Hypoglycemia in Children: Major Endocrine-Metabolic Causes and Novel Therapeutic Perspectives
Abstract
:1. Introduction
1.1. Pathophysiology
1.2. Adaptation of Glucose Homeostasis from Intrauterine to Neonatal Life
2. Etiology
2.1. Hormonal Causes of Hypoglycemia (Table 1)
2.1.1. Hyperinsulinism
2.1.2. Counter-Regulatory Hormone Defects
2.1.3. Other Endocrine Causes: Insulin-Like Growth Factor-II (IGF-II) Production
Type | Causes | Clinical Features | Biochemical Features | Treatment | Potential New Therapies | |
---|---|---|---|---|---|---|
Hyperinsulinism | Insulin | Hypoglycemic symptoms | Hypoglycemia, increased insulin and C-peptide, normal ketones and fatty acids, absence of M.A., positive glycemic response to glucagon | Diazoxide, somatostatin analogs (octreotide), long-acting release somatostatin analogs (lanreotide) | Glucagon-like peptide-1 receptor antagonists, pharmacological chaperones | |
GH deficiency | GH | Hypoglycemic symptoms, prolonged and recurrent jaundice, growth deceleration | Hypoglycemia, increased ketones, fasting M.A. | Hormone replacement therapy | ||
Endocrine disorders | Adrenal insufficiency | Cortisol | Hypoglycemic symptoms, cholestasis | Fasting hypoglycemia, increased ketones, fasting M.A. | Hormone replacement therapy | |
Pediatric neoplastic formations (Wilms’ tumor, nephroblastoma, lymphomas/leukemias) | IGF-II | Hypoglycemic symptoms | Fasting hypoglycemia and postprandial hyperglycemia, suppressed insulin secretion, low ketones and fatty acids, suppressed glucagon and GH release | Surgical treatment, glucocorticoids and GH administration | Anti-IGF-II monoclonal antibodies |
2.2. Metabolic Causes of Hypoglycemia, (Table 2 and Figure 2)
2.2.1. Glycogen Storage Disorders
Type | Causes | Clinical Features | Biochemical Features | Treatment | Potential New Therapies | |
---|---|---|---|---|---|---|
GSD 0 | Glycogen synthase | Hypoglycemic symptoms, normal liver size | Postprandial hyperglycemia and hyperlactatemia, fasting ketotic hypoglycemia | Dietary approach | ||
Metabolic disorders | GSD Ia | Glucose-6- phosphatase | Hypoglycemic symptoms, hepatomegaly, nephromegaly, failure to thrive | Fasting hypoglycemia, mild ketosis, hyperlactatemia, hyperuricemia, hypertriglyceridemia | Dietary approach | Gene therapy (initial phase of clinical trials) |
GSD Ib | Glucose-6-phosphatase transporter | Hypoglycemic symptoms, hepatomegaly, nephromegaly, failure to thrive, neutropenia, inflammatory bowel disease | Fasting hypoglycemia, mild ketosis, hyperlactatemia, hyperuricemia, hypertriglyceridemia | Dietary approach | ||
GSD III | Glycogen debranching enzyme | Hypoglycemic symptoms, hepatomegaly, chronic myopathy, delayed growth | Fasting ketotic hypoglycemia, hyperlipidemia, increased CPK and transaminases | Dietary approach | ||
GSD VI, IX | Glycogen phosphorylase, Phosphorylase kinase | Hypoglycemic symptoms, hepatomegaly, failure to thrive, hypotonia | Fasting ketotic hypoglycemia, mild hyperlipidemia | Dietary approach | ||
GSD XI | GLUT2 transporter | Hypoglycemic symptoms, hepatomegaly, failure to thrive, Fanconi tubulopaty | Fasting hypoglycemia, hyperaminoaciduria, acidosis, hyperphosphaturia, glycosuria | Dietary approach | ||
HFI | Aldolase B | Acute signs and symptoms (nausea, vomiting, abdominal pain, lethargy, seizures) and chronic signs (failure to thrive, hepatic and renal insufficiency) | Postprandial hypoglycemia, lactic acidemia, hypophosphatemia, hyperuricemia, hypermagnesemia, hyperalaninemia | Dietary restriction of fructose, sucrose, sucralose, and sorbitol | ||
