Whey Protein Dietary Supplements: Metal Exposure Assessment and Risk Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sample Mineralization
2.3. Mineral Elements Quantification
2.4. Metal Exposure Assessment: Estimated Daily Intake (EDI)
2.5. Nutritional and Toxicological Risk Characterization
- -
- Ef: exposure frequency (365 days/year).
- -
- Cmetal: average concentration of each metal in PS (mg/kg).
- -
- Di: daily intake of PS (30, 60 y 100 g/day).
- -
- Ed: average duration of exposure to PS (25 years).
- -
- Bw: average weight (70 kg b.w.).
- -
- At: average exposure time (Ef · Ed).
2.6. Statistical Analysis
3. Results
3.1. Levels of Essential Elements and Potentially Toxic Elements in PS
3.2. Consumption Scenario 1: 30 g Whey Protein Supplement/Day
3.3. Consmption Scenario 2: 60 g Whey Protein Supplement/Day
3.4. Consmption Scenario 3: 100 g Whey Protein Supplement/Day
3.5. Targeted Hazard Quotient (THQ)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) operating parameters | |||
RF power | 1150 W | ||
Nebulizer gas flow | 12.5 L/min | ||
Cool gas flow | 12.5 L/min | ||
Nebulizer gas pressure | 0.2 L/min | ||
Auxiliary gas flow | 0.5 L/min | ||
Pump speed | 45 rpm | ||
Metals | Emission waveleghts (nm) | Detection limits (mg/L) | Quantification limits (mg/L) |
Al | 167.0 | 0.005 | 0.015 |
B | 249.6 | 0.008 | 0.027 |
Ba | 455.4 | 0.0006 | 0.002 |
Ca | 315.8 | 1.629 | 5.432 |
Co | 228.6 | 0.001 | 0.005 |
Cr | 267.7 | 0.001 | 0.005 |
Cu | 324.7 | 0.003 | 0.011 |
Fe | 238.2 | 0.004 | 0.013 |
K | 766.4 | 1.764 | 5.883 |
Li | 670.7 | 0.013 | 0.031 |
Mg | 383.8 | 1.580 | 5.268 |
Mn | 257.6 | 0.0008 | 0.003 |
Mo | 202.0 | 0.0016 | 0.005 |
Na | 818.3 | 2.221 | 7.404 |
Ni | 221.6 | 0.0009 | 0.003 |
Sr | 407.7 | 0.003 | 0.011 |
V | 292.4 | 0.0014 | 0.004 |
Zn | 213.8 | 0.0027 | 0.009 |
References
- Alhakbany, M.A.; Alzamil, H.A.; Alnazzawi, E.; Alhenaki, G.; Alzahrani, R.; Almughaiseeb, A.; Al-Hazzaa, M. Knowledge, Attitudes, and Use of Protein Supplements among Saudi Adults: Gender Differences. Healthcare 2022, 10, 394. [Google Scholar] [CrossRef]
- Pellegrino, L.; Hogenboom, J.A.; Rosi, V.; Sindaco, M.; Gerna, S.; D’Incecco, P. Focus on the Protein Fraction of Sports Nutrition Supplements. Molecules 2022, 27, 3487. [Google Scholar] [CrossRef] [PubMed]
- Acosta Carrasco, M.R. La nutrición, suplementación e hidratación en el ámbito deportivo como base en el físico culturismo. Talentos 2020, 7, 31–47. [Google Scholar] [CrossRef]
- Baladia, E.; Moñino, M.; Martínez-Rodríguez, R.; Miserachs, M.; Picazo, O.; Fernández, T.; Morte, V.; Russolillo, G. Uso de Suplementos Nutricionales en la Población Española. Uso de Complementos Alimenticios, Alimentos Para Grupos Específicos (Usos Médicos Especiales y Deportivos) y Productos a Base de Extractos de Plantas en Población Española: Un Estudio Transversal. Fundación MAPFRE. 2021. Available online: https://documentacion.fundacionmapfre.org/documentacion/publico/es/catalogo_imagenes/grupo.do?path=1111117 (accessed on 1 February 2023).
- Aguilar-Navarro, M.; Muñoz-Guerra, J.; Plata, M.M.; del Coso, J. Validación de una encuesta para determinar la prevalencia en el uso de suplementos en deportistas de élite españoles. Nutr. Hosp. 2018, 35, 1366–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehouse, G.; Lawlis, T. Protein supplements and adolescent athletes: A pilot study investigating the risk knowledge, motivations and prevalence of use. Nutr. Diet. 2017, 74, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Kårlund, A.; Gómez-Gallego, C.; Turpeinen, A.M.; Palo-oja, O.M.; El-Nezami, H.; Kolehmainen, M. Protein Supplements and Their Relation with Nutrition, Microbiota Composition and Health: Is More Protein Always Better for Sportspeople? Nutrients 2019, 11, 829. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, L.J.C. Role of dietary protein in post-exercise muscle reconditioning. Nestle Nutr. Inst. Workshop Ser. 2013, 75, 73–83. [Google Scholar] [CrossRef]
- Armendáriz-Anguiano, A.L.; Jiménez-Cruz, A.; Bacardí-Gascón, M.; Pérez-Morales, M.E. Efectividad del uso de suplementos de proteína en entrenamientos de fuerza: Revisión sistemática. Arch. Latinoam. De Nutr. 2010, 60, 113–118. Available online: https://www.alanrevista.org/ediciones/2010/2/art-1/ (accessed on 8 August 2023).
