2016, 5017856. [Google Scholar] [CrossRef] [PubMed]
- Detopoulou, P.; Voulgaridou, G.; Papadopoulou, S. Cancer, Phase Angle and Sarcopenia: The Role of Diet in Connection with Lung Cancer Prognosis. Lung 2022, 200, 347–379. [Google Scholar] [CrossRef]
- Morigny, P.; Kaltenecker, D.; Zuber, J.; Machado, J.; Mehr, L.; Tsokanos, F.; Kuzi, H.; Hermann, C.D.; Voelkl, M.; Monogarov, G.; et al. Association of Circulating PLA2G7 Levels with Cancer Cachexia and Assessment of Darapladib as a Therapy. J. Cachexia Sarcopenia Muscle 2021, 12, 1333–1351. [Google Scholar] [CrossRef]
- Goodman, M.N. Tumor Necrosis Factor Induces Skeletal Muscle Protein Breakdown in Rats. Am. J. Physiol.-Endocrinol. Metab. 1991, 260, E727–E730. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martinez, C.; Lopez-Soriano, F.J.; Argiles, J.M. Acute Treatment with Tumour Necrosis Factor-a Induces Changes in Protein Metabolism in Rat Skeletal Muscle. Mol. Cell. Biochem. 1993, 125, 11–18. [Google Scholar] [CrossRef]
- Papadopoulou, S.K.; Voulgaridou, G.; Papadimitriou, K.; Koidou, E. Linking Biomarkers with Causes, Lifestyle Factors, and Management of Sarcopenia. In Biomarkers in Nutrition; Patel, V.B., Preedy, V.R., Eds.; Biomarkers in Disease: Methods, Discoveries and Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 1085–1114. ISBN 978-3-031-07389-2. [Google Scholar]
- Daniluk, U.; Daniluk, J.; Krasnodebska, M.; Lotowska, J.M.; Sobaniec-Lotowska, M.E.; Lebensztejn, D.M. The Combination of Fecal Calprotectin with ESR, CRP and Albumin Discriminates More Accurately Children with Crohn’s Disease. Adv. Med. Sci. 2019, 64, 9–14. [Google Scholar] [CrossRef]
- Qin, G.; Tu, J.; Liu, L.; Luo, L.; Wu, J.; Tao, L.; Zhang, C.; Geng, X.; Chen, X.; Ai, X.; et al. Serum Albumin and C-Reactive Protein/Albumin Ratio Are Useful Biomarkers of Crohn’s Disease Activity. Med. Sci. Monit. 2016, 22, 4393–4400. [Google Scholar] [CrossRef]
- Zhou, F.-S.; Gao, N.; Sun, X.; Jiang, X.-Y.; Chen, J.-J.; Mao, Q.-Q.; Zhong, L. C-Reactive Protein/Abumin Ratio Is a Useful Biomarker for Predicting the Mucosal Healing in the Crohn Disease: A Retrospective Study. Medicine 2021, 100, e24925. [Google Scholar] [CrossRef]
- Detopoulou, P.; Nomikos, T.; Fragopoulou, E.; Antonopoulou, S.; Kotroyiannis, I.; Vassiliadou, C.; Panagiotakos, D.B.; Chrysohoou, C.; Pitsavos, C.; Stefanadis, C. Platelet Activating Factor (PAF) and Activity of Its Biosynthetic and Catabolic Enzymes in Blood and Leukocytes of Male Patients with Newly Diagnosed Heart Failure. Clin. Biochem. 2009, 42, 44–49. [Google Scholar] [CrossRef]