Galactosemia | GALT, GALK, GALE | Hypoglicemic symptoms, poor feeding, vomiting, jaundice, hepatomegaly, hypotonia, lethargy, cataracts, ovarian failure, failure to thrive | Postprandial hypoglycemia, hyperchloremic metabolic acidosis, hypophosphatemia, increased transaminases and direct/indirect bilirubin, aminoaciduria | Galactose restricted diet | Gene therapy, pharmacological chaperones, enzyme inhibitors, endoplasmic reticulum stress-reducing agents | |
Gluconeogenesis disorders | Fructose-1,6-bisphosphatase | Hypoglycemic symptoms, hepatomegaly, delayed growth | Fasting ketotic hypoglycemia, lactic acidosis, hyperuricemia, hypertriglyceridemia | Dietary approach | ||
Pyruvate carboxylase | Hypoglycemic symptoms, severe encephalopathy, developmental delay, seizures, growth retardation | Fasting ketotic hypoglycemia, metabolic acidosis | Dietary approach | |||
Phosphoenolpyruvate carboxykinase | Hypoglycemic symptoms | Fasting ketotic hypoglycemia, metabolic acidosis | Dietary approach | |||
Fatty-acid-oxidation disorders | Defects of enzymes involved in transport and beta oxidation of F.A. in the mitochondria | Hypoglycemic symptoms, cardiomyopathy, myopathy, hepatomegaly, Reye-like syndrome | Hypoketotic hypoglycemia, elevated free fatty acids, increased transaminases and CPK, hyperammonemia | Dietary approach | Triheptanoin for long-chain FAO disorders |
2.2.2. Hereditary Fructose Intolerance
2.2.3. Galactosemia
2.2.4. Gluconeogenesis Disorders
2.2.5. Fatty-Acid-Oxidation Disorders
3. Idiopathic Ketotic Hypoglycemia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casertano, A.; Rossi, A.; Fecarotta, S.; Rosanio, F.M.; Moracas, C.; Di Candia, F.; Parenti, G.; Franzese, A.; Mozzillo, E. An Overview of Hypoglycemia in Children Including a Comprehensive Practical Diagnostic Flowchart for Clinical Use. Front. Endocrinol. 2021, 12, 684011. [Google Scholar] [CrossRef]
- Thornton, P.S.; Stanley, C.A.; De Leon, D.D.; Harris, D.; Haymond, M.W.; Hussain, K.; Levitsky, L.L.; Murad, M.H.; Rozance, P.J.; Simmons, R.A.; et al. Recommendations from the Pediatric Endocrine Society for Evaluation and Management of Persistent Hypoglycemia in Neonates, Infants, and Children. J. Pediatr. 2015, 167, 238–245. [Google Scholar]
- Ghosh, A.; Banerjee, I.; Morris, A.A.M. Recognition, assessment and management of hypoglycaemia in childhood. Arch. Dis. Child. 2016, 101, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Davis, A.; Shekhawat, P.S. Hypoglycemia in the preterm neonate: Etiopathogenesis, diagnosis, management and long-term outcomes. Transl. Pediatr. 2017, 6, 335–348. [Google Scholar]
- Thompson-Branch, A.; Havranek, T. Neonatal Hypoglycemia. Pediatr. Rev. 2017, 38, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Cryer, P.E. Hypoglycemia, functional brain failure, and brain death. J. Clin. Investig. 2007, 117, 868–870. [Google Scholar] [CrossRef] [Green Version]
- Stanley, C.A.; Rozance, P.J.; Thornton, P.S.; De Leon, D.D.; Harris, D.; Haymond, M.W.; Hussain, K.; Levitsky, L.L.; Murad, M.H.; Simmons, R.A.; et al. Re-Evaluating “Transitional Neonatal Hypoglycemia”: Mechanism and Implications for Management. J. Pediatr. 2015, 166, 1520–1525.e1. [Google Scholar]
- Harris, D.L.; Weston, P.J.; Gamble, G.D.; Harding, J.E. Glucose Profiles in Healthy Term Infants in the First 5 Days: The Glucose in Well Babies (GLOW) Study. J. Pediatr. 2020, 223, 34–41.e4. [Google Scholar]
- Cornblath, M.; Hawdon, J.M.; Williams, A.F.; Aynsley-Green, A.; Ward-Platt, M.P.; Schwartz, R.; Kalhan, S.C. Controversies Regarding Definition of Neonatal Hypoglycemia: Suggested Operational Thresholds. Pediatrics 2000, 105, 1141–1145. [Google Scholar]