- Vantage Market Research. Available online: https://www.vantagemarketresearch.com/industry-report/protein-supplements-market-1545 (accessed on 7 February 2023).
- EMR. Europe Dietary Supplements Market: By Type: Herbal Supplements, Proteins and Amino Acids, Vitamins and Minerals, Fatty Acids, Probiotics, Others; By Distribution Channel; Regional Analysis; Historical Market and Forecast (2018–2028). Available online: https://www.expertmarketresearch.com/reports/europe-dietary-supplements-market (accessed on 7 February 2023).
- Lofaso, M. Determination of Metals in Whey and Vegan Protein Supplements Using Inductively Coupled Plasma Mass Spectrometry. University of Mississippi, 2021. Available online: https://egrove.olemiss.edu/hon_thesis/1649/ (accessed on 8 August 2023).
- Guefai, F.Z.; Martínez-Rodríguez, A.; Grindlay, G.; Mora, J.; Gras, L. Elemental bioavailability in whey protein supplements. J. Food Compost. Anal. 2022, 112, 104696. [Google Scholar] [CrossRef]
- Carunchia Whetstine, M.E.; Croissant, A.E.; Drake, M.A. Characterization of Dried Whey Protein Concentrate and Isolate Flavor. J. Dairy Sci. 2005, 88, 3826–3839. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.H.A.; Araújo, F.H.S.; Olimpio, M.Y.M.; Primo, R.B.B.; Pereira, T.T.; Lopes, L.A.F.; Trindade, E.B.S.M.; Fernandes, R.; Oesterreich, S.A. Comparative Meta-Analysis of the Effect of Concentrated, Hydrolyzed, and Isolated Whey Protein Supplementation on Body Composition of Physical. Nutrients 2019, 11, 2047. [Google Scholar] [CrossRef] [Green Version]
- Blasco Redondo, R. Las ayudas ergogénicas nutricionales en el ámbito deportivo. Primera parte. Aspectos generales. Nutr. Clin. Med. 2016, 10, 69–78. [Google Scholar] [CrossRef]
- Da Costa, B.R.B.; Roiffé, R.R.; de la Cruz, M.N.S. Quality Control of Protein Supplements: A Review. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 369–379. [Google Scholar] [CrossRef]
- Martínez-Sanz, J.M.; Mata, F.; Sala Ripoll, M.; Puya Braza, J.M.; Martínez Segura, A.; Cortell Tormo, J.M. Fraude en suplementos nutricionales para deportistas: Revisión narrativa. Nutr. Hosp. 2021, 38, 839–847. [Google Scholar] [CrossRef]
- Strazzullo, P.; Leclercq, C. Sodium. Adv. Nutr. 2014, 5, 188–190. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Dietary Reference Values for sodium. EFSA J. 2019, 17, 5778. [Google Scholar] [CrossRef] [Green Version]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Dietary reference values for potassium. EFSA J. 2016, 14, e04592. [Google Scholar] [CrossRef]
- Mizéhoun-Adissoda, C.; Houinato, D.; Houehanou, C.; Chianea, T.; Dalmay, F.; Bigot, A.; Aboyans, V.; Preux, P.M.; Bovet, P.; Despot, J.C. Dietary sodium and potassium intakes: Data from urban and rural areas. Nutrition 2017, 33, 35–41. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for magnesium. EFSA J. 2015, 13, 4186. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for calcium. EFSA J. 2015, 13, 4101. [Google Scholar] [CrossRef] [Green Version]
- Minisola, S.; Pepe, J.; Piemonte, S.; Cipriani, C. The diagnosis and management of hypercalcaemia. BMJ 2015, 350, h2723. [Google Scholar] [CrossRef] [Green Version]
- Toxqui, L.; De Piero, A.; Courtois, V.; Bastida, S.; Sánchez-Muniz, F.J.; Vaquero, M.P. Deficiencia y sobrecarga de hierro; implicaciones en el estado oxidativo y la salud cardiovascular. Nutr. Hosp. 2010, 25, 350–365. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for iron. EFSA J. 2015, 13, 4253. [Google Scholar] [CrossRef]
- Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, H. Copper deficiency anemia: Review article. Ann. Hematol. 2018, 97, 1527–1534. [Google Scholar] [CrossRef]
- Alvarez, C.C.; Bravo Gómez, M.E.; Hernández Zavala, A. Hexavalent chromium: Regulation and health effects. J. Trace Elem. Med. Biol. 2021, 65, 126729. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. IARC Monographs on the Identification of Carcinogenic Hazards to Human. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 9 March 2023).
