Effect of Special Low-Protein Foods Consumption in the Dietary Pattern and Biochemical Profile of Patients with Inborn Errors of Protein Metabolism: Application of a Database of Special Low-Protein Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Special Low-Protein Foods (SLPFs) vs. Regular Foods
2.2. Subjects and Study Design
2.3. Measurements
2.4. Statistical Analyses
3. Results
3.1. Comparison of Nutritional Composition between SLPFs and Regular Foods
3.2. Study Population
3.3. Assessment of Energy and Macronutrient Intake Considering Consumption of SLPFs and Precursor-Free L-Amino Acid Supplement
3.4. Relationship among SLPF Consumption, Dietary Intake, Anthropometric, and Plasma Biochemical Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosemberg, L.E. Diagnosis and Management of Inherited Aminoacidopathies in the Newborn and the Unborn. Clin. Endocrinol. Metab. 1974, 3, 145–152. [Google Scholar] [CrossRef]
- Boyer, S.W.; Barclay, L.J.; Burrage, L.C. Inherited Metabolic Disorders: Aspects of Chronic Nutrition Management. Nutr. Clin. Pract. 2015, 30, 502–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saudubray, J.M.; Sedel, F.; Walter, J.H. Clinical Approach to Treatable Inborn Metabolic Diseases: An Introduction. J. Inherit. Metab. Dis. 2006, 29, 261–274. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Van Rijn, M.; Feillet, F.; Lund, A.M.; Bernstein, L.; Bosch, A.M.; Gizewska, M.; Van Spronsen, F.J. Adherence Issues in Inherited Metabolic Disorders Treated by Low Natural Protein Diets. Ann. Nutr. Metab. 2012, 61, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Francini-Pesenti, F.; Gugelmo, G.; Lenzini, L.; Vitturi, N. Nutrient Intake and Nutritional Status in Adult Patients with Inherited Metabolic Diseases Treated with Low-Protein Diets: A Review on Urea Cycle Disorders and Branched Chain Organic Acidemias. Nutrients 2020, 12, 3331. [Google Scholar] [CrossRef]
- Camp, K.M.; Lloyd-Puryear, M.A.; Huntington, K.L. Nutritional Treatment for Inborn Errors of Metabolism: Indications, Regulations, and Availability of Medical Foods and Dietary Supplements Using Phenylketonuria as an Example. Mol. Genet. Metab. 2012, 107, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphrey, M.; Truby, H.; Boneh, A. New Ways of Defining Protein and Energy Relationships in Inborn Errors of Metabolism. Mol. Genet. Metab. 2014, 112, 247–258. [Google Scholar] [CrossRef]
- Handoom, B.; Megdad, E.; Al-Qasabi, D.; Al Mesned, M.; Hawary, R.; Al-Nufiee, S.; Al-Hassnan, Z.; Alsayed, M.D.; Eldali, A. The Effects of Low Protein Products Availability on Growth Parameters and Metabolic Control in Selected Amino Acid Metabolism Disorders Patients. Int. J. Pediatr. Adolesc. Med. 2018, 5, 60–68. [Google Scholar] [CrossRef]
- Giovannini, M.; Verduci, E.; Salvatici, E.; Paci, S.; Riva, E. Phenylketonuria: Nutritional Advances and Challenges. Nutr. Metab. 2012, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Pena, M.J.; Almeida, M.F.; Van Dam, E.; Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Gokmen-Ozel, H.; Lammardo, A.M.; MacDonald, A.; Robert, M.; et al. Special Low Protein Foods for Phenylketonuria: Availability in Europe and an Examination of Their Nutritional Profile. Orphanet J. Rare Dis. 2015, 10, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Wood, G.; Evans, S.; Pointon-Bell, K.; Rocha, J.C.; Macdonald, A. Special Low Protein Foods in the UK: An Examination of Their Macronutrient Composition in Comparison to Regular Foods. Nutrients 2020, 12, 1893. [Google Scholar] [CrossRef]
- Daly, A.; Evans, S.; Pinto, A.; Ashmore, C.; Rocha, J.C.; Macdonald, A. A 3 Year Longitudinal Prospective Review Examining the Dietary Profile and Contribution Made by Special Low Protein Foods to Energy and Macronutrient Intake in Children with Phenylketonuria. Nutrients 2020, 12, 3153. [Google Scholar] [CrossRef] [PubMed]
- Metabolic Diet Organize. ODIMET. Available online: https://odimet.es/public/Inicio (accessed on 30 November 2022).