- Yager, J.Y. Hypoglycemic injury to the immature brain. Clin. Perinatol. 2002, 29, 651–674. [Google Scholar] [CrossRef]
- Saudubray, J.M.; De Lonlay, P.; Touati, G.; Martin, D.; Nassogne, M.C.; Castelnau, P.; Sevin, C.; Laborde, C.; Baussan, C.; Brivet, M.; et al. Genetic hypoglycaemia in infancy and childhood: Pathophysiology and diagnosis. J. Inherit Metab. Dis. 2000, 23, 197–214. [Google Scholar]
- Sprague, J.E.; Arbeláez, A.M. Glucose counterregulatory responses to hypoglycemia. Pediatr. Endocrinol. Rev. 2011, 9, 463–473. [Google Scholar]
- Blanco, C.L.; Kim, J. Neonatal Glucose Homeostasis. Clin. Perinatol. 2022, 49, 393–404. [Google Scholar] [CrossRef]
- Hay, W.W.; Raju, T.N.K.; Higgins, R.D.; Kalhan, S.C.; Devaskar, S.U. Knowledge Gaps and Research Needs for Understanding and Treating Neonatal Hypoglycemia: Workshop Report from Eunice Kennedy Shriver National Institute of Child Health and Human Development. J. Pediatr. 2009, 155, 612–617. [Google Scholar]
- Adamkin, D.H. Postnatal Glucose Homeostasis in Late-Preterm and Term Infants. Pediatrics 2011, 127, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.R.; Bai, S.; Rozance, P.J. Newborn Plasma Glucose Concentration Nadirs by Gestational-Age Group. Neonatology 2018, 113, 353–359. [Google Scholar] [CrossRef]
- Lang, T.F.; Hussain, K. Pediatric Hypoglycemia. Pediatrics 2014, 63, 211–245. [Google Scholar]
- Sharma, R.; Kopchick, J.J.; Puri, V.; Sharma, V.M. Effect of growth hormone on insulin signaling. Mol. Cell Endocrinol. 2020, 518, 111038. [Google Scholar] [CrossRef]
- Adamkin, D.H. Neonatal hypoglycemia. Semin. Fetal Neonatal Med. 2017, 22, 36–41. [Google Scholar] [CrossRef]
- Hussain, K. Diagnosis and management of hyperinsulinaemic hypoglycaemia of infancy. Horm. Res. 2008, 69, 2–13. [Google Scholar]
- Lang, T.F.; Cardy, D.; Carson, D.; Loughrey, C.M.; Hanna, E. Audit of acute hypoglycaemia in children: Re-audit of procedures for diagnosis. Ann. Clin. Biochem. Int. J. Lab. Med. 2008, 45, 486–488. [Google Scholar]
- Bolmasova, A.V.; Melikyan, M.A.; Krylova, N.A.; Ionov, O.V.; Ryumina, I.; Bockeria, E.L.; Pekareva, N.A.; Degtyareva, A.V. Transient hyperinsulinism in neonates. Probl. Endocrinol. 2020, 66, 61–67. [Google Scholar] [CrossRef]
- Palladino, A.A.; Bennett, M.J.; Stanley, C.A. Hyperinsulinism in Infancy and Childhood: When an Insulin Level Is Not Always Enough. Clin. Chem. 2008, 54, 256–263. [Google Scholar]
- Stanley, C.A. Hyperinsulinism in Infants and Children. Pediatr. Clin. N. Am. 1997, 44, 363–374. [Google Scholar] [CrossRef]
- Moon, J.H.; Jang, H.C. Gestational Diabetes Mellitus: Diagnostic Approaches and Maternal-Offspring Complications. Diabetes Metab. J. 2022, 46, 3–14. [Google Scholar]
- Lord, K.; De León, D.D. Hyperinsulinism in the Neonate. Clin. Perinatol. 2018, 45, 61–74. [Google Scholar] [CrossRef]
- Rahman, S.A.; Nessa, A.; Hussain, K. Molecular mechanisms of congenital hyperinsulinism. J. Mol. Endocrinol. 2015, 54, R119–R129. [Google Scholar] [CrossRef] [Green Version]
- Dunne, M.J.; Cosgrove, K.E.; Shepherd, R.M.; Aynsley-Green, A.; Lindley, K.J. Hyperinsulinism in infancy: From basic science to clinical disease. Physiol. Rev. 2004, 84, 239–275. [Google Scholar]
- Arnoux, J.-B.; Verkarre, V.; Saint-Martin, C.; Montravers, F.; Brassier, A.; Valayannopoulos, V.; Brunelle, F.; Fournet, J.-C.; Robert, J.-J.; Aigrain, Y.; et al. Congenital hyperinsulinism: Current trends in diagnosis and therapy. Orphanet J. Rare Dis. 2011, 6, 63. [Google Scholar]
- Galcheva, S.; Demirbilek, H.; Al-Khawaga, S.; Hussain, K. The Genetic and Molecular Mechanisms of Congenital Hyperinsulinism. Front. Endocrinol. 2019, 10, 111. [Google Scholar] [CrossRef] [Green Version]
