Associations of Dietary Intake and Nutrient Status with Micronutrient and Lipid Composition in Breast Milk of Donor Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Study Protocol
2.3. Nutrient Analysis
2.4. Statistics
3. Results
3.1. Population Studied
3.2. Diet Survey and Nutritional Status
3.3. Composition of Donor Human Milk
3.4. Associations between Clinical and Somatometric Characteristics, Donors’ Daily Nutrient Intake, Their Plasma and Erythrocyte Nutrient Levels, and Nutrient Levels in DHM: Multivariate Analysis
3.4.1. Lipid Associations in DHM
3.4.2. Vitamin, Mineral, and Trace Element Associations in DHM
Water-Soluble Vitamins (Table 9)
Fat-Soluble Vitamins (Table 9)
Minerals and Trace Elements
Vitamins | Associated Variables | Beta | SE | t | P > |t| | 95% CI |
---|---|---|---|---|---|---|
Free thiamin, B1 (mcg/L) Observations = 113 R2 = 0.12 | Plasma thiamin (mcg/L) | 10.817 | 4.915 | 2.20 | 0.030 | [1.075, 20.559] |
Milk and dairy products (average servings/day from the dietary record) | −2.880 | 1.090 | −2.64 | 0.009 | [−5.040, −0.720] | |
Breastfeeding time (months) | −0.494 | 0.210 | −2.35 | 0.021 | [−0.911, −0.077] | |
Free riboflavin, B2 (mcg/L) a Observations = 100 R2 = 0.21 | Riboflavin intake (average mg/day from the dietary record) | 20.991 | 8.758 | 2.40 | 0.018 | [3.609, 38.373] |
Vitamin B2 supplementation during lactation (receiving or not) | 39.742 | 15.258 | 2.60 | 0.011 | [9.459, 70.024] | |
Pyridoxal, B6 (mcg/L) b Observations = 106 R2 = 0.17 | Vitamin B6 supplementation during pregnancy (receiving or not) | 11.629 | 3.114 | 3.73 | <0.001 | [5.454, 17.804] |
Breastfeeding time (months) | −0.776 | 0.273 | −2.84 | 0.005 | [−1.318, −0.234] | |
Dehydroascorbic acid (mg/dL) Observations = 112 R2 = 0.15 | Plasma ascorbic acid (mcM) | −0.014 | 0.005 | −2.92 | 0.004 | [−0.024, −0.005] |
Fruits (average servings/day from the dietary record) | 0.271 | 0.128 | 2.12 | 0.036 | [0.018, 0.524] | |
Breastfeeding time (months) | −0.062 | 0.025 | −2.47 | 0.015 | [−0.112, −0.012] | |
Cholecalciferol (pg/mL) c Observations = 32 R2 = 0.57 | Plasma cholecalciferol (pg/mL) | 17.342 | 4.238 | 4.09 | <0.001 | [3.178, 23.510] |
Milk and dairy products (average servings/day from the dietary record) | 520.533 | 168.819 | 3.08 | 0.005 | [174.722, 866.343] | |
25(OH)D3 (pg/mL) d Observations = 99 R2 = 0.21 | Plasma 1,25(OH)2 D3 (pg/mL) | 0.156 | 0.042 | 3.73 | <0.001 | [0.073, 0.238] |
Vitamin D supplementation during lactation (receiving or not) | 35.673 | 12.569 | 2.84 | 0.006 | [10.720, 60.625] | |
Breastfeeding time (months) | 2.225 | 1.076 | 2.07 | 0.041 | [0.089, 4.360] |
3.4.3. Macronutrients Associations in DHM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arslanoglu, S.; Corpeleijn, W.; Moro, G.; Braegger, C.; Campoy, C.; Colomb, V.; Decsi, T.; Domellöf, M.; Fewtrell, M.; Hojsak, I.; et al. Donor human milk for preterm infants: Current evidence and research directions. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Moro, G.E.; Billeaud, C.; Rachel, B.; Calvo, J.; Cavallarin, L.; Christen, L.; Escuder-Vieco, D.; Gaya, A.; Lembo, D.; Wesolowska, A.; et al. Processing of Donor Human Milk: Update and Recommendations From the European Milk Bank Association (EMBA). Front. Pediatr. 2019, 7, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, G.; Bertino, E.; Gebauer, C.; Grovslien, A.; Mileusnic-Milenovic, R.; Arslanoglu, S.; Barnett, D.; Boquien, C.Y.; Buffin, R.; Gaya, A.; et al. Recommendations for the establishment and operation of Human Milk Banks in Europe: A consensus statement from the European Milk Bank Association (EMBA). Front. Pediatr. 2019, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Abrams, S.A.; Landers, S.; Noble, L.M.; Poindexter, B.B.; AAP Comittee on Nutrition; AAP Section on Breastfeeding; AAP Comittee on Fetus and Newborn. Donor human milk for the high-risk infant: Preparation, safety, and usage options in the United States. Pediatrics 2017, 139, e20163440. [Google Scholar] [CrossRef] [Green Version]
- Martini, S.; Beghetti, I.; Annunziata, M.; Aceti, A.; Galletti, S.; Ragni, L.; Donti, A.; Corvaglia, L. Enteral Nutrition in Term Infants with Congenital Heart Disease: Knowledge Gaps and Future Directions to Improve Clinical Practice. Nutrients 2021, 13, 932. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering and Medicine; Health and Medicine Division; Food and Nutrition Board. Nutrition During Pregnancy and Lactation: Exploring New Evidence: Proceedings of a Workshop; The National Academies Press: Washington, DC, USA, 2020; ISBN 9780309679244. [Google Scholar]
- Dror, D.K.; Allen, L.H. Overview of nutrients in human milk. Adv. Nutr. 2018, 9, 278S–294S. [Google Scholar] [CrossRef] [Green Version]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [Green Version]
- Keikha, M.; Bahreynian, M.; Saleki, M.; Kelishadi, R. Macro- and Micronutrients of Human Milk Composition: Are They Related to Maternal Diet? A Comprehensive Systematic Review. Breastfeed. Med. 2017, 12, 517–527. [Google Scholar] [CrossRef]
- Allen, L.H. B Vitamins in Breast Milk: Relative Importance of Maternal Status and Intake, and Effects on Infant Status and Function. Adv. Nutr. An Int. Rev. J. 2012, 3, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Smilowitz, J.T.; Allen, L.H.; Dallas, D.C.; McManaman, J.; Raiten, D.J.; Rozga, M.; Sela, D.A.; Seppo, A.; Williams, J.E.; Young, B.E.; et al. Ecologies, synergies, and biological systems shaping human milk composition—A report from “Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)” Working Group 2. Am. J. Clin. Nutr. 2023, 117, S28–S42. [Google Scholar] [CrossRef]