- Theocharidou, E.; Tellis, C.C.; Mavroudi, M.; Soufleris, K.; Gossios, T.D.; Giouleme, O.; Athyros, V.G.; Tselepis, A.D.; Karagiannis, A. Lipoprotein-Associated Phospholipase A2 and Arterial Stiffness Evaluation in Patients with Inflammatory Bowel Diseases. J. Crohn’s Colitis 2014, 8, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Oshimoto, H.; Okamura, S.; Iida, T.; Ishikawa, T.; Hosaka, K.; Mori, M. Diagnostic Value of the Serum Platelet-Activating Factor Acetylhydrolase Activity in Inflammatory Bowel Disease. Tohoku J. Exp. Med. 2005, 207, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Kald, B.; Smedh, K.; Olaison, G.; Sjödahl, R.; Tagesson, C. Platelet-Activating Factor Acetylhydrolase Activity in Intestinal Mucosa and Plasma of Patients with Crohn’s Disease. Digestion 1996, 57, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Detopoulou, P.; Nomikos, T.; Fragopoulou, E.; Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C.; Antonopoulou, S. Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Activity, Platelet-Activating Factor Acetylhydrolase (PAF-AH) in Leukocytes and Body Composition in Healthy Adults. Lipids Health Dis. 2009, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Detopoulou, P.; Fragopoulou, E.; Nomikos, T.; Yannakoulia, M.; Stamatakis, G.; Panagiotakos, D.B.; Antonopoulou, S. The Relation of Diet with PAF and Its Metabolic Enzymes in Healthy Volunteers. Eur. J. Nutr. 2015, 54, 25–34. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Detopoulou, P.; Alepoudea, E.; Nomikos, T.; Kalogeropoulos, N.; Antonopoulou, S. Associations between Red Blood Cells Fatty Acids, Desaturases Indices and Metabolism of Platelet Activating Factor in Healthy Volunteers. Prostaglandins Leukot. Essent. Fat. Acids 2021, 164, 102234. [Google Scholar] [CrossRef]
- Saadh, M.J.; Pal, R.S.; Arias-Gonzáles, J.L.; Orosco Gavilán, J.C.; Jc, D.; Mohany, M.; Al-Rejaie, S.S.; Bahrami, A.; Kadham, M.J.; Amin, A.H.; et al. A Mendelian Randomization Analysis Investigates Causal Associations between Inflammatory Bowel Diseases and Variable Risk Factors. Nutrients 2023, 15, 1202. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, R.; Gao, H.; Jung, S.; Gao, X.; Sun, R.; Liu, X.; Kim, Y.; Lee, H.-S.; Kawai, Y.; et al. Genetic Architecture of the Inflammatory Bowel Diseases across East Asian and European Ancestries. Nat. Genet. 2023, 55, 796–806. [Google Scholar] [CrossRef]
- Semenova, E.A.; Pranckevičienė, E.; Bondareva, E.A.; Gabdrakhmanova, L.J.; Ahmetov, I.I. Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients 2023, 15, 758. [Google Scholar] [CrossRef]
Total (n = 53) | Men (n = 27) | Women (n = 26) | p Value | |
---|---|---|---|---|
Age (yrs) | 38.18 (10.92) | 34.65 (8.39) | 41.26 (12.06) | 0.039 |
BMI (kg/m2) | 25.00 (23.30–29.40) | 26.10 (23.80–27.50) | 24.40 (21.27–31.25) | 0.395 |
Waist circumference (cm) | 96.48 (16.87) | 99.60 (12.14) | 93.78 (19.99) | 0.265 |
Hip circumference (cm) | 107.00 (100.00–114.00) | 108.50 (103.70–113.00) | 105.00 (97.00–127.00) | 0.394 |
Smoking (yes) | n = 4 (7.5%) | n = 1 (3.7%) | n = 3 (11.5%) | 0.322 |
Disease duration (yrs) | 9.00 (4.00–11.00) | 10.00 (4.00–11.00) | 7.50 (4.25–11.00) | 0.396 |
Localization ∫ | 0.811 | |||
L1 | n = 19 (35.80%) | n = 10 (37.0%) | n = 9 (34.6%) | |