- MetabolicPro.Genetic Metabolic Dietitians International. Available online: https://metabolicpro.org/ (accessed on 30 November 2022).
- Ho, G.; Ueda, K.; Houben, R.F.A.; Joa, J.; Giezen, A.; Cheng, B.; van Karnebeek, C.D.M. Metabolic Diet App Suite for Inborn Errors of Amino Acid Metabolism. Mol. Genet. Metab. 2016, 117, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Verduci, E.; Banderali, G.; Moretti, F.; Lassandro, C.; Cefalo, G.; Radaelli, G.; Salvatici, E.; Giovannini, M. Diet in Children with Phenylketonuria and Risk of Cardiovascular Disease: A Narrative Overview. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 171–177. [Google Scholar] [CrossRef]
- Gündüz, M.; Çakar, S.; Kuyum, P.; Makay, B.; Arslan, N. Comparison of Atherogenic Risk Factors among Poorly Controlled and Well-Controlled Adolescent Phenylketonuria Patients. Cardiol. Young 2016, 26, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Pinto, A.; Faria, A.; Teixeira, D.; van Wegberg, A.M.J.; Ahring, K.; Feillet, F.; Calhau, C.; Macdonald, A.; Moreira-Rosário, A.; et al. Is the Phenylalanine-Restricted Diet a Risk Factor for Overweight or Obesity in Patients with Phenylketonuria (Pku)? A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3443. [Google Scholar] [CrossRef] [PubMed]
- Azabdaftari, A.; Van Der Giet, M.; Schuchardt, M.; Hennermann, J.B.; Plöckinger, U.; Querfeld, U. The Cardiovascular Phenotype of Adult Patients with Phenylketonuria. Orphanet J. Rare Dis. 2019, 14, 213. [Google Scholar] [CrossRef] [Green Version]
- AESAN/BEDCA. Base de Datos Española de Composición de Alimentos v1.0.2018. Available online: https://www.bedca.net/ (accessed on 30 November 2022).
- Ros, G.; Martínez de Victoria, E.; Farran, A. Spanish Food Composition Database: A Challenge for a Consensus. Food Chem. 2009, 113, 789–794. [Google Scholar] [CrossRef]
- Farrán, A.; Zamora, R.; Cervera, P. Tablas de Composición de Alimentos Por Medidas Caseras de Consumo Habitual En España; McGraw-Hil: Madrid, Spain, 2003. [Google Scholar]
- National Food Institute. Food Data (Frida.Fooddata.Dk). Technical University of Denmark. Available online: https://frida.fooddata.dk/?lang=en (accessed on 30 November 2022).
- Ortega, R.M.; López-Sobaler, A.M.; Andrés, P.; Requejo, A.M.; Aparicio, A.; Molinero, L.M. DIAL Software, Version 3.10.5.0; DIAL Software for Assessing Diets and Food Calculations (for Windows); Departamento de Nutrición (UCM) y Alceingeniería, S.A.: Madrid, Spain, 2013. [Google Scholar]
- Carrascosa, A.; Mesa, J. Barcelona Longitudinal Growth Study 1995-2017. Endocrinol. Diabetes y Nutr. 2018, 65, 311–313. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.; Li, T.; Deeks, J. Chapter 6:Choosing Effect Measures and Computing Estimates of Effect. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022); Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V., Deeks, J., Eds.; Cochrane: Chichester, UK, 2022. [Google Scholar]
- De Jesus, J.M. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary Report. Pediatrics 2011, 128, 213–256. [Google Scholar] [CrossRef] [Green Version]
- Schefelker, J.M.; Peterson, A.L. Screening and Management of Dyslipidemia in Children and Adolescents. J. Clin. Med. 2022, 11, 6479. [Google Scholar] [CrossRef] [PubMed]
- Mangione, C.M.; Barry, M.J.; Nicholson, W.K.; Cabana, M.; Chelmow, D.; Coker, T.R.; Davidson, K.W.; Davis, E.M.; Donahue, K.E.; Jaén, C.R.; et al. Screening for Prediabetes and Type 2 Diabetes in Children and Adolescents: US Preventive Services Task Force Recommendation Statement. JAMA 2022, 328, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Institut of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. 2005. Available online: https://nap.nationalacademies.org/read/10490/chapter/1 (accessed on 30 November 2022).