- Allen, L.H. Multiple micronutrients in pregnancy and lactation: An overview. Am. J. Clin. Nutr. 2005, 81, 1206–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, M.S.R.; Dimenstein, R.; Ribeiro, K.D.S. Vitamin e concentration in human milk and associated factors: A literature review. J. Pediatr. 2014, 90, 440–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrera, C.; Valenzuela, R.; Chamorro, R.; Bascuñán, K.; Sandoval, J.; Sabag, N.; Valenzuela, F.; Valencia, M.P.; Puigrredon, C.; Valenzuela, A. The impact of maternal diet during pregnancy and lactation on the fatty acid composition of erythrocytes and breast milk of chilean women. Nutrients 2018, 10, 839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, T.; Tang, D.; Liu, Y.; Chen, D. Trends in Dietary Patterns and Diet-related Behaviors in China. Am. J. Health Behav. 2021, 45, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Grech, A.; Rangan, A.; Allman-Farinelli, M. Macronutrient Composition of the Australian Population’s Diet; Trends from Three National Nutrition Surveys 1983, 1995 and 2012. Nutrients 2018, 10, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulgoni, K.; Fulgoni, V.L. Trends in total, added, and natural phosphorus intake in adult americans, nhanes 1988–1994 to nhanes 2015–2016. Nutrients 2021, 13, 2249. [Google Scholar] [CrossRef]
- Christian, P.; Smith, E.R.; Lee, S.E.; Vargas, A.J.; Bremer, A.A.; Raiten, D.J. The need to study human milk as a biological system. Am. J. Clin. Nutr. 2021, 113, 1063–1072. [Google Scholar] [CrossRef]
- Hampel, D.; Shahab-Ferdows, S.; Islam, M.M.; Peerson, J.M.; Allen, L.H. Vitamin Concentrations in Human Milk Vary with Time within Feed, Circadian Rhythm, and Single-Dose Supplementation. J. Nutr. 2017, 147, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Dawodu, A.; Tsang, R.C. Maternal Vitamin D Status: Effect on Milk Vitamin D Content and Vitamin D Status of Breastfeeding Infants. Adv. Nutr. 2012, 3, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Ortega, R.M.; López-Sobaler, A.M.; Martínez, R.M.; Andrés, P.; Elena Quintas, M. Influence of smoking on vitamin E status during the third trimester of pregnancy and on breast-milk tocopherol concentrations in Spanish women. Am. J. Clin. Nutr. 1998, 68, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Perrin, M.T.; Belfort, M.B.; Hagadorn, J.I.; McGrath, J.M.; Taylor, S.N.; Tosi, L.M.; Brownell, E.A. The nutritional composition and energy content of donor human milk: A systematic review. Adv. Nutr. 2020, 11, 960–970. [Google Scholar] [CrossRef]
- Sierra-Colomina, G.; García-Lara, N.R.; Escuder-Vieco, D.; Alonso-Díaz, C.; Andrés Esteban, E.M.; Pallás-Alonso, C.R. Donor milk volume and characteristics of donors and their children. Early Hum. Dev. 2014, 90, 209–212. [Google Scholar] [CrossRef]
- Osbaldiston, R.; Mingle, L.A. Characterization of human milk donors. J. Hum. Lact. 2007, 23, 350–357. [Google Scholar] [CrossRef]
- Parker, M.G.; Stellwagen, L.M.; Noble, L.; Kim, J.H.; Poindexter, B.B.; Puopolo, K.M.; Section on Breastfeeding; Committee on Nutrition, Committee on Fetus and Newborn. Promoting Human Milk and Breastfeeding for the Very Low Birth Weight Infant. Pediatrics 2021, 148, e2021054272. [Google Scholar] [CrossRef]
- Peila, C.; Moro, G.E.; Bertino, E.; Cavallarin, L.; Giribaldi, M.; Giuliani, F.; Cresi, F.; Coscia, A. The effect of holder pasteurization on nutrients and biologically-active components in donor human milk: A review. Nutrients 2016, 8, 477. [Google Scholar] [CrossRef] [Green Version]
- Leaf, A.; Lansdowne, Z. Vitamins—Conventional uses and new insights. World Rev. Nutr. Diet. 2014, 110, 152–166. [Google Scholar] [CrossRef]
- Van Zoeren-Grobben, D.; Schrijver, J.; Van den Berg, H.; Berger, H.M. Human milk vitamin content after pasteurisation, storage, or tube feeding. Arch. Dis. Child. 1987, 62, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Romeu-Nadal, M.; Castellote, A.I.; López-Sabater, M.C. Effect of cold storage on vitamins C and E and fatty acids in human milk. Food Chem. 2008, 106, 65–70. [Google Scholar] [CrossRef]
- Nessel, I.; Khashu, M.; Dyall, S.C. The effects of storage conditions on long-chain polyunsaturated fatty acids, lipid mediators, and antioxidants in donor human milk—A review. Prostaglandins Leukot. Essent. Fat. Acids 2019, 149, 8–17. [Google Scholar] [CrossRef]
- Wei, W.; Cheng, J.; Yang, J.; Chen, C.; Jin, Q.; Song, J.; Wang, X. Phospholipid composition and fat globule structure change during low temperature storage of human milk. LWT 2021, 150, 112050. [Google Scholar] [CrossRef]
- O’Connor, D.L.; Ewaschuk, J.B.; Unger, S. Human milk pasteurization: Benefits and risks. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Escuder-Vieco, D.; Rodríguez, J.M.; Espinosa-Martos, I.; Corzo, N.; Montilla, A.; García-Serrano, A.; Calvo, M.V.; Fontecha, J.; Serrano, J.; Fernández, L.; et al. High-Temperature Short-Time and Holder Pasteurization of Donor Milk: Impact on Milk Composition. Life 2021, 11, 114. [Google Scholar] [CrossRef]
- Valentine, C.J.; Morrow, G.; Pennell, M.; Morrow, A.L.; Hodge, A.; Haban-Bartz, A.; Collins, K.; Rogers, L.K. Randomized Controlled Trial of Docosahexaenoic Acid Supplementation in Midwestern U.S. Human Milk Donors. Breastfeed. Med. 2013, 8, 86–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ureta-Velasco, N.; Keller, K.; Escuder-Vieco, D.; Serrano, J.C.E.; García-Lara, N.R.; Pallás-Alonso, C.R. Assessment of Iodine Concentration in Human Milk from Donors: Implications for Preterm Infants. Nutrients 2022, 14, 4304. [Google Scholar] [CrossRef] [PubMed]