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J. 2014, 12, 3595. [Google Scholar] [CrossRef]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific Opinion on the update of the risk assessment of nickel in food and drinking water. EFSA J. 2020, 18, 101. [Google Scholar] [CrossRef]
- Ferrer, A. Intoxicación por metales. ANALES Sis San Navarra. 2003, 26 (Suppl. S1), 141–153. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Molybdenum in Drinking-Water. Guidelines for Drinking-Water Quality. 2011, p. 2. Available online: https://apps.who.int/iris/bitstream/handle/10665/75372/WHO_SDE_WSH_03.04_11_eng.pdf (accessed on 12 March 2023).
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for molybdenum. EFSA J. 2013, 11, 3333. [Google Scholar] [CrossRef]
- Novotny, J.A.; Peterson, C.A. Molybdenum. Adv. Nutr. 2018, 9, 272–273. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for manganese. EFSA J. 2013, 11, 3419. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Health and Consumer Protection Directorate—General. Scientific Committee on Food (SCF). Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Manganese. SCF/CS/NUT/UPPLEV/21 Final 28 November 2000. Available online: https://ec.europa.eu/food/fs/sc/scf/out80f_en.pdf (accessed on 8 August 2023).
- Yamada, K. Cobalt: Its role in health and disease. Met. Ions Life Sci. 2013, 13, 295–320. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on safety and efficacy of cobalt compounds (E3) as feed additives for all animal species: Cobaltous acetate tetrahydrate, basic cobaltous carbonate monohydrate and cobaltous sulphate heptahydrate, based on a dossier submitted by TREAC EEIG. EFSA J. 2012, 10, 1–27. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef] [Green Version]
- Martín-Navarro, L.; Falcón-Roca, R.; Hernández-García, M.; Reyes-Suárez, P.; Jiménez-Cabrera, I.; Martínez-Martínez, D.; Martín-González, C.; Romero-Acevedo, L.; González-Reimers, E. Intoxicación por zinc. Majorensis 2016, 12, 36–40. [Google Scholar]
- Rubio, C.; González Weller, D.; Martín-Izquierdo, R.E.; Revert, C.; Rodríguez, I.; Hardisson, A. El zinc: Oligoelemento esencial. Nutr. Hosp. 2007, 22, 101–107. [Google Scholar]
- Nielsen, S.P. The biological role of strontium. Bone 2004, 35, 583–588. [Google Scholar] [CrossRef]
- Cohen-Solal, M. Strontium overload and toxicity: Impact on renal osteodystrophy. Nephrol. Dial. Transplant. 2002, 17, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, E.; Givelet, L.; Amlund, H.; Jørgen Sloth, J.; Hansen, M. Risk assessment of rare earth elements, antimony, barium, boron, lithium, tellurium, thallium and vanadium in teas. EFSA J. 2022, 20, e200410. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Safety of aluminium from dietary intake—Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). EFSA J. 2008, 6, 754. [Google Scholar] [CrossRef]
- Exley, C. The toxicity of aluminium in humans. Morphologie 2016, 100, 51–55. [Google Scholar] [CrossRef]
- Fernández-Maestre, R. Aluminio: Ingestión, absorción, excreción y toxicidad. Rev. Costarric. Salud Pública 2014, 23, 111–116. [Google Scholar]
- Rondanelli, M.; Faliva, M.A.; Peroni, G.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Pivotal role of boron supplementation on bone health: A narrative review. J. Trace Elem. Med. Biol. 2020, 62, 126577. [Google Scholar] [CrossRef]
- Treviño, S.; Diaz, A. Vanadium and insulin: Partners in metabolic regulation. J. Inorg. Biochem. 2020, 208, 111094. [Google Scholar] [CrossRef]
- Sánchez-González, C.; Moreno, L.; Lopez-Chaves, C.; Nebot, E.; Pietschmann, P.; Rodriguez-Nogales, A.; Galvez, J.; Montes-Bayon, M.; Sanz-Medel, A.; Lopis, J. Effect of vanadium on calcium homeostasis, osteopontin mRNA expression, and bone microarchitecture in diabetic rats. Metallomics 2017, 9, 258–267. [Google Scholar] [CrossRef]
- Comité Científico AESAN (Grupo de Trabajo); Martínez, J.A.; Cámara, M.; Giner, R.M.; González, E.; López, E.; Mañes, J.; Portillo, M.P.; Rafecas, M. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre Ingestas Nutricionales de Referencia para la población española. Rev. Com. Científico AESAN 2019, 29, 65–68. [Google Scholar]
- Martínez, J.A.; Cámara, M.; González, E.; López, E.; Mañes, J.; Portillo, M.P.; Rafecas, M.; Estruch, R.; Tur, J.A.; Marcos, A.; et al. Ingestas nutricionales de referencia (INR) de minerales y vitaminas para la población española (2019). Rev. Española Salud Pública 2022, 96, e1–e6. Available online: https://www.sanidad.gob.es/biblioPublic/publicaciones/recursos_propios/resp/revista_cdrom/VOL96/CARTA/RS96C_202203034.pdf (accessed on 8 August 2023).