L2 | n = 3 (5.7%) | n = 1 (3.7%) | n = 2 (7.7%) | |
L3 | n = 17 (32.1%) | n = 8 (29.6%) | n = 9 (34.6%) | |
L4 | n = 0 (0.0%) | n = 0 (0.0%) | n = 0 (0.0%) | |
Behavior ∫ | 0.959 | |||
B1 | n = 12 (22.6%) | n = 6 (22.2%) | n = 6 (23.1%) | |
B2 | n = 14 (26.4%) | n = 7 (25.9%) | n = 7 (26.9%) | |
B3 | n = 3 (5.7%) | n = 1 (3.7%) | n = 2 (7.7%) | |
B2B3 | n = 10 (18.9%) | n = 5 (18.5%) | n = 5 (19.2%) | |
Extended small intestine disease (yes) | n = 15 (28.3%) | n = 7 (25.9%) | n = 8 (30.7%) | 0.500 |
Periproctal disease (yes) | n = 11 (20.7%) | n = 4 (14.8%) | n = 7 (26.9%) | 0.271 |
Enterectomy (yes) | n = 17 (32.0%) | n = 9 (33.3%) | n = 8 (30.7%) | 0.444 |
Extraintestinal manifestations (yes) | n = 10 (18.8%) | n = 4 (14.8%) | n = 6 (23.0%) | 0.394 |
Endoscopic response (yes) ∫ | n = 35 (89.7%) | n = 17 (89.4%) | n = 18 (90.0%) | 0.500 |
Endoscopic healing (yes) ∫ | n = 24 (61.5%) | n = 11 (57.8%) | n = 13 (65.0%) | 0.450 |
Albumin (g/dL) ‡ | 4.45 (4.28–4.65) | 4.57 (4.37–4.77) | 4.36 (4.19–4.50) | 0.040 |
CRP (mg/dL) ‡ | 0.13 (0.07–0.32) | 0.10 (0.04–0.22) | 0.16 (0.08–0.41) | 0.127 |
Creatinine (mg/dL) | 0.67 (0.59–0.80) | 0.62 (0.51–0.84) | 0.74 (0.61–0.80) | 0.478 |
Total (n = 53) | Men (n = 27) | Women (n = 26) | p Value | |
---|---|---|---|---|
Fat mass (kg) | 20.40 (15.35–30.50) | 17.60 (12.50–23.80) | 24.95 (17.35–35.32) | 0.022 |
Body fat (%) | 28.66 (10.22) | 21.03 (7.36) | 35.25 (7.50) | 0.001 |
Fat free mass (kg) | 57.25 (12.60) | 69.13 (5.32) | 47.10 (6.40) | <0.001 |
FFMI (kg/m2) | 18.73 (2.89) | 20.87 (1.93) | 16.88 (2.22) | <0.001 |
ALM * (kg) | 19.30 (4.49) | 23.49 (1.82) | 15.67 (2.44) | <0.001 |
TBW (%) | 40.51 (7.97) | 54.40 (5.40) | 47.40 (5.74) | 0.001 |
ECW(lt) | 18.22 (2.95) | 21.50 (5.44) | 16.71 (3.54) | 0.002 |
ECW (%) | 22.87 (2.57) | 22.80 (2.74) | 22.90 (2.84) | <0.001 |
ICW (%) | 22.59 (5.44) | 30.15 (5.21) | 25.44 (3.85) | 0.002 |
ICW (lt) | 27.62 (4.93) | 27.25 (2.44) | 18.63 (3.83) | 0.001 |
Phase angle (o) ‡ | 5.70 (5.15–6.65) | 6.10 (5.40–7.10) | 5.65 (4.67–6.32) | 0.395 |
CC (cm) | 35.20 (4.10) | 35.29 (4.36) | 35.13 (3.99) | 0.907 |
CS (mm) | 8.20 (5.01) | 7.08 (4.99) | 9.07 (4.97) | 0.225 |
MAC (cm) | 33.51 (3.93) | 34.47 (3.10) | 32.63 (4.44) | 0.132 |
TSF (mm) | 9.83 (5.98) | 10.96 (5.56) | 8.84 (6.26) | 0.241 |
Chair standing test (replications) | 15.52 (5.27) | 15.80 (5.63) | 15.27 (5.05) | 0.751 |
Gait speed test (slow) (s for 6 m) | 5.41 (1.13) | 5.56 (1.17) | 5.24 (1.10) | 0.365 |
Gait speed test (high) (s for 6 m) | 3.26 (2.88–4.28) | 3.13 (2.70–4.12) | 3.73 (3.17–4.68) | 0.039 |
HGS—right (kg) | 25.90 (20.15–39.05) | 39.40 (35.62–43.05) | 21.15 (18.77–25.62) | <0.001 |
HGS—left (kg) | 25.00 (20.12–39.62) | 39.65 (35.75–42.07) | 20.60 (18.22–23.47) | <0.001 |
HGS—max (kg) | 26.60 (21.22–40.97) | 41.05 (38.55–45.07) | 22.30 (19.20–25.62) | <0.001 |
OLST—right (s) | 32.67 (19.73–55.02) | 32.67 (24.55–66.98) | 32.48 (8.78–51.40) | 0.351 |