- Ureta-Velasco, N.; Keller, K.; Escuder-Vieco, D.; Fontecha, J.; Calvo, M.V.; Megino-Tello, J.; Serrano, J.C.E.; Romero Ferreiro, C.; García-Lara, N.R.; Pallás-Alonso, C.R. Human Milk Composition and Nutritional Status of Omnivore Human Milk Donors Compared with Vegetarian/Vegan Lactating Mothers. Nutrients 2023, 15, 1855. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Ortega, R.; López-Sobaler, A.; Andrés, P.; Requejo, A.; Aparicio, A.; Molinero, L. DIAL Software for Assessing Diets and Food Calculations; Department of Nutrition (UCM) & Alceingeniería, SA: Madrid, Spain, 2013. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: Washington, DC, USA, 1997; ISBN 9780309063500. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; The National Academies Press: Washington, DC, USA, 1998; ISBN 9780309064118. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000; ISBN 9780309069496. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; The National Academies Press: Washington, DC, USA, 2001; ISBN 9780309072908. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005; ISBN 030908525X. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; Ross, C.A., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Institute of Medicine, Eds.; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-16395-8. [Google Scholar]
- EFSA (European Food Safety Authority). Dietary Reference Values for nutrients. Summ. Rep. EFSA Support. Publ. 2017, 98, e15121. [Google Scholar]
- Olsen, I.E.; Groveman, S.A.; Lawson, M.L.; Clark, R.H.; Zemel, B.S. New intrauterine growth curves based on United States data. Pediatrics 2010, 125, 214–224. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006; ISBN 92-4-154693-X. [Google Scholar]
- Allen, L.H.; Carriquiry, A.L.; Murphy, S.P. Perspective: Proposed Harmonized Nutrient Reference Values for Populations. Adv Nutr 2020, 11, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Ortega Anta, R.; Requejo Marcos, A. Nutriguía. Manual de Nutrición Clínica; Editorial Médica Panamericana: Madrid, Spain, 2015; ISBN 9788498358674. [Google Scholar]
- Kennedy, E.T.; Ohls, J.; Carlson, S.; Fleming, K. The Healthy Eating Index: Design and applications. J. Am. Diet. Assoc. 1995, 95, 1103–1108. [Google Scholar] [CrossRef]
- Dapcich, V.; Salvador Castell, G.; Ribas Barba, L.; Pérez Rodrigo, C.; Aranceta-Bartrina, J.; Serra Majem, L. Embarazo y lactancia. Necesidades especiales. In Guía de la Alimentación Saludable; Sociedad Española de Nutrición Comunitaria, Ed.; Sociedad Española de Nutrición Comunitaria: Madrid, Spain, 2004; p. 82. Available online: https://www.nutricioncomunitaria.org/es/otras-publicaciones (accessed on 2 February 2023).
- Giuffrida, F.; Fleith, M.; Goyer, A.; Samuel, T.M.; Elmelegy-Masserey, I.; Fontannaz, P.; Cruz-Hernandez, C.; Thakkar, S.K.; Monnard, C.; De Castro, C.A.; et al. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur. J. Nutr. 2022, 61, 2167–2182. [Google Scholar] [CrossRef]
- Graham, J.; Peerson, J.; Haskell, M.; Shrestha, R.; Brown, K.; Allen, L. Erythrocyte riboflavin for the detection of riboflavin deficiency in pregnant Nepali women. Clin. Chem. 2005, 51, 2162–2165. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H.K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.L.; et al. ESPEN micronutrient guideline. Clin. Nutr. 2022, 41, 1357–1424. [Google Scholar] [CrossRef]
- Ehsanian, R.; Anderson, S.; Schneider, B.; Kennedy, D.; Mansourian, V. Prevalence of low plasma vitamin B1 in the stroke population admitted to acute inpatient rehabilitation. Nutrients 2020, 12, 1034. [Google Scholar] [CrossRef] [Green Version]
- Petteys, B.J.; Frank, E.L. Rapid determination of vitamin B2 (riboflavin) in plasma by HPLC. Clin. Chim. Acta 2011, 412, 38–43. [Google Scholar] [CrossRef]
- Andraos, S.; Jones, B.; Wall, C.; Thorstensen, E.; Kussmann, M.; Smith, D.C.; Lange, K.; Clifford, S.; Saffery, R.; Burgner, D.; et al. Plasma B vitamers: Population epidemiology and parent-child concordance in children and adults. Nutrients 2021, 13, 821. [Google Scholar] [CrossRef]
- Allen, L.H.; Miller, J.W.; De Groot, L.; Rosenberg, I.H.; Smith, A.D.; Refsum, H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND): Vitamin B-12 Review. J. Nutr. 2018, 148, 1995S–2027S. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, R.; Parrott, S.J.; Raj, S.; Cullum-Dugan, D.; Lucus, D. How prevalent is vitamin B12 deficiency among vegetarians? Nutr. Rev. 2013, 71, 110–117. [Google Scholar] [CrossRef]
- Sobczyńska-Malefora, A.; Harrington, D.J. Laboratory assessment of folate (Vitamin B9) status. J. Clin. Pathol. 2018, 71, 949–956. [Google Scholar] [CrossRef]
- Bailey, L.B.; Stover, P.J.; McNulty, H.; Fenech, M.F.; Gregory, J.F., III.; Mills, J.L.; Pfeiffer, C.M.; Fazili, Z.; Zhang, M.; Ueland, P.M.; et al. Biomarkers of nutrition for development-Folate review. J. Nutr. 2015, 145, 1636S–1680S. [Google Scholar] [CrossRef] [Green Version]
- De Pee, S.; Dary, O. Biochemical indicators of vitamin A deficiency: Serum retinol and serum retinol binding protein. J. Nutr. 2002, 132, 2895–2901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Serum Retinol Concentrations for Determining the Prevalence of Vitamin A Deficiency in Populations; World Health Organization: Geneva, Switzerland, 2011; Available online: http://www.who.int/vmnis/indicators/retinol.pdf (accessed on 28 February 2023).