- European Food Safety Authority (EFSA). Dietary Reference Values. Available online: https://www.efsa.europa.eu/en/topics/topic/dietary-reference-values (accessed on 3 March 2023).
- European Food Safety Authority (EFSA). Glossary. Available online: https://www.efsa.europa.eu/en/glossary-taxonomy-terms (accessed on 3 March 2023).
- European Food Safety Authority (EFSA). On the Evaluation of a new related to the bioavility of aluminium in food. EFSA J. 2011, 9, 2157. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Strontium and Strontium Compound. Concise International Chemical Assessment Document. 2010, Volume 77, pp. 1–63. Available online: https://apps.who.int/iris/handle/10665/44280 (accessed on 8 August 2023).
- European Food Safety Authority (EFSA). Scientific Committee on Food Scientific Panel on Dietetic Products, Nutrition and Allergies. Tolerable Upper Intake Level for Vitamins and Minerals. 2006. Available online: https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf (accessed on 8 August 2023).
- Institute of Medicine (IOM). Food and Nutrition Board of the Institute of Medicine of the National Academies. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. Available online: https://pubmed.ncbi.nlm.nih.gov/25057538/ (accessed on 8 August 2023).
- Paz, S.; Rubio, C.; Gutiérrez, A.J.; González-Weller, D.; Hardisson, A. Human exposure assessment to potentially toxic elements (PTE) from tofu consumption. Environ. Sci. Pollut. Res. 2021, 28, 33522–33530. [Google Scholar] [CrossRef]
- Rubio-Armendáriz, C.; Gutiérrez, Á.J.; Gomes-Furtado, V.; González-Weller, D.; Revert, C.; Hardisson, A.; Paz, S. Essential Metals and Trace Elements in Cereals and Their Derivates Commercialized and Consumed in Cape Verde. Biol. Trace Elem. Res. 2022, 201, 444–454. [Google Scholar] [CrossRef]
- Paz, S.; Rubio-Armendáriz, C.; Frías, I.; Guillén-Pino, F.; Niebla-Canelo, D.; Alejandro-Vega, S.; Gutiérrez, Á.J.; Hardisson, A.; González-Weller, D. Toxic and Trace Elements in Seaweeds from a North Atlantic Ocean Region (Tenerife, Canary Islands). Sustainability 2022, 14, 5967. [Google Scholar] [CrossRef]
- Rubio-Armendáriz, C.; Paz, S.; Gutiérrez, Á.J.; González-Weller, D.; Revert, C.; Hardisson, A. Human Exposure to Toxic Metals (Al, Cd, Cr, Ni, Pb, Sr) from the Consumption of Cereals in Canary Islands. Foods 2021, 10, 1158. [Google Scholar] [CrossRef]
- Niebla-Canelo, D.; Gutiérrez-Fernández, Á.J.; Rubio-Armendáriz, C.; Hardisson, A.; González-Weller, D.; Paz-Montelongo, S. Toxic Metals (Al, Cd, and Pb) in Instant Soups: An Assessment of Dietary Intake. Foods 2022, 11, 3810. [Google Scholar] [CrossRef]
- Pokorska-Niewiada, K.; Witczak, A.; Protasowicki, M.; Cybulski, J. Estimation of Target Hazard Quotients and Potential Health Risks for Toxic Metals and Other Trace Elements by Consumption of Female Fish Gonads and Testicles. Int. J. Environ. Res. Public Health 2022, 19, 2762. [Google Scholar] [CrossRef]
- Bettoso, N.; Pittaluga, F.; Predonzani, S.; Zanello, A.; Acquavita, A. Mercury Levels in Sediment, Water and Selected Organisms Collected in a Coastal Contaminated Environment: The Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Appl. Sci. 2023, 13, 3064. [Google Scholar] [CrossRef]
- Bošković, N.; Joksimović, D.; Bajt, O. Content of Trace Elements and Human Health Risk Assessment via Consumption of Commercially Important Fishes from Montenegrin Coast. Foods 2023, 12, 762. [Google Scholar] [CrossRef]
- Peycheva, K.; Panayotova, V.; Stancheva, R.; Merdzhanova, A.; Dobreva, D.; Parrino, V.; Cicero, N.; Fazio, F.; Licata, P. Seasonal Variations in the Trace Elements and Mineral Profiles of the Bivalve Species, Mytilus galloprovincialis, Chamelea gallina and Donax trunculus, and Human Health Risk Assessment. Toxics 2023, 11, 319. [Google Scholar] [CrossRef]
- Ali, A.Y.A.; Idris, A.M.; Eltayeb, M.A.H.; El-Zahhar, A.A.; Ashraf, I.M. Bioaccumulation and health risk assessment of toxic metals in red algae in Sudanese Red Sea coast. Toxin Rev. 2021, 40, 1327–1337. [Google Scholar] [CrossRef]
- Arisekar, U.; Jeya Shakila, R.; Shalini, R.; Jeyasekaran, G.; Sivaraman, B.; Surya, T. Heavy metal concentrations in the macroalgae, seagrasses, mangroves, and crabs collected from the Tuticorin coast (Hare Island), Gulf of Mannar, South India. Mar. Pollut. Bull. 2021, 163, 111971. [Google Scholar] [CrossRef]
- Wu, D.; Feng, H.; Zou, Y.; Xiao, J.; Zhang, P.; Ji, Y.; Lek, S.; Guo, Z.; Fu, Q. Feeding Habit-Specific Heavy Metal Bioaccumulation and Health Risk Assessment of Fish in a Tropical Reservoir in Southern China. Fishes 2023, 8, 211. [Google Scholar] [CrossRef]
- USEPA Regional Screening Level (RSL) Summary Table. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide#toxicity (accessed on 6 March 2023).