OLST—left (s) | 31.63 (19.53–64.86) | 33.50 (21.85–65.87) | 30.16 (5.85–64.86) | 0.489 |
Criterion Used | Total (n = 53) | Men (n = 27) | Women (n = 26) | p-Value |
---|---|---|---|---|
GLIM | ||||
GLIM (BMI phenotypic criteria) | n = 3 (5.6%) | n = 1 (3.7%) | n = 2 (7.6%) | 0.556 |
GLIM (CC phenotypic criteria) | n = 4 (7.5%) | n = 2 (7.4%) | n = 2 (7.6%) | 0.593 |
GLIM (FFMI phenotypic criteria) | n = 6 (11.3%) | n = 0 (0%) | n = 6 (23%) | 0.017 |
MRIT (scale 0–8) | 0.519 | |||
Score 0 | n = 49 (92.4%) | n = 26 (96.2%) | n = 23 (92.3%) | |
Score 1 | n = 3 (5.6%) | n = 1 (3.7%) | n = 2 (7.6%) | |
Score 2 | n = 1 (1.8%) | n = 0 (0%) | n = 1 (3.8%) | |
Score >2 | n = 0 (0%) | n = 0 (0%) | n = 0 (0%) | |
MNA—score | 13.0 (12.0–14.0) | 13.0 (12.0–14.0) | 13.0 (10.0–14.0) | 0.732 |
MNA categories | 0.351 | |||
MNA—malnutrition (score 0–7) | n = 1 (1.8%) | n = 0 (0%) | n = 1 (3.8%) | |
MNA—at risk of malnutrition (score 8–11) | n = 6 (11.3%) | n = 2 (7.4%) | n = 4 (15.3%) | |
MNA—subscales | ||||
MNA Food intake | 2 (2–2) | 2 (2–2) | 2 (2–2) | 0.049 |
MNA weight loss | 3 (2–3) | 3 (2–3) | 3 (3–3) | 0.210 |
MNA mobility | 2 (2–2) | 2 (2–2) | 2 (2–2) | 1.000 |
MNA acute stress | 2 (0–2) | 1.5 (2–2) | 2 (0–2) | 0.671 |
MNA neurological problems | 2 (2–2) | 2 (2–2) | 2 (2–2) | 0.112 |
MNA BMI | 3 (3–3) | 3 (2–3) | 3 (2–3) | 0.329 |
Sarcopenia—related variables | ||||
SARC-F | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0.697 |
Low HGS * (yes) | n = 4 (7.5%) | n = 2 (7.4%) | n = 2 (7.6%) | 0.659 |
Low ASM (yes) § | n = 8 (15%) | n = 0 (0%) | n = 8 (30.7%) | 0.003 |
Low gait speed (slow) (yes) ∫ | n = 3 (5.6%) | n = 1 (3.7%) | n = 2 (7.6%) | 0.384 |
Low gait speed (slow) (yes) ∫ | n = 0 (0%) | n = 0 (0%) | n = 0 (0%) | NA |
ECOGSW2 (yes) | n = 0 (0%) | n = 0 (0%) | n = 0 (0%) | NA |
Components | |||||
---|---|---|---|---|---|
Pattern 1 MAC, FFMI Max HGS | Pattern 2 Gait speed | Pattern 3 CC, Age | Pattern 4 Chair Standing Test, OLST | Pattern 5 Albumin, TSF | |
Albumin (log) (mg/dL) | 0.216 | 0.205 | −0.137 | −0.191 | 0.787 |
CC (cm) | 0.385 | −0.164 | 0.757 | 0.172 | −0.179 |
MAC (cm) | 0.692 | 0.120 | 0.547 | −0.106 | 0.160 |
TSF (mm) | −0.111 | −0.056 | 0.096 | 0.316 | 0.697 |
Chair standing test (times/30 s) | 0.065 | −0.035 | −0.107 | 0.829 | −0.033 |
Gait Speed test (slow) (s) | 0.111 | 0.958 | 0.084 | 0.013 | −0.081 |
Gait Speed test (high) (s) | −0.139 | 0.923 | 0.064 | −0.025 | 0.231 |
Max HGS (kg) | 0.842 | 0.020 | −0.248 | 0.012 | −0.140 |
FFMI (kg/m2) | 0.917 | −0.099 | 0.197 | 0.021 | 0.163 |
OLST (right leg) (s) | −0.057 | 0.024 | 0.111 | 0.741 | 0.100 |
Age (years) | −0.202 | 0.291 | 0.785 | −0.074 | 0.060 |
Unstandardized Coefficients | Sig. | ||
---|---|---|---|
B | Std. Error | ||
(Constant) | −0.759 | 0.144 | 0.000 |
Sex † | −0.080 | 0.268 | 0.769 |
Pattern 1 (MAC, FFMI, Max HGS) | −0.027 | 0.127 | 0.835 |