- U.S. Centers for Disease Control and Prevention. Second National Report on Biochemical Indicators of Diet and Nutrition in the U.S. Population; U.S. Centers for Disease Control and Prevention: Atlanta, GA, USA, 2012; ISBN 1499234783. [Google Scholar]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture; Dietary Guidelines Advisory Committee: Washington, DC, USA, 2015. [Google Scholar]
- Dror, D.K.; Allen, L.H. Vitamin E deficiency in developing countries. Food Nutr. Bull. 2011, 32, 124–143. [Google Scholar] [CrossRef]
- Henjum, S.; Manger, M.; Hampel, D.; Brantsæter, A.L.; Shahab-Ferdows, S.; Bastani, N.E.; Strand, T.A.; Refsum, H.; Allen, L.H. Vitamin B12 concentrations in milk from Norwegian women during the six first months of lactation. Eur. J. Clin. Nutr. 2020, 74, 749–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, E.J.; Morrison, J.A. Screening elderly populations for cobalamin (vitamin B12) deficiency using the urinary methylmalonic acid assay by gas chromatography mass spectrometry. Am. J. Med. 1993, 94, 589–594. [Google Scholar] [CrossRef]
- World Health Organization. Urinary Iodine Concentrations for Determining Iodine Status Deficiency in Populations. Vitamin and Mineral Nutrition Information System. Available online: https://apps.who.int/iris/bitstream/handle/10665/85972/WHO_NMH_NHD_EPG_13.1_eng.pdf (accessed on 8 March 2023).
- Ahn, J.; Lee, J.H.; Lee, J.; Baek, J.Y.; Song, E.; Oh, H.S.; Kim, M.; Park, S.; Jeon, M.J.; Kim, T.Y.; et al. Association between urinary sodium levels and iodine status in Korea. Korean J. Intern. Med. 2020, 35, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Foley, K.F.; Boccuzzi, L. Urine calcium: Laboratory measurement and clinical utility. Lab. Med. 2010, 41, 683–686. [Google Scholar] [CrossRef]
- Fernández-Ruiz, L.; Rodelo Haad, C.; Rodríguez-Portillo, M.; Santamaría-Olmo, R. Variation of phosphaturia according to phosphorus intake. Actual. Medica 2020, 105, 18–26. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Yang, X.; Cheng, Y.; Zhang, H.; Xu, X.; Zhou, J.; Chen, H.; Su, M.; Yang, Y.; et al. Human Milk Lipid Profiles around the World: A Systematic Review and Meta-Analysis. Adv. Nutr. 2022, 13, 2519–2536. [Google Scholar] [CrossRef]
- Gibson, R.S.; Rahmannia, S.; Diana, A.; Leong, C.; Haszard, J.J.; Hampel, D.; Reid, M.; Erhardt, J.; Suryanto, A.H.; Sofiah, W.N.; et al. Association of maternal diet, micronutrient status, and milk volume with milk micronutrient concentrations in Indonesian mothers at 2 and 5 months postpartum. Am. J. Clin. Nutr. 2020, 112, 1039–1050. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; et al. Dietary reference values for thiamin. EFSA J. 2016, 14, 4653. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.-L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.; Mangelsdorf, I.; McArdle, H.; et al. Dietary Reference Values for riboflavin. EFSA J. 2017, 15, 4919. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for niacin. EFSA J. 2014, 12, 3759. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for pantothenic acid. EFSA J. 2014, 12, 3581. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. EFSA J. 2013, 11, 3408. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for cobalamin (vitamin B12). EFSA J. 2015, 13, 4150. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for vitamin C. EFSA J. 2013, 11, 3418. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for vitamin A. EFSA J. 2015, 13, 4028. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for vitamin D. EFSA J. 2016, 14, 4547. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for vitamin E as α-tocopherol. EFSA J. 2015, 13, 4149. [Google Scholar] [CrossRef]
- Semba, R.D.; Delange, F. Iodine in human milk: Perspectives for infant health. Nutr. Rev. 2001, 59, 269–278. [Google Scholar] [CrossRef]
- Andersson, M.; Braegger, C.P. The role of iodine for thyroid function in lactating women and infants. Endocr. Rev. 2022, 43, 469–506. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for calcium. EFSA J. 2015, 13, 4101. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for phosphorus. EFSA J. 2015, 13, 4185. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- LASER Analytica. Comprehensive literature search and review of breast milk composition as preparatory work for the setting of dietary reference values for vitamins and minerals. EFSA Support. Publ. 2014, 11, 629E. [Google Scholar] [CrossRef]