- González-Suárez, S.; Paz-Montelongo, S.; Niebla-Canelo, D.; Alejandro-Vega, S.; González-Weller, D.; Rubio-Arméndariz, C.; Hardisson, A.; Gutiérrez-Fernández, A.J. Baby Food Jars as a Dietary Source of Essential (K, Na, Ca, Mg, Fe, Zn, Cu, Co, Mo, Mn) and Toxic Elements (Al, Cd, Pb, B, Ba, V, Sr, Li, Ni). Appl. Sci. 2022, 12, 8044. [Google Scholar] [CrossRef]
- Alejandro-Vega, S.; Suárez-Marichal, D.; Niebla-Canelo, D.; Gutiérrez-Fernández, Á.J.; Rubio-Armendáriz, C.; Hardisson, A.; Paz-Montelongo, S. Fluoride Exposure from Ready-To-Drink Coffee Consumption. Life 2022, 12, 1615. [Google Scholar] [CrossRef]
- Revelo-Mejía, I.A.; Alejandro-Vega, S.; Paz-Montelongo, S.; Niebla-Canelo, D.; Cerdán-Pérez, S.; Rubio-Armendáriz, C.; Gutiérrez-Fernández, Á.J.; Hardisson, A.; Rodríguez-Díaz, R.; Hernández-Sánchez, C. Fluoride Levels in Supply Water from the Canary Islands Region. Foods 2023, 12, 745. [Google Scholar] [CrossRef]
- González-Weller, D.; Paz-Montelongo, S.; Bethencourt-Barbuzano, E.; Niebla-Canelo, D.; Alejandro-Vega, S.; Gutiérrez, Á.J.; Hardisson, A.; Carrascosa, C.; Rubio, C. Proteins and Minerals in Whey Protein Supplements. Foods 2023, 12, 2238. [Google Scholar] [CrossRef]
- Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR). ToxFAQsTM for Molybdenum. Available online: https://wwwn.cdc.gov/TSP/ToxFAQs/ToxFAQsDetails.aspx?faqid=1499&toxid=289 (accessed on 8 March 2023).
- Poveda, E. Suero lácteo, generalidades y potencial uso como fuente de calcio de alta biodisponibilidad. Rev. Chil. Nutr. 2013, 40. [Google Scholar] [CrossRef] [Green Version]
- Rust, P.; Ekmekcioglu, C. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. Adv. Exp. Med. Biol. 2017, 956, 61–84. [Google Scholar] [CrossRef]
Nutrient | Gender and Age | Nutritional Reference Intake (NRI) | |
---|---|---|---|
Na | ♂/♀ | 1500 | mg/day |
K | ♂/♀ | 3500 | mg/day |
Mg | ♂ | 350 | mg/day |
♀ | 300 | mg/day | |
Ca | ♂/♀ | 950 | mg/day |
Mo | ♂/♀ | 65 | μg/day |
Mn | ♂/♀ | 3 | mg/day |
Cu | ♂ | 1.3 | mg/day |
♀ | 1.1 | mg/day | |
Fe | ♂ | 9.1 | mg/day |
♀ 20–59 years | 18 | mg/day | |
♀ ≥ 60 years | 9 | mg/day | |
Zn | ♂ | 11 | mg/day |
♀ | 8 | mg/day | |
Cr | ♂ | 35 | µg/day |
♀ | 25 | µg/day |
Metal | Gender | Reference Value |
---|---|---|
Tolerable Weekly Intake (TWI) | ||
Al | ♂/♀ | 1 mg/kg b.w./week [59] |
Tolerable Daily Intake (TDI) | ||
Ni | ♂/♀ | 13 µg/kg b.w./day [50] |
Co | ♂/♀ | 0.0016 mg/kg b.w./day [40] |
Sr | ♂/♀ | 0.13 mg/kg b.w./day [60] |
Ba | ♂/♀ | 0.2 mg/kg b.w./day [46] |
Tolerable Upper Intake Level (UL) | ||
B | ♂/♀ | 0.16 mg/kg b.w./day [61] |
V | ♂/♀ | 0.026 mg/kg b.w./day [62] |
Metal | Certified Material | Concentration Recorded (mg/kg) | Concentration Cerified (mg/kg) | Recovery Percentage (%) |
---|---|---|---|---|
Al | SRM 1515 Apple Leaves | 286 ± 9 | 285.1 ± 26 | 99.7 |
Sr | 25.0 ± 2.0 | 24.6 ± 4.0 | 98.3 | |
Cr | 0.29 ± 0.03 | 0.30 ± 0.00 | 97.8 | |