- Valayannopoulos, V.; Romano, S.; Mention, K.; Vassault, A.; Rabier, D.; Polak, M.; Robert, J.-J.; de Keyzer, Y.; de Lonlay, P. What’s new in metabolic and genetic hypoglycaemias: Diagnosis and management. Eur. J. Pediatr. 2008, 167, 257–265. [Google Scholar]
- Danowitz, M.; De Leon, D.D. The Role of GLP-1 Signaling in Hypoglycemia due to Hyperinsulinism. Front. Endocrinol. 2022, 13, 863184. [Google Scholar] [CrossRef]
- Kapoor, R.R.; Flanagan, S.E.; Arya, V.B.; Shield, J.P.; Ellard, S.; Hussain, K. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur. J. Endocrinol. 2013, 168, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Taylor-Miller, T.; Houghton, J.; Munyard, P.; Kumar, Y.; Puvirajasinghe, C.; Giri, D. Congenital hyperinsulinism due to compound heterozygous mutations in ABCC8 responsive to diazoxide therapy. J. Pediatr. Endocrinol. Metab. 2020, 33, 671–674. [Google Scholar]
- De Franco, E.; Saint-Martin, C.; Brusgaard, K.; Knight Johnson, A.E.; Aguilar-Bryan, L.; Bowman, P.; Arnoux, J.-B.; Larsen, A.R.; Sanyoura, M.; Greeley, S.A.W. Update of variants identified in the pancreatic β-cell KATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum. Mutat. 2020, 41, 884–905. [Google Scholar] [CrossRef] [Green Version]
- Sims, K. Congenital Hyperinsulinism. Neoreviews 2021, 22, e230–e240. [Google Scholar] [CrossRef]
- Demirbilek, H.; Hussain, K. Congenital Hyperinsulinism: Diagnosis and Treatment Update. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 69–87. [Google Scholar]
- Ismail, D.; Hussain, K. Role of 18F-DOPA PET/CT imaging in congenital hyperinsulinism. Rev. Endocr. Metab. Disord. 2010, 11, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, I.; Salomon-Estebanez, M.; Shah, P.; Nicholson, J.; Cosgrove, K.E.; Dunne, M.J. Therapies and outcomes of congenital hyperinsulinism-induced hypoglycaemia. Diabetes Med. 2019, 36, 9–21. [Google Scholar] [CrossRef]
- Hussain, K.; Aynsley-Green, A. Management of hyperinsulinism in infancy and childhood. Ann. Med. 2000, 32, 544–551. [Google Scholar] [CrossRef]
- Brar, P.C.; Heksch, R.; Cossen, K.; De Leon, D.D.; Kamboj, M.K.; Marks, S.D.; Marshall, B.A.; Miller, R.; Page, L.; Stanley, T.; et al. Management and Appropriate Use of Diazoxide in Infants and Children with Hyperinsulinism. J. Clin. Endocrinol. Metab. 2020, 105, 3750–3761. [Google Scholar] [CrossRef]
- Novokreshhennyx, E.E.; Gubaeva, D.N.; Melikyan, M.A. The use of long-acting somatostatin analogs in congenital hyperinsulinism. Probl. Endokrinol. 2020, 66, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.M.; Tang, F.; Seeholzer, S.H.; Zou, Y.; de León, D.D. Population pharmacokinetics of exendin-(9-39) and clinical dose selection in patients with congenital hyperinsulinism. Br. J. Clin. Pharmacol. 2018, 84, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Stefanovski, D.; Vajravelu, M.E.; Givler, S.; de León, D.D. Exendin-(9-39) Effects on Glucose and Insulin in Children With Congenital Hyperinsulinism During Fasting and During a Meal and a Protein Challenge. Diabetes Care 2022, 45, 1381–1390. [Google Scholar] [CrossRef]
- Martin, G.M.; Sung, M.W.; Shyng, S.-L. Pharmacological chaperones of ATP-sensitive potassium channels: Mechanistic insight from cryoEM structures. Mol. Cell Endocrinol. 2020, 502, 110667. [Google Scholar]
- Chen, P.-C.; Olson, E.M.; Zhou, Q.; Kryukova, Y.; Sampson, H.M.; Thomas, D.Y.; Shyng, S.-L. Carbamazepine as a Novel Small Molecule Corrector of Trafficking-impaired ATP-sensitive Potassium Channels Identified in Congenital Hyperinsulinism. J. Biol. Chem. 2013, 288, 20942–20954. [Google Scholar] [PubMed] [Green Version]