- Castillo, F.; Castillo-Ferrer, F.J.; Cordobilla, B.; Domingo, J.C. Inadequate content of docosahexaenoic acid (DHA) of donor human milk for feeding preterm infants: A comparison with mother’s own milk at different stages of lactation. Nutrients 2021, 13, 1300. [Google Scholar] [CrossRef]
- Castillo Salinas, F.; Montaner Ramón, A.; Castillo Ferrer, F.-J.; Domingo-Carnice, A.; Cordobilla, B.; Domingo, J.C. Erythrocyte Membrane Docosahexaenoic Acid (DHA) and Lipid Profile in Preterm Infants at Birth and Over the First Month of Life: A Comparative Study with Infants at Term. Nutrients 2022, 14, 4956. [Google Scholar] [CrossRef]
- Makrides, M.; Neumann, M.; Gibson, R. Effect of maternal docosahexaenoic (DHA) supplementation on breast milk composition. Eur. J. Clin. Nutr. 1996, 50, 352–357. [Google Scholar]
- Valentine, C.J.; Morrow, G.; Fernandez, S.; Gulati, P.; Bartholomew, D.; Long, D.; Welty, S.E.; Morrow, A.L.; Rogers, L.K. Docosahexaenoic acid and amino acid contents in pasteurized donor milk are low for preterm infants. J. Pediatr. 2010, 157, 906–910. [Google Scholar] [CrossRef]
- Baack, M.L.; Norris, A.W.; Yao, J.; Colaizy, T. Long Chain Polyunsaturated Fatty Acid Levels in U.S. Donor Human Milk: Meeting the Needs of Premature Infants? J. Perinatol. 2012, 32, 598–603. [Google Scholar] [CrossRef] [Green Version]
- Francois, C.A.; Connor, S.L.; Bolewicz, L.C.; Connor, W.E. Supplementing lactating women with flaxseed oil does not increase docosahexaenoic acid in their milk. Am. J. Clin. Nutr. 2003, 77, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Valentine, C.J. Maternal Dietary DHA Supplementation to Improve Inflammatory Outcomes in the Preterm Infant. Adv. Nutr. 2012, 3, 370–376. [Google Scholar] [CrossRef] [Green Version]
- García-Maldonado, E.; Alcorta, A.; Zapatera, B.; Vaquero, M.P. Changes in fatty acid levels after consumption of a novel docosahexaenoic supplement from algae: A crossover randomized controlled trial in omnivorous, lacto-ovo vegetarians and vegans. Eur. J. Nutr. 2023, 62, 1691–1705. [Google Scholar] [CrossRef]
- Perrin, M.T.; Pawlak, R.; Dean, L.L.; Christis, A.; Friend, L. A cross-sectional study of fatty acids and brain-derived neurotrophic factor (BDNF) in human milk from lactating women following vegan, vegetarian, and omnivore diets. Eur. J. Clin. Nutr. 2019, 58, 2401–2410. [Google Scholar] [CrossRef]
- Scopesi, F.; Ciangherotti, S.; Lantieri, P.B.; Risso, D.; Bertini, I.; Campone, F.; Pedrotti, A.; Bonacci, W.; Serra, G. Maternal dietary PUFAs intake and human milk content relationships during the first month of lactation. Clin. Nutr. 2001, 20, 393–397. [Google Scholar] [CrossRef]
- Kodentsova, V.M.; Vrzhesinskaya, O.A. Evaluation of the vitamin status in nursing women by vitamin content in breast milk. Bull. Exp. Biol. Med. 2006, 141, 323–327. [Google Scholar] [CrossRef]
- Dror, D.K.; Allen, L.H. Vitamin B-12 in humanmilk: A systematic review. Adv. Nutr. 2018, 9, 358S–366S. [Google Scholar] [CrossRef] [Green Version]
- Salmenperä, L. Vitamin C nutrition during prolonged lactation: Optimal in infants while marginal in some mothers. Am. J. Clin. Nutr. 1984, 40, 1050–1056. [Google Scholar] [CrossRef]
- Hoppu, U.; Rinne, M.; Salo-Väänänen, P.; Lampi, A.-M.; Piironen, V.; Isolauri, E. Vitamin C in breast milk may reduce the risk of atopy in the infant. Eur. J. Clin. Nutr. 2005, 59, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Dorea, J.G. Selenium and breast-feeding. Br. J. Nutr. 2002, 88, 443–461. [Google Scholar] [CrossRef]
- Miller, E.M.; Aiello, M.O.; Fujita, M.; Hinde, K.; Milligan, L.; Quinn, E.A. Field and laboratory methods in human milk research. Am. J. Hum. Biol. 2013, 25, 1–11, Erratum in Am. J. Hum. Biol. 2013, 25, 442. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Committee on Nutritional Status during Pregnancy and Lactation. Nutrition during Lactation; Subcommittee on Nutrition during Lactation: Washington, DC, USA; Committee on Nutritional Status during Pregnancy and Lactation: Washington, DC, USA; Food and Nutrition Board: Washington, DC, USA; Institute of Medicine: Washington, DC, USA; National Academy of Sciences: Washington, DC, USA, 1991; ISBN 0309043913. [Google Scholar]