Co | 0.09 ± 0.00 | 0.09 ± 0.00 | 100 | |
Mo | 0.09 ± 0.01 | 0.09 ± 0.02 | 99.4 | |
B | 27.0 ± 2.0 | 27.0 ± 1.5 | 99.9 | |
Na | SRM 1548a Typical Diet | 8132 ± 942 | 8001.9 ± 4.76 | 98.4 |
Ca | 1967 ± 113 | 161.1 ± 158 | 99.7 | |
K | 6970 ± 125 | 6858.5 ± 318 | 98.4 | |
Mg | 580 ± 26.7 | 575 ± 25.7 | 98.1 | |
Ni | 0.37 ± 0.02 | 0.38 ± 0.04 | 102.3 | |
Ba | 1.10 ± 0.10 | 1.13 ± 0.09 | 102.5 | |
Zn | SRM 1567a Wheat Flour | 11.6 ± 0.4 | 11.4 ± 0.2 | 98.2 |
Mn | 9.4 ± 0.9 | 9.3 ± 0.5 | 98.9 | |
Fe | 14.1 ± 0.5 | 13.9 ± 0.3 | 98.9 | |
V | 0.011 ± 0.00 | 0.011 ± 0.00 | 99.4 | |
Cu | 2.1 ± 0.2 | 2.09 ± 0.4 | 99.7 |
Metal | Reference Dose (RfD) |
---|---|
Mn | 0.14 mg/kg/day |
Cu | 4 × 10−2 mg/kg/day |
Zn | 0.3 mg/kg/day |
Fe | 0.7 mg/kg/day |
Cr | 3 × 10−3 mg/kg/day |
Mo | 5 × 10−3 mg/kg/day |
Ni | 2 × 10−2 mg/kg/day |
Co | 3 × 10−4 mg/kg/day |
V | 5.04 × 10−3 mg/kg/day |
Ba | 0.07 mg/kg/day |
Sr | 0.6 mg/kg/day |
Al | 4 × 10−4 mg/kg/day |
B | 0.2 mg/kg/day |
Metal | Caverage (mg/100 g) (Cmin–Cmax) | Metal | Caverage (mg/100 g) (Cmin–Cmax) | ||
---|---|---|---|---|---|
Essential elements | Na | 338.241 (23.978–1142.736) | Potentially Toxic Elements (PTE) | Al | 0.719 (0.040–3.522) |
K | 468.910 (23.907–969.435) | Ni | 0.032 (0.001–0.140) | ||
Mg | 80.959 (5.753 -324.844) | Sr | 0.284 (03.7–1.036) | ||
Ca | 381.127 (47.602–1100.050) | Ba | 0.101 (0.023–0.505) | ||
Mo | 0.058 (0.005–0.426) | B | 0.084 (<LQ–1.056) | ||
Mn | 0.302 (0.009–2.687) | V | 0.004 (<LQ–0.014) | ||
Cu | 0.257 (0.038–1.042) | ||||
Fe | 2.574 (0.219–17.564) | ||||
Zn | 1.460 (0.135–10.151) | ||||
Cr | 0.021 (0.003–0.060) | ||||
Co | 0.007 (<LQ–0.031) |
Consumption Scenario | 30 g PS/day | 60 g PS/day | 100 g PS/day | ||||||
---|---|---|---|---|---|---|---|---|---|
Metal | Caverge (mg/kg) (Range) | Gender/Age | EDIaverage (mg/day) (Range) | Average % Contribution to NRI (Range) | EDIaverage (mg/day) (Range)) | Average % Contribution to NRI (Range) | EDIaverage (mg/day) (Range) | Average % Contribution to NRI (Range) | |
Essential elements | Na | 3382.41 (239.78–11427.36) | ♂/♀ | 101.472 (7.194–342.821) | 6.76 (0.48–22.85) | 202.945 (14.387–685.642) | 13.53 (0.96–45.71) | 338.241 (23.978–1142.736) | 22.50 (1.60–76.18) |
K | 4689.10 (239.07–9694.35) | ♂/♀ | 140.673 (7.172–290.830) | 4.02 (0.20–8.31) | 281.346 (14.344–581.661) | 8.04 (0.41–16.62) | 468.910 (23.907–969.435) | 13.50 (0.68–27.70) | |
Mg | 809.59 (57.53–3248.44) | ♂ | 24.288 (1.726–97.453) | 6.94 (0.49–27.84) | 48.576 (3.452–194.907) | 13.88 (0.99–55.69) | 80.959 (5.753–324.844) | 23.13 (1.64–92.81) | |
♀ | 8.10 (0.58–32.48) | 16.19 (1.15–64.97) | 26.99 (1.92–108.28) | ||||||
Ca | 3811.27 (476.02–11000.50) | ♂/♀ | 114.338 (14.281–330.015) | 12.04 (1.50–34.74) | 228,676 (28.561–660,030) | 24.07 (3.01–69.48) | 381.127 (47.602–1100.050) | 40.12 (5.01–115.79) | |