- Baujat, G.; Rio, M.; Rossignol, S.; Sanlaville, D.; Lyonnet, S.; Le Merrer, M.; Munnich, A.; Gicquel, C.; Cormier-Daire, V.; Colleaux, L. Paradoxical NSD1 Mutations in Beckwith-Wiedemann Syndrome and 11p15 Anomalies in Sotos Syndrome. Am. J. Hum. Genet. 2004, 74, 715–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalish, J.M.; Boodhansingh, K.E.; Bhatti, T.R.; Ganguly, A.; Conlin, L.K.; Becker, S.A.; Givler, S.; Mighion, L.; Palladino, A.A.; Adzick, N.S.; et al. Congenital hyperinsulinism in children with paternal 11p uniparental isodisomy and Beckwith-Wiedemann syndrome. J. Med. Genet. 2016, 53, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Zenker, M.; Mohnike, K.; Palm, K. Syndromic forms of congenital hyperinsulinism. Front. Endocrinol. 2023, 14, 1013874. [Google Scholar] [CrossRef]
- Barthlen, W.; Mohnike, W.; Mohnike, K. Techniques in pediatric surgery: Congenital hyperinsulinism. Horm. Res. Paediatr. 2011, 75, 304–310. [Google Scholar]
- Di Iorgi, N.; Morana, G.; Allegri, A.E.M.; Napoli, F.; Gastaldi, R.; Calcagno, A.; Patti, G.; Loche, S.; Maghnie, M. Classical and non-classical causes of GH deficiency in the paediatric age. Best. Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 705–736. [Google Scholar]
- Mullis, P.E. Genetics of growth hormone deficiency. Endocrinol. Metab. Clin. N. Am. 2007, 36, 17–36. [Google Scholar] [CrossRef]
- Heidelbaugh, J.J. Endocrinology Update: Hypopituitarism. FP Essent. 2016, 451, 25–30. [Google Scholar]
- Donato, J.; Wasinski, F.; Furigo, I.C.; Metzger, M.; Frazão, R. Central Regulation of Metabolism by Growth Hormone. Cells 2021, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, J.O.; Krag, M.; Jessen, N.; Nørrelund, H.; Vestergaard, E.T.; Møller, N.; Christiansen, J.S. Growth Hormone and Glucose Homeostasis. Horm. Res. Paediatr. 2004, 62, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Profka, E.; Rodari, G.; Giacchetti, F.; Giavoli, C.G.H. Deficiency and Replacement Therapy in Hypopituitarism: Insight Into the Relationships With Other Hypothalamic-Pituitary Axes. Front. Endocrinol. 2021, 12, 678778. [Google Scholar]
- Ara, L.B.I.; Katugampola, H.; Dattani, M.T. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front. Pediatr. 2021, 8, 600962. [Google Scholar]
- Shulman, D.I.; Palmert, M.R.; Kemp, S.F. Adrenal Insufficiency: Still a Cause of Morbidity and Death in Childhood. Pediatrics 2007, 119, e484–e494. [Google Scholar] [PubMed] [Green Version]
- Djurhuus, C.B.; Gravholt, C.H.; Iversen, P.; Christiansen, J.S.; Schmitz, O.; Weeke, J.; Jørgensen, J.O.L.; Møller, N. Effects of Cortisol on Carbohydrate, Lipid, and Protein Metabolism: Studies of Acute Cortisol Withdrawal in Adrenocortical Failure. J. Clin. Endocrinol. Metab. 2007, 92, 3553–3559. [Google Scholar]
- Ioakim, K.J.; Sydney, G.I.; Paschou, S.A. Glucose metabolism disorders in patients with adrenal gland disorders: Pathophysiology and management. Hormones 2020, 19, 135–143. [Google Scholar]
- Djurhuus, C.B.; Gravholt, C.H.; Nielsen, S.; Mengel, A.; Christiansen, J.S.; Schmitz, O.E.; Møller, N. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E172–E177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gujral, J.; Yau, M.; Yang, A.C.; Kastury, R.; Romero, C.J.; Wallach, E.; Costin, G.; Rapaport, R. Primary Cortisol Deficiency and Growth Hormone Deficiency in a Neonate With Hypoglycemia: Coincidence or Consequence? J. Endocr. Soc. 2019, 3, 838–846. [Google Scholar] [PubMed]