Characteristic | |
---|---|
Age (years) | 35.6 (32.9, 38.7) |
Weight (kg) | 60.5 (55.2, 70.6) |
Height (cm) | 164.1 (6.5) |
Pre-pregnancy BMI (kg/m2) | 22.1 (20.6, 24.8) |
Pre-pregnancy BMI (kg/m2) category | |
Underweight (<18.5) | 4 (3.5%) |
Normal (18.5–24.9) | 84 (73.7%) |
Overweight (25–29.9) | 15 (13.2%) |
Obese (≥30) | 11 (9.6%) |
Current BMI (kg/m2) | 22.9 (21.1, 25.1) |
Current BMI (kg/m2) category | |
Underweight (<18.5) | 4 (3.5%) |
Normal (18.5–24.9) | 81 (71.1%) |
Overweight (25–29.9) | 16 (14.0%) |
Obese (≥30) | 13 (11.4%) |
Gestational weight gain (kg) | 11.3 (9.0, 14.0) |
Postpartum weight retention (kg) | 1.0 (−0.6, 2.5) |
Number of living children | |
0 a–1 | 63 (55.3%) |
2 | 39 (34.2%) |
≥3 | 12 (10.5%) |
Country of origin: Spain | 102 (89.5%) |
Education level | |
Secondary studies | 2 (1.8%) |
Technical studies | 14 (12.3%) |
University studies | 98 (86.0%) |
Currently working | 50 (43.9%) |
Physical activity | |
Sedentary | 26 (22.8%) |
Low activity | 60 (52.6%) |
Active/very active | 28 (24.6%) |
Tobacco consumption | |
Previously | 28 (24.6%) |
Currently | 1 (0.9%) |
Passive smoking | 24 (21.1%) |
Active smoking | 1 (0.9%) |
Alcohol consumption | |
Prior to pregnancy | 55 (48.2%) |
During pregnancy | 1 (0.9%) |
Currently | 4 (3.5%) |
Season during the study | |
Spring | 30 (26.3%) |
Summer | 16 (14.0%) |
Autumn | 42 (36.8%) |
Winter | 26 (22.8%) |
n (%) | ||
---|---|---|
Diseases 1 | 41 (36.0%) | |
Endocrinological and metabolic diseases * | 10 (8.8%) | |
Cardiovascular diseases (hypertension) | 1 (0.9%) | |
Respiratory diseases (asthma) | 6 (5.3%) | |
Immune diseases (allergy, psoriasis, atopy) | 7 (6.1%) | |
Spinal/medullary pathology | 6 (5.3%) | |
Miscellaneous ** | 13 (11.4%) | |
Medication intake 1 | 12 (10.5%) | |
Oral contraceptives | 4 (3.5%) | |
Thyroid hormone replacement therapy | 4 (3.5%) | |
Other medicines *** | 5 (4.4%) | |
Twin pregnancy | 4 (3.5%) | |
Problems in the last pregnancy 1 | 36 (31.6%) | |
Thyroid disorders | 17 (14.9%) | |
Preeclampsia | 2 (1.8%) | |
Gestational diabetes | 2 (1.8%) | |
Intrauterine fetal growth restriction | 6 (5.3%) | |
Intrauterine fetal death | 3 (2.6%) | |
Other problems **** | 11 (9.6%) |
Characteristic | n * | |
---|---|---|
Gestational age (weeks) | 114 | 39+4 (38+2, 40+2); 22+6–42+3 |
Boy | 116 | 55 (47.4%) |
Birth weight (grams) | 116 | 3195.0 (2795.0, 3472.5); 450.0–4640.0 |
Birth weight percentile 1 | ||
≤25 | 32 (27.6%) | |
25–75 | 116 | 73 (62.9%) |
≥75 | 11 (9.5%) | |
Age of infant (months) | 114 | |
0–6 | 45 (39.5%) | |
6–12 | 43 (37.7%) | |
12–50 | 26 (22.8%) | |
Postmenstrual age of preterm infants (weeks) | 19 | 50.3 (38.6, 78.2) |
Weight percentile of breastfed child 2 | 113 | |
≤15 | 17 (15.0%) | |
15–85 | 77 (68.1%) | |
≥85 | 19 (16.8%) |
Characteristic | n | n (%) |
---|---|---|
Donor previously | 114 | 20 (17.5%) |
Duration of lactation of the previous child (months) | 51 a | |
0 | 1(2.0%) | |
3–6 | 2 (3.9%) | |
6–12 | 10 (19.6%) | |
12–24 | 22 (43.1%) | |
≥24 | 16 (31.4%) | |
Current lactation stage (months) | 114 | 7.0 (4.8, 12.0); 1.8–50.0 |
Type of lactation | 113 b | |
Exclusive | 52 (46.0%) | |
Partial | 61 (54.0%) | |
Sum of breastfeeding times plus daily milk pumping sessions | 114 | |
<5 | 12 (10.5%) | |
5–10 | 66 (57.9%) | |
>10 | 33 (28.9%) | |
Missing data | 3 (2.6%) | |
Tandem breastfeeding | 114 | 5 (4.4%) |
Breastfeeding twins | 114 | 1 (0.9%) |
Type of milk extraction * | 114 | |
Manual | 7 (6.1%) | |
Mechanical breast pump | 12 (10.5%) | |
Simple electric breast pump | 82 (71.9%) | |
Double electric breast pump | 15 (13.2%) |
Nutrient | Donors | |
---|---|---|
n | Mean (SE) | |
Macronutrients (g/100 mL milk) | ||
Lipids | 103 | 3.13 (0.17) |
Carbohydrates | 7.73 (0.03) | |
Proteins | 1.17 (0.03) | |
Lipid classes (g/100 g fat) | ||
Triacylglycerols | 20 | 96.19 (93.87, 97.26) |
Diacylglycerols | 3.43 (2.47, 5.50) | |
Monoacylglycerols | 0.03 (0.02, 0.07) | |
Free fatty acids + cholesterol | 0.31 (0.22, 0.51) | |
Polar lipids | 0.05 (0.01) | |
Phospholipids (g/100 g of polar lipids) | ||
Phosphatidylethanolamine | 20 | 24.63 (7.88) |
Phosphatidylcholine | 30.95 (5.00) | |
Sphingomyelin | 44.43 (11.09) | |
Triacylglycerols (g/100 g fat) * | ||
CN24 | 20 | 0.01 (0.01, 0.02) |
CN26 | 0.10 (0.03) | |
CN28 | 0.07 (0.05, 0.12) | |