Mo | 0.58 (0.05–4.26) | ♂/♀ | 0.018 (0.002–0.128) | 26.99 (2.42–196.60) | 0.035 (0.003–0.256) | 53.99 (4.84–393.20) | 0.058 (0.005–0.426) | 89.98 (8.07–655.33) | |
Mn | 3.02 (0.09–26.87) | ♂/♀ | 0.091 (0.003–0.806) | 3.02 (0.09–26.87) | 0.181 (0.005–1.612) | 6.04 (0.17–53.73) | 0.302 (0.009–2.687) | 10.07 (0.29–89.56) | |
Cu | 2.57 (0.38–10.42) | ♂ | 0.077 (0.011–0.312) | 5.92 (0.88–24.04) | 0.154 (0.023–0.625) | 11.85 (1.75–48.08) | 0.257 (0.038–1.042) | 19.75 (2.92–80.13) | |
♀ | 7.00 (1.04–28.41) | 14.00 (2.07–56.82) | 23.34 (3.45–94.70) | ||||||
Fe | 25.74 (2.19–175.64) | ♂ | 0.772 (0.066–5.269) | 8.49 (0.72–57.90) | 1.544 (0.131–10.538) | 16.97 (1.44–115.80) | 2.574 (0.219–17.564) | 28.28 (2.40–193.01) | |
♀ 29–59 years | 4.29 (0.36–29.27) | 8.58 (0.73–58.55) | 14.30 (1.21–97.58) | ||||||
♀ ≥ 60 years | 8.58 (0.73–58.55) | 17.16 (1.46–117.07) | 28.60 (2.43–195.15) | ||||||
Zn | 14.60 (1.35–101.51) | ♂ | 0.438 (0.041–3.045) | 3.98 (0.37–27.69) | 0.876 (0.081–6.091) | 7.96 (0.74–55.37) | 1.460 (0.135–10.151) | 13.27 (1.23–92.29) | |
♀ | 5.47 (0.51–38.07) | 10.95 (1.02–76.14) | 18.25 (1.69–126.89) | ||||||
Cr | 0.21 (0.03–0.60) | ♂ | 0.006 (0.001–0.018) | 18.30 (2.35–51.17) | 0.013 (0.002–0.036) | 36.61 (4.71–102.34) | 0.021 (0.003–0. 060) | 61.01 (7.85–170.57) | |
♀ | 25.63 (3.30–71.64) | 51.25 (6.59–143.28) | 85.42 (10.99–238.80) | ||||||
Metal | Caverge (mg/kg) (Cmin–Cmax) | Gender | EDIaverage (mg/day) (EDImin–EDImax) | % contribution to TDI | EDIaverage (mg/day) (EDImin–EDImax) | % contribution to TDI | EDIaverage (mg/day) (EDImin–EDImax) | % contribution to the TDI | |
Co | 0.07 (<LQ–0.31) | ♂/♀ | 0.002 (X–0.009) | 1.74 (X–8.43) | 0.004 (X–0.019) | 3.49 (X–16.86) | 0.007 (X–0.031) | 5.82 (X–28.10) |
Consumption Scenario | 30 g PS/Day | 60 g PS/Day | 100 g PS/Day | ||||||
---|---|---|---|---|---|---|---|---|---|
Potentially Toxic Elements (PTE) | Metal | Caverge (mg/kg) (Range) | Gender | EDIaverage (mg/Day) (Range) | Average % Contribution to TWI (Range) | EDIaverage (mg/day) (Range) | Average % Contribution to TWI (Range) | EDIaverage (mg/day) (Range) | Average % Contribution to TWI (Range) |
Al | 7.19 (0.40–35.22) | ♂/♀ | 0.216 (0.012–1.057) | 2.16 (0.12–10.57) | 0.431 (0.024–2.113) | 4.31 (0.24–21.13) | 0.719 (0. 040–3.522) | 7.19 (0.40–35.22) | |
Metal | Caverge (mg/kg) (Cmin–Cmax) | Gender | EDIaverage (mg/day) (EDImin–EDImax) | % contribution to TDI | EDIaverage (mg/day) (EDImin–EDImax) | % contribution to TDI | EDIaverage (mg/day) (EDImin–EDImax) | % contribution to the TDI | |
Ni | 0.32 (0.01–1.40) | ♂/♀ | 0.010 (0.0004–0.042) | 1.05 (0.05–4.62) | 0.019 (0.001–0.084) | 2.10 (0.10–9.23) | 0.032 (0.001–0.140) | 3.50 (0.16–15.39) | |
Sr | 2.84 (0.37–10.36) | ♂/♀ | 0.085 (0.011–0.311) | 0.94 (0.12–3.42) | 0.171 (0.022–0.622) | 1.87 (0.25–6.83) | 0.284 (0.037–1.036) | 3.12 (0.41–11.38) | |
Ba | 1.01 (0.23–5.05) | ♂/♀ | 0.030 (0.007–0.151) | 0.22 (0.05–1.08) | 0.061 (0.014–0.303) | 0.44 (0.10–2.16) | 0.101 (0.023–0.505) | 0.72 (0.26–3.60) | |