Pattern 2 (Gait speed) | 0.004 | 0.083 | 0.957 |
Pattern 3 (CC, MAC, age) | −0.051 | 0.084 | 0.548 |
Pattern 4 (Chair-standing test, OLST) | 0.074 | 0.080 | 0.363 |
Pattern 5 (Alb, TSF) | −0.180 | 0.085 | 0.046 |
Pattern 1 (MAC, FFMI, Max HGS) | Pattern 2 (Gait Speed) | Pattern 3 (CC, MAC, Age) | Pattern 4 (Chair-Standing Test, OLST) | Pattern 5 (Alb, TSF) | |
---|---|---|---|---|---|
MNA total score | 0.177 | 0.142 | 0.301 | −0.006 | 0.009 |
p= 0.351 | p = 0.455 | p = 0.106 | p = 0.974 | p = 0.964 | |
MNA Food intake | 0.292 | 0.111 | 0.182 | 0.377 | 0.209 |
p = 0.110 | p = 0.553 | p = 0.328 | p = 0.037 | p = 0.260 | |
MNA weight loss | −0.326 | 0.123 | −0.141 | −0.116 | 0.171 |
p = 0.074 | p = 0.509 | p = 0.450 | p = 0.533 | p = 0.358 | |
MNA mobility | NA | NA | NA | NA | NA |
MNA acute stress | 0.116 | 0.208 | 0.278 | 0.116 | 0.077 |
p = 0.535 | p = 0.261 | p = 0.130 | p = 0.535 | p = 0.680 | |
MNA neurological problems | 0.253 | 0.015 | 0.156 | 0.078 | −0.220 |
p = 0.170 | p = 0.936 | p = 0.401 | p = 0.678 | p = 0.235 | |
MNA BMI | 0.544 | −0.094 | 0.382 | −0.061 | −0.034 |
p = 0.002 | p = 0.616 | p = 0.034 | p = 0.744 | p = 0.854 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadimitriou, K.; Detopoulou, P.; Soufleris, K.; Voulgaridou, G.; Tsoumana, D.; Ntopromireskou, P.; Giaginis, C.; Chatziprodromidou, I.P.; Spanoudaki, M.; Papadopoulou, S.K. Nutritional Risk and Sarcopenia Features in Patients with Crohn’s Disease: Relation to Body Composition, Physical Performance, Nutritional Questionnaires and Biomarkers. Nutrients 2023, 15, 3615. https://doi.org/10.3390/nu15163615
Papadimitriou K, Detopoulou P, Soufleris K, Voulgaridou G, Tsoumana D, Ntopromireskou P, Giaginis C, Chatziprodromidou IP, Spanoudaki M, Papadopoulou SK. Nutritional Risk and Sarcopenia Features in Patients with Crohn’s Disease: Relation to Body Composition, Physical Performance, Nutritional Questionnaires and Biomarkers. Nutrients. 2023; 15(16):3615. https://doi.org/10.3390/nu15163615
Chicago/Turabian StylePapadimitriou, Konstantinos, Paraskevi Detopoulou, Konstantinos Soufleris, Gavriela Voulgaridou, Despoina Tsoumana, Panagiotis Ntopromireskou, Constantinos Giaginis, Ioanna P. Chatziprodromidou, Maria Spanoudaki, and Sousana K. Papadopoulou. 2023. "Nutritional Risk and Sarcopenia Features in Patients with Crohn’s Disease: Relation to Body Composition, Physical Performance, Nutritional Questionnaires and Biomarkers" Nutrients 15, no. 16: 3615. https://doi.org/10.3390/nu15163615
APA StylePapadimitriou, K., Detopoulou, P., Soufleris, K., Voulgaridou, G., Tsoumana, D., Ntopromireskou, P., Giaginis, C., Chatziprodromidou, I. P., Spanoudaki, M., & Papadopoulou, S. K. (2023). Nutritional Risk and Sarcopenia Features in Patients with Crohn’s Disease: Relation to Body Composition, Physical Performance, Nutritional Questionnaires and Biomarkers. Nutrients, 15(16), 3615. https://doi.org/10.3390/nu15163615