CN30 | 0.19 (0.14, 0.27) | |
CN32 | 0.26 (0.19, 0.41) | |
CN34 | 0.33 (0.13, 0.44) | |
CN36 | 0.36 (0.22, 0.65) | |
CN38 | 1.57 (0.68) | |
CN40 | 2.02 (0.54) | |
CN42 | 2.70 (0.91) | |
CN44 | 5.02 (1.37) | |
CN46 | 7.51 (1.50) | |
CN48 | 10.72 (1.43) | |
CN50 | 14.71 (2.16) | |
CN52 | 36.89 (4.83) | |
CN54 | 17.30 (5.10) |
Fatty Acid (%) | Common Name | Donors (n = 108) | Reference Values | |
---|---|---|---|---|
European [52] 1 | World [73] 2 | |||
Saturated Fatty Acids (SFAs) | ||||
C6:0 | Caproic | 0.11 (0.02) | 0.08 ± 0.02 | 0.13 ± 0.47 |
C8:0 | Caprylic | 0.18 (0.16, 0.21) | 0.22 ± 0.06 | 0.21 ± 0.22 |
C10:0 | Capric | 1.20 (0.29) | 1.44 ± 0.34 | 1.37 ± 0.86 |
C12:0 | Lauric | 5.42 (1.58) | 5.46 ± 1.84 | 5.7 ± 2.81 |
C14:0 | Myristic | 5.88 (4.91, 7.75) | 6.19 ± 1.93 | 6.56 ± 3.05 |
C15:0 | Pentadecanoic | 0.18 (0.13, 0.25) | ||
C15:0 ai | C15:0 anteiso | 0.02 (0.02, 0.03) | ||
C15:0 i | C15:0 iso | 0.03 (0.02, 0.05) | ||
C16:0 i | C16:0 iso | 0.02 (0.01, 0.03) | ||
C16:0 | Palmitic | 19.61 (2.45) | 21.94 ± 2.92 | 21.5 ± 4.82 |
C17:0 ai | C17:0 anteiso | 0.04 (0.03, 0.06) | ||
C17:0 i | C17:0 iso | 0.27 (0.06) | ||
C17:0 | Margaric | 0.19 (0.15, 0.23) | 0.31 ± 0.15 | |
C18:0 | Stearic | 5.72 (4.96, 6.49) | 6.68 ± 1.59 | 6.36 ± 2.07 |
C20:0 | Arachidic | 0.16 (0.11, 0.21) | 0.17 ± 0.04 | 0.23 ± 0.17 |
Monounsaturated Fatty Acids (MUFAs) | ||||
C14:1 cis-9 (n5) | Myristoleic | 0.07 (0.04, 0.11) | ||
C16:1 cis-9 (n7) | Palmitoleic | 1.47 (1.19, 1.76) | 2.21 ± 0.64 | 2.3 ± 0.92 |
C17:1 | Margaroleic | 0.07 (0.03) | ||
∑ C18:1 trans | 0.22 (0.13, 0.34) | 0.66 ± 0.35 | ||
C18:1 cis-9 (n9) | Oleic | 38.23 (4.98) | 35.59 ± 4.17 | 32.6 ± 5.84 |
C18:1 cis-11 (n7) | Cis vaccenic | 1.61 (0.28) | 2.38 ± 0.53 | |
C20:1 (n9) | Gondoic | 0.53 (0.36, 0.82) | 0.38 ± 0.12 | 0.46 ± 0.28 |
n-6 Polyunsaturated Fatty Acids (n-6 PUFAs) | ||||
C18:2 (n6) | Linoleic (LA) | 14.79 (12.37, 17.19) | 14.00 ± 4.95 | 15.7 ± 7.15 |
C20:2 (n6) | Eicosadienoic | 0.25 (0.19, 0.35) | 0.26 ± 0.07 | 0.37 ± 0.19 |
C20:3 (n6) | Dihomo-γ-linolenic | 0.33 (0.23, 0.44) | 0.31 ± 0.09 | 0.37 ± 0.18 |
C20:4 (n6) | Arachidonic (AA) | 0.54 (0.18) | 0.44 ± 0.12 | 0.50 ± 0.25 |
n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) | ||||
C18:3 (n3) | Linolenic (ALA) | 0.50 (0.40, 0.62) | 0.94 ± 0.55 | 1.11 ± 1.05 |
C22:5 (n3) | Docosapentaenoic (DPA) | 0.07 (0.05, 0.11) | ||
C22:6 (n3) | Docosahexaenoic (DHA) | 0.28 (0.17, 0.45) | 0.34 ± 0.35 | 0.37 ± 0.31 |
n-7 Polyunsaturated Fatty Acids (n-7 PUFAs) | ||||
C18:2 c9, t11 (n7) | Rumenic | 0.08 (0.04, 0.12) | ||
Fatty Acid Families | ||||
Not identified | 0.20 (0.15, 0.25) | |||
SFAs | 39.83 (37.0, 42.1) | 42.23 ± 5.29 | 42.2 ± 7.73 | |
MUFAs | 42.49 (5.22) | 41.34 ± 4.48 | 36.3 ± 6.46 | |
PUFAs | 16.71 (14.83, 19.37) | 16.43 ± 5.07 | 21.2 ± 8.18 | |
SCFAs | 0.11 (0.10, 0.12) | |||
MCFAs (C8–C15) | 13.02 (11.13, 16.18) | |||
LCFAs (C16–C18) | 84.0 (80.71, 86.35) | |||
VLCFAs (C20–C24) | 2.34 (2.02, 3.16) | |||
n-6 PUFAs | 15.77 (13.46, 18.44) | 17.8 ± 7.51 | ||
n-3 PUFAs | 0.87 (0.72, 1.17) | 1.88 ± 2.63 | ||
n-6 PUFAs/n-3 PUFAs | 17.21 (13.31, 24.81) | |||
LA/ALA ratio | 28.68 (22.52, 40.31) | |||
ARA/DHA ratio | 1.83 (1.32, 3.06) | 1.68 ± 0.89 |
Nutrient 1 | Donors | Mature Milk Nutrient Concentration Reference | |
---|---|---|---|
n | Concentration | ||
Free thiamin, B1 (UPLC-MS/MS) mcg/L | 113 | 18.10 (10.03, 28.43) | Free thiamin 18.5 [74] Total thiamin 180 [75] |
Free riboflavin, B2 (UPLC-MS/MS) mcg/L | 113 | 47.30 (23.58, 99.90) | Free riboflavin 11.2 [74] Total riboflavin 364 [76] |
Nicotinamide, B3 (UPLC-MS/MS) mcg/L | 113 | 46.73 (28.50, 82.58) | Nicotinamide 275 [74] Total niacin 2100 [77] |
Pantothenic acid, B5 (UPLC-MS/MS) mcg/L | 113 | 2264.90 (1864.90, 2540.00) | 2500 [78] 1304 [74] |
Pyridoxal, B6 (UPLC-MS/MS) mcg/L | 113 | 36.73 (27.80, 53.30) | Pyridoxal 96 [74] B6 130 [79] |
Folic acid, B9 (UPLC-MS/MS) mcg/L | 113 | 19.88 (7.02) | Folate 80 [79] |
Cobalamin, B12 (competitive immunoassay) | 113 | ||
pM | 490.63 (74.30) | ||
mcg/L | 0.66 (0.10) | 0.5 [80] | |
Ascorbic acid (HPLC-DAD) mg/dL | 112 | 3.91 (1.71) | |
Dehydroascorbic acid (HPLC-DAD) mg/dL | 112 | 1.91 (1.29, 3.38) | |
Vitamin C * (HPLC-DAD) | 112 | ||
mg/dL | 6.37 (1.41) | ||
mg/L | 63.70 (14.10) | 35–90 [81] | |
Retinol (HPLC with fluorescence and UV detector) | 112 | ||