- Keenan, D.M.; Veldhuis, J.D.; Basu, A.; Basu, R. A novel measure of glucose homeostasis (or loss thereof) comprising the joint dynamics of glucose, insulin, glucagon, and cortisol. Am. J. Physiol.-Endocrinol. Metab. 2019, 316, E998–E1011. [Google Scholar] [PubMed]
- Prete, A.; Auchus, R.J.; Ross, R.J. Clinical advances in the pharmacotherapy of congenital adrenal hyperplasia. Eur. J. Endocrinol. 2022, 186, R1–R14. [Google Scholar] [CrossRef]
- Blyth, A.J.; Kirk, N.S.; Forbes, B.E. Understanding IGF-II Action through Insights into Receptor Binding and Activation. Cells 2020, 9, 2276. [Google Scholar] [CrossRef]
- Dynkevich, Y.; Rother, K.I.; Whitford, I.; Qureshi, S.; Galiveeti, S.; Szulc, A.L.; Danoff, A.; Breen, T.L.; Kaviani, N.; Shanik, M.H.; et al. Tumors, IGF-2, and hypoglycemia: Insights from the clinic, the laboratory, and the historical archive. Endocr. Rev. 2013, 34, 798–826. [Google Scholar]
- O’Dell, S.D.; Day, I.N. Insulin-like growth factor II (IGF-II). Int. J. Biochem. Cell Biol. 1998, 30, 767–771. [Google Scholar]
- Alvino, C.L.; Ong, S.C.; McNeil, K.A.; Delaine, C.; Booker, G.W.; Wallace, J.C.; Forbes, B.E. Understanding the mechanism of insulin and insulin-like growth factor (IGF) receptor activation by IGF-II. PLoS ONE 2011, 6, e27488. [Google Scholar]
- Feng, Y.; Zhu, Z.; Xiao, X.; Choudhry, V.; Barrett, J.C.; Dimitrov, D.S. Novel human monoclonal antibodies to insulin-like growth factor (IGF)-II that potently inhibit the IGF receptor type I signal transduction function. Mol. Cancer Ther. 2006, 5, 114–120. [Google Scholar]
- Wright, T.L.F.; Umaña, L.A.; Ramirez, C.M. Update on glycogen storage disease: Primary hepatic involvement. Curr. Opin. Pediatr. 2022, 34, 496–502. [Google Scholar]
- Molares-Vila, A.; Corbalán-Rivas, A.; Carnero-Gregorio, M.; González-Cespón, J.L.; Rodríguez-Cerdeira, C. Biomarkers in Glycogen Storage Diseases: An Update. Int. J. Mol. Sci. 2021, 22, 4381. [Google Scholar] [PubMed]
- Kishnani, P.S.; Sun, B.; Koeberl, D.D. Gene therapy for glycogen storage diseases. Hum. Mol. Genet. 2019, 28, R31–R41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rake, J.; Visser, G.; Labrune, P.; Leonard, J.; Ullrich, K.; Smit, P. Glycogen storage disease type I: Diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur. J. Pediatr. 2002, 161, S20–S34. [Google Scholar]
- Kishnani, P.S.; Austin, S.L.; Abdenur, J.E.; Arn, P.; Bali, D.S.; Boney, A.; Chung, W.K.; Dagli, A.I.; Dale, D.; Koeberl, D.; et al. Diagnosis and management of glycogen storage disease type I: A practice guideline of the American College of Medical Genetics and Genomics. Genet. Med. 2014, 16, e1–e29. [Google Scholar]
- Sim, S.W.; Weinstein, D.A.; Lee, Y.M.; Jun, H.S. Glycogen storage disease type Ib: Role of glucose-6-phosphate transporter in cell metabolism and function. FEBS Lett. 2020, 594, 3–18. [Google Scholar] [PubMed]
- Sentner, C.P.; Hoogeveen, I.J.; Weinstein, D.A.; Santer, R.; Murphy, E.; McKiernan, P.J.; Steuerwald, U.; Beauchamp, N.J.; Taybert, J.; Laforêt, P.; et al. Glycogen storage disease type III: Diagnosis, genotype, management, clinical course and outcome. J. Inherit. Metab. Dis. 2016, 39, 697–704. [Google Scholar]
- Kishnani, P.S.; Austin, S.L.; Arn, P.; Bali, D.S.; Boney, A.; Case, L.E.; Chung, W.K.; Desai, D.M.; El-Gharbawy, A.; Haller, R.; et al. Glycogen storage disease type III diagnosis and management guidelines. Genet. Med. 2010, 12, 446–463. [Google Scholar] [CrossRef] [Green Version]
- Kishnani, P.S.; Goldstein, J.; Austin, S.L.; Arn, P.; Bachrach, B.; Bali, D.S.; Chung, W.K.; El-Gharbawy, A.; Brown, L.M.; Kahler, S.; et al. Diagnosis and management of glycogen storage diseases type VI and IX: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2019, 21, 772–789. [Google Scholar]