- World Health Organization. Healthy Diet-Fact-Sheets. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 30 November 2022).
- World Health Organization. WHO Calls on Countries to Reduce Sugars Intake among Adults and Children. Available online: https://www.who.int/news/item/04-03-2015-who-calls-on-countries-to-reduce-sugars-intake-among-adults-and-children (accessed on 30 November 2022).
- Trumbo, P.; Schilicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Pinto, A.; Evans, S.; Ashmore, C.; MacDonald, J.; Daly, A. Home Delivery Service of Low Protein Foods in Inherited Metabolic Disorders: Does It Help? Mol. Genet. Metab. Rep. 2019, 19, 100466. [Google Scholar] [CrossRef]
- Wood, G.; Pinto, A.; Evans, S.; Daly, A.; Adams, S.; Costelloe, S.; Gribben, J.; Ellerton, C.; Emm, A.; Firman, S.; et al. Special Low Protein Foods Prescribed in England for Pku Patients: An Analysis of Prescribing Patterns and Cost. Nutrients 2021, 13, 3977. [Google Scholar] [CrossRef]
- Moretti, F.; Pellegrini, N.; Salvatici, E.; Rovelli, V.; Banderali, G.; Radaelli, G.; Scazzina, F.; Giovannini, M.; Verduci, E. Dietary Glycemic Index, Glycemic Load and Metabolic Profile in Children with Phenylketonuria. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 176–182. [Google Scholar] [CrossRef]
- Magriplis, E.; Michas, G.; Petridi, E.; Chrousos, G.P.; Roma, E.; Benetou, V.; Cholopoulos, N.; Micha, R.; Panagiotakos, D.; Zampelas, A. Dietary Sugar Intake and Its Association with Obesity in Children and Adolescents. Children 2021, 8, 676. [Google Scholar] [CrossRef]
- Seferidi, P.; Millett, C.; Laverty, A.A. Sweetened Beverage Intake in Association to Energy and Sugar Consumption and Cardiometabolic Markers in Children. Pediatr. Obes. 2018, 13, 195–203. [Google Scholar] [CrossRef]
- Couce, M.L.; Sánchez-Pintos, P.; Vitoria, I.; De Castro, M.J.; Aldámiz-Echevarría, L.; Correcher, P.; Fernández-Marmiesse, A.; Roca, I.; Hermida, A.; Martínez-Olmos, M.; et al. Carbohydrate Status in Patients with Phenylketonuria. Orphanet J. Rare Dis. 2018, 13, 103. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.; Daly, A.; Wildgoose, J.; Cochrane, B.; Chahal, S.; Ashmore, C.; Loveridge, N.; Macdonald, A. Growth, Protein and Energy Intake in Children with PKU Taking a Weaning Protein Substitute in the First Two Years of Life: A Case-Control Study. Nutrients 2019, 11, 552. [Google Scholar] [CrossRef] [Green Version]
- Padayachee, A.; Day, L.; Howell, K.; Gidley, M.J. Complexity and Health Functionality of Plant Cell Wall Fibers from Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2017, 57, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Dreher, M.L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, 10, 1833. [Google Scholar] [CrossRef] [Green Version]
- Verduci, E.; Moretti, F.; Bassanini, G.; Banderali, G.; Rovelli, V.; Casiraghi, M.C.; Morace, G.; Borgo, F.; Borghi, E. Phenylketonuric Diet Negatively Impacts on Butyrate Production. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 385–392. [Google Scholar] [CrossRef]