mcg/dL | 41.15 (26.80, 72.48) | ||
mcg/L | 411.50 (268.00, 724.80) | 530 [82] | |
Vitamin D3 (UPLC–electrospray ionization/tandem MS) | 112 | ||
pg/mL | 1603.65 (373.83, 5279.93) | ||
mcg/L | 1.60 (0.37, 5.28) | 0.25–2 [83] | |
25(OH)D3 (UPLC–electrospray ionization/tandem MS) | 112 | ||
pg/mL | 53.90 (27.13, 109.85) | ||
mcg/L | 0.05 (0.03, 0.11) | ||
α-tocopherol (HPLC with fluorescence and UV detector) | 112 | ||
mcg/dL | 463.80 (373.33, 586.76) | ||
mg/L | 4.64 (3.73, 5.87) | 4.6 [84] | |
γ-tocopherol (HPLC with fluorescence and UV detector) | 112 | ||
mcg/dL | 50.19 (36.43, 67.08) | ||
mg/L | 0.50 (0.36, 0.67) | 0.45 [74] | |
Vitamin E (as TE) ** | 112 | ||
mcg/dL | 488.02 (163.13) | ||
mg/L | 4.88 (1.63) | 5.2 [74] | |
Iodine (ICP-MS) ppb (mcg/L) | 113 | 148.45 (98.95, 204.98) | 50–100 [79] 100–200 [85,86] |
Calcium (ICP-MS) ppm (mg/L) | 113 | 99.10 (59.70, 127.35) | 200–300 [87] |
Phosphorous (ICP-MS) ppm (mg/L) | 113 | 132.47 (114.00, 150.40) | 120–140 [79,88] |
Selenium (ICP-MS) ppb (mcg/L) | 113 | 10.88 (9.30, 12.68) | 18 [89] |
Fatty Acids (% of Fat) | Associated Variables | Beta | SE | t | P > |t| | 95% CI |
---|---|---|---|---|---|---|
Total SFAs a Observations = 105 R2 = 0.34 | DMA in erythrocytes (% of fat in erythrocytes) | 2.700 | 0.795 | 3.40 | 0.001 | [1.122, 4.277] |
C17:1 in erythrocytes (% of fat in erythrocytes) | −13.556 | 3.565 | −3.80 | <0.001 | [−20.629, −6.483] | |
Plasma C18:0 (% of fat in plasma) | 2.023 | 0.550 | 3.68 | <0.001 | [0.932, 3.114] | |
Trans fatty acids (average % kcals. consumed from trans fatty acids per day from the dietary record) | 5.789 | 2.171 | 2.67 | 0.009 | [1.481, 10.097] | |
Breastfeeding time (months) | 0.203 | 0.071 | 2.86 | 0.005 | [0.062, 0.344] | |
Total MUFAs b Observations = 103 R2 = 0.16 | Plasma MUFAs (% of fat in plasma) | 0.458 | 0.165 | 2.77 | 0.007 | [0.130, 0.786] |
C17:1 in erythrocytes (% of fat in erythrocytes) | 13.523 | 4.895 | 2.76 | 0.007 | [3.810, 23.235] | |
Total PUFAs Observations = 108 R2 = 0.04 | PUFAs (average intake in g/day from the dietary record) | 0.139 | 0.062 | 2.23 | 0.028 | [0.015, 0.263] |
Linoleic acid c Observations = 106 R2 = 0.10 | Linoleic acid in erythrocytes (% of fat in erythrocytes) | 0.633 | 0.209 | 3.02 | 0.003 | [0.217, 1.048] |
Meat, fish, eggs (average servings/day from the dietary record) | 0.684 | 0.281 | 2.44 | 0.016 | [0.128, 1.241] | |
DHA d Observations = 104 R2 = 0.45 | Plasma DHA (% of fat in plasma) | 0.164 | 0.334 | 4.91 | <0.001 | [0.098, 0.230] |
DHA (average intake in g/day from the dietary record) | 0.382 | 0.075 | 5.12 | <0.001 | [0.234, 0.530] | |
Total omega-3 e Observations = 106 R2 = 0.29 | DHA (average intake in g/day from the dietary record) | 0.783 | 0.120 | 6.51 | <0.001 | [0.544, 1.021] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ureta-Velasco, N.; Montealegre-Pomar, A.; Keller, K.; Escuder-Vieco, D.; Fontecha, J.; Calvo, M.V.; Megino-Tello, J.; Serrano, J.C.E.; García-Lara, N.R.; Pallás-Alonso, C.R. Associations of Dietary Intake and Nutrient Status with Micronutrient and Lipid Composition in Breast Milk of Donor Women. Nutrients 2023, 15, 3486. https://doi.org/10.3390/nu15153486
Ureta-Velasco N, Montealegre-Pomar A, Keller K, Escuder-Vieco D, Fontecha J, Calvo MV, Megino-Tello J, Serrano JCE, García-Lara NR, Pallás-Alonso CR. Associations of Dietary Intake and Nutrient Status with Micronutrient and Lipid Composition in Breast Milk of Donor Women. Nutrients. 2023; 15(15):3486. https://doi.org/10.3390/nu15153486
Chicago/Turabian StyleUreta-Velasco, Noelia, Adriana Montealegre-Pomar, Kristin Keller, Diana Escuder-Vieco, Javier Fontecha, María V. Calvo, Javier Megino-Tello, José C. E. Serrano, Nadia Raquel García-Lara, and Carmen R. Pallás-Alonso. 2023. "Associations of Dietary Intake and Nutrient Status with Micronutrient and Lipid Composition in Breast Milk of Donor Women" Nutrients 15, no. 15: 3486. https://doi.org/10.3390/nu15153486
APA StyleUreta-Velasco, N., Montealegre-Pomar, A., Keller, K., Escuder-Vieco, D., Fontecha, J., Calvo, M. V., Megino-Tello, J., Serrano, J. C. E., García-Lara, N. R., & Pallás-Alonso, C. R. (2023). Associations of Dietary Intake and Nutrient Status with Micronutrient and Lipid Composition in Breast Milk of Donor Women. Nutrients, 15(15), 3486. https://doi.org/10.3390/nu15153486