- Derks, T.G.J.; Rodriguez-Buritica, D.F.; Ahmad, A.; de Boer, F.; Couce, M.L.; Grünert, S.C.; Labrune, P.; Maldonado, N.L.; de Souza, C.F.M.; Riba-Wolman, R.; et al. Glycogen Storage Disease Type Ia: Current Management Options, Burden and Unmet Needs. Nutrients 2021, 13, 3828. [Google Scholar]
- Salabarria, S.; Nair, J.; Clement, N.; Smith, B.; Raben, N.; Fuller, D.; Byrne, B.; Corti, M. Advancements in AAV-mediated Gene Therapy for Pompe Disease. J. Neuromuscul. Dis. 2020, 7, 15–31. [Google Scholar] [CrossRef]
- Mayatepek, E.; Hoffmann, B.; Meissner, T. Inborn errors of carbohydrate metabolism. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Sarma, M.S. Hereditary fructose intolerance: A comprehensive review. World J. Clin. Pediatr. 2022, 11, 321–329. [Google Scholar] [PubMed]
- Hegde, V.S.; Sharman, T. Hereditary Fructose Intolerance; NIH: Bethesda, MD, USA, 2022. [Google Scholar]
- Saborido-Fiaño, R.; Martinón-Torres, N.; Crujeiras-Martinez, V.; Couce, M.L.; Leis, R. Letter to the editor concerning the article ‘Safety of vaccines administration in hereditary fructose intolerance’. Hum. Vaccin. Immunother. 2021, 17, 2593–2594. [Google Scholar]
- Timson, D.J. The molecular basis of galactosemia—Past, present and future. Gene 2016, 589, 133–141. [Google Scholar] [PubMed] [Green Version]
- Demirbas, D.; Coelho, A.I.; Rubio-Gozalbo, M.E.; Berry, G.T. Hereditary galactosemia. Metabolism 2018, 83, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S. GALT Deficiency Galactosemia. MCN Am. J. Matern. Child. Nurs. 2018, 43, 44–51. [Google Scholar] [CrossRef]
- Welling, L.; Bernstein, L.E.; Berry, G.T.; Burlina, A.B.; Eyskens, F.; Gautschi, M.; Grünewald, S.; Gubbels, C.S.; Knerr, I.; Labrune, P.; et al. International clinical guideline for the management of classical galactosemia: Diagnosis, treatment, and follow-up. J. Inherit Metab. Dis. 2017, 40, 171–176. [Google Scholar]
- Cuthbert, C.; Klapper, H.; Elsas, L. Diagnosis of Inherited Disorders of Galactose Metabolism. Curr. Protoc. Hum. Genet. 2008, 56. [Google Scholar] [CrossRef]
- Succoio, M.; Sacchettini, R.; Rossi, A.; Parenti, G.; Ruoppolo, M. Galactosemia: Biochemistry, Molecular Genetics, Newborn Screening, and Treatment. Biomolecules 2022, 12, 968. [Google Scholar]
- Yu, S.; Meng, S.; Xiang, M.; Ma, H. Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis. Mol. Metab. 2021, 53, 101257. [Google Scholar]
- Marin-Valencia, I.; Roe, C.R.; Pascual, J.M. Pyruvate carboxylase deficiency: Mechanisms, mimics and anaplerosis. Mol. Genet. Metab. 2010, 101, 9–17. [Google Scholar]
- Lebigot, E.; Brassier, A.; Zater, M.; Imanci, D.; Feillet, F.; Thérond, P.; De Lonlay, P.; Boutron, A. Fructose 1,6-bisphosphatase deficiency: Clinical, biochemical and genetic features in French patients. J. Inherit Metab. Dis. 2015, 38, 881–887. [Google Scholar]
- Gorce, M.; Lebigot, E.; Arion, A.; Brassier, A.; Cano, A.; de Lonlay, P.; Feillet, F.; Gay, C.; Labarthe, F.; Nassogne, M.-C. Fructose-1,6-bisphosphatase deficiency causes fatty liver disease and requires long-term hepatic follow-up. J. Inherit Metab. Dis. 2022, 45, 215–222. [Google Scholar]
- Habarou, F.; Brassier, A.; Rio, M.; Chrétien, D.; Monnot, S.; Barbier, V.; Barouki, R.; Bonnefont, J.; Boddaert, N.; Chadefaux-Vekemans, B.; et al. Pyruvate carboxylase deficiency: An underestimated cause of lactic acidosis. Mol. Genet. Metab. Rep. 2015, 2, 25–31. [Google Scholar] [PubMed]
- Wang, D.; de Vivo, D. Pyruvate Carboxylase Deficiency; NIH: Bethesda, MD, USA, 1993. [Google Scholar]