Metal | Caverge (mg/kg) (Cmin–Cmax) | Gender | EDIaverage (mg/day) (EDImin–EDImax) | % contribution to UL | EDIaverage (mg/day) (EDImin–EDImax) | % contribution to UL | EDIaverage (mg/day) (EDImin–EDImax) | % contribution to UL | |
B | 0.84 (<LQ–10.56) | ♂/♀ | 0.025 (X–0.317) | 0.23 (X–2.83) | 0.051 (X–0.634) | 0.45 (X–5.66) | 0.084 (X–1.056) | 0.75 (X–9.43) | |
V | 0.04 (<LQ–0.14) | ♂/♀ | 0.001 (X–0.004) | 0.07 (X–0.23) | 0.003 (X–0.008) | 0.14 (X–0.46) | 0.004 (X–0.014) | 0.24 (X–0.76) |
Metals | Daily Intake | |||||
---|---|---|---|---|---|---|
30 g/Day | 60 g/Day | 100 g/Day | ||||
Exposure dose (mg/kg/day) | THQ | Exposure dose (mg/kg/day) | THQ | Exposure dose (mg/kg/day) | THQ | |
Mn | 0.00130 | 0.00925 | 0.00259 | 0.01850 | 0.00432 | 0.03084 |
Cu | 0.00110 | 0.02751 | 0.00220 | 0.05501 | 0.00367 | 0.09169 |
Zn | 0.00626 | 0.02086 | 0.01251 | 0.04171 | 0.02086 | 0.06952 |
Fe | 0.01103 | 0.01576 | 0.02206 | 0.03152 | 0.03677 | 0.05253 |
Cr | 0.00009 | 0.03051 | 0.00018 | 0.06101 | 0.00031 | 0.10169 |
Mo | 0.00025 | 0.05013 | 0.00050 | 0.10026 | 0.00084 | 0.16710 |
Ni | 0.00014 | 0.00683 | 0.00027 | 0.01366 | 0.00046 | 0.02277 |
Co | 0.00003 | 0.09305 | 0.00006 | 0.18611 | 0.00009 | 0.31018 |
B | 0.00036 | 0.00181 | 0.00072 | 0.00361 | 0.00120 | 0.00602 |
V | 0.00002 | 0.00374 | 0.00004 | 0.00748 | 0.00006 | 0.01247 |
Sr | 0.00122 | 0.00203 | 0.00244 | 0.00406 | 0.00406 | 0.00677 |
Ba | 0.00043 | 0.00621 | 0.00087 | 0.01241 | 0.00145 | 0.02069 |
HI = ∑ THQ | 0.26768 | 0.53536 | 0.89227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bethencourt-Barbuzano, E.; González-Weller, D.; Paz-Montelongo, S.; Gutiérrez-Fernández, Á.J.; Hardisson, A.; Carrascosa, C.; Cámara, M.; Rubio-Armendáriz, C. Whey Protein Dietary Supplements: Metal Exposure Assessment and Risk Characterization. Nutrients 2023, 15, 3543. https://doi.org/10.3390/nu15163543
Bethencourt-Barbuzano E, González-Weller D, Paz-Montelongo S, Gutiérrez-Fernández ÁJ, Hardisson A, Carrascosa C, Cámara M, Rubio-Armendáriz C. Whey Protein Dietary Supplements: Metal Exposure Assessment and Risk Characterization. Nutrients. 2023; 15(16):3543. https://doi.org/10.3390/nu15163543
Chicago/Turabian StyleBethencourt-Barbuzano, Elena, Dailos González-Weller, Soraya Paz-Montelongo, Ángel J. Gutiérrez-Fernández, Arturo Hardisson, Conrado Carrascosa, Montaña Cámara, and Carmen Rubio-Armendáriz. 2023. "Whey Protein Dietary Supplements: Metal Exposure Assessment and Risk Characterization" Nutrients 15, no. 16: 3543. https://doi.org/10.3390/nu15163543
APA StyleBethencourt-Barbuzano, E., González-Weller, D., Paz-Montelongo, S., Gutiérrez-Fernández, Á. J., Hardisson, A., Carrascosa, C., Cámara, M., & Rubio-Armendáriz, C. (2023). Whey Protein Dietary Supplements: Metal Exposure Assessment and Risk Characterization. Nutrients, 15(16), 3543. https://doi.org/10.3390/nu15163543