- Grosse, S.D.; Khoury, M.J.; Greene, C.L.; Crider, K.S.; Pollitt, R.J. The epidemiology of medium chain acyl-CoA dehydrogenase deficiency: An update. Genet. Med. 2006, 8, 205–212. [Google Scholar]
- Longo, N.; Amat di San Filippo, C.; Pasquali, M. Disorders of carnitine transport and the carnitine cycle. Am. J. Med. Genet. C Semin. Med. Genet. 2006, 142C, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tvrzicka, E.; Kremmyda, L.-S.; Stankova, B.; Zak, A. Fatty acids as biocompounds: Their role in human metabolism, health and disease—A review. part 1, classification, dietary sources and biological functions. Biomed. Pap. 2011, 155, 117–130. [Google Scholar]
- El-Gharbawy, A.; Vockley, J. Inborn Errors of Metabolism with Myopathy. Pediatr. Clin. N. Am. 2018, 65, 317–335. [Google Scholar] [CrossRef]
- Knottnerus, S.J.G.; Bleeker, J.C.; Wüst, R.C.I.; Ferdinandusse, S.; Ijlst, L.; Wijburg, F.A.; Wanders, R.J.A.; Visser, G.; Houtkooper, R.H. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev. Endocr. Metab. Disord. 2018, 19, 93–106. [Google Scholar]
- Wilcken, B. Disorders of the carnitine cycle and detection by newborn screening. Ann. Acad Med. Singap. 2008, 37, 71–73. [Google Scholar]
- Shekhawat, P.S.; Matern, D.; Strauss, A.W. Fetal Fatty Acid Oxidation Disorders, Their Effect on Maternal Health and Neonatal Outcome: Impact of Expanded Newborn Screening on Their Diagnosis and Management. Pediatr. Res. 2005, 57, 78R–86R. [Google Scholar] [PubMed] [Green Version]
- Long-chain fatty acid oxidation disorders and current management strategies. Am. J. Manag. Care 2020, 26, S147–S154. [CrossRef] [PubMed]
- White, K.; Truong, L.; Aaron, K.; Mushtaq, N.; Thornton, P.S. The Incidence and Etiology of Previously Undiagnosed Hypoglycemic Disorders in the Emergency Department. Pediatr. Emerg. Care 2020, 36, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Daly, L.P.; Osterhoudt, K.C.; Weinzimer, S.A. Presenting features of idiopathic ketotic hypoglycemia. J. Emerg. Med. 2003, 25, 39–43. [Google Scholar] [CrossRef]
- Mitchell, G.A.; Kassovska-Bratinova, S.; Boukaftane, Y.; Robert, M.F.; Wang, S.P.; Ashmarina, L.; Lambert, M.; Lapierre, P.; Potier, E. Medical aspects of ketone body metabolism. Clin. Investig. Med. 1995, 18, 193–216. [Google Scholar]
- Drachmann, D.; Hoffmann, E.; Carrigg, A.; Davis-Yates, B.; Weaver, V.; Thornton, P.; Weinstein, D.A.; Petersen, J.S.; Shah, P.; Christesen, H.T. Towards enhanced understanding of idiopathic ketotic hypoglycemia: A literature review and introduction of the patient organization, Ketotic Hypoglycemia International. Orphanet J. Rare Dis. 2021, 16, 173. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quarta, A.; Iannucci, D.; Guarino, M.; Blasetti, A.; Chiarelli, F. Hypoglycemia in Children: Major Endocrine-Metabolic Causes and Novel Therapeutic Perspectives. Nutrients 2023, 15, 3544. https://doi.org/10.3390/nu15163544
Quarta A, Iannucci D, Guarino M, Blasetti A, Chiarelli F. Hypoglycemia in Children: Major Endocrine-Metabolic Causes and Novel Therapeutic Perspectives. Nutrients. 2023; 15(16):3544. https://doi.org/10.3390/nu15163544
Chicago/Turabian StyleQuarta, Alessia, Daniela Iannucci, Miriana Guarino, Annalisa Blasetti, and Francesco Chiarelli. 2023. "Hypoglycemia in Children: Major Endocrine-Metabolic Causes and Novel Therapeutic Perspectives" Nutrients 15, no. 16: 3544. https://doi.org/10.3390/nu15163544
APA StyleQuarta, A., Iannucci, D., Guarino, M., Blasetti, A., & Chiarelli, F. (2023). Hypoglycemia in Children: Major Endocrine-Metabolic Causes and Novel Therapeutic Perspectives. Nutrients, 15(16), 3544. https://doi.org/10.3390/nu15163544