- Bassanini, G.; Ceccarani, C.; Borgo, F.; Severgnini, M.; Rovelli, V.; Morace, G.; Verduci, E.; Borghi, E. Phenylketonuria Diet Promotes Shifts in Firmicutes Populations. Front. Cell. Infect. Microbiol. 2019, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Soltanizadeh, N.; Mirmoghtadaie, L. Strategies Used in Production of Phenylalanine-Free Foods for PKU Management. Compr. Rev. Food Sci. Food Saf. 2014, 13, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Lal, M.K.; Singh, B.; Sharma, S.; Singh, M.P.; Kumar, A. Glycemic Index of Starchy Crops and Factors Affecting Its Digestibility: A Review. Trends Food Sci. Technol. 2021, 111, 741–755. [Google Scholar] [CrossRef]
- De Oliveira, F.P.; Mendes, R.H.; Dobbler, P.T.; Mai, V.; Pylro, V.S.; Waugh, S.G.; Vairo, F.; Refosco, L.F.; Roesch, L.F.W.; Schwartz, I.V.D. Phenylketonuria and Gut Microbiota: A Controlled Study Based on next-Generation Sequencing. PLoS ONE 2016, 11, e0157513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Te Morenga, L.; Montez, J.M. Health effects of saturated and trans-fatty acid intake in children and adolescents: Systematic review and meta-analysis. PLoS ONE 2017, 12, e0186672. [Google Scholar] [CrossRef] [Green Version]
- Maffeis, C.; Cendon, M.; Tomasselli, F.; Tommasi, M.; Bresadola, I.; Fornari, E.; Morandi, A.; Olivieri, F. Lipid and Saturated Fatty Acids Intake and Cardiovascular Risk Factors of Obese Children and Adolescents. Eur. J. Clin. Nutr. 2021, 75, 1109–1117. [Google Scholar] [CrossRef]
- Parks, E.J.; Hellerstein, M.K. Carbohydrate-Induced Hypertriacylglycerolemia: Historical Perspective and Review of Biological Mechanisms. Am. J. Clin. Nutr. 2000, 71, 412–433. [Google Scholar] [CrossRef] [Green Version]
- Welsh, J.A.; Sharma, A.; Cunningham, S.A.; Vos, M.B. Consumption of Added Sugars and Indicators of Cardiovascular Disease Risk among US Adolescents. Circulation 2011, 123, 249–257. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Dietary Reference Values for Nutrients Summary Report; EFSA Supporting Publication: Hoboken, NJ, USA, 2017; Volume 14, p. e15121. 98p. [Google Scholar]
- Torvik, K.; Narverud, I.; Ottestad, I.; Svilaas, A.; Gran, J.M.; Retterstøl, K.; Ellingvåg, A.; Strøm, E.; Ose, L.; Veierød, M.B.; et al. Dietary Counseling Is Associated with an Improved Lipid Profile in Children with Familial Hypercholesterolemia. Atherosclerosis 2016, 252, 21–27. [Google Scholar] [CrossRef] [Green Version]
Food Group | Regular Food or SLPFs | Food Groups | Energy (kcal) | Proteins (g) | Total Fat (g) | SFAs (g) | CHO g) | Sugar (g) | Fibre (g) | Na (mg) |
---|---|---|---|---|---|---|---|---|---|---|
Dairy products | Regular food | Whole/semi-skimmed milk (n = 11) | 55 ± 9 | 3 ± 0.2 | 3 ± 1 | 2 ± 0.6 | 5 ± 0.2 | 5 ± 0.3 | 0.0 ± 0.0 | 46 ± 5 |
SLPFs | Milk replacers (n = 10) | 58 ± 16 | 0.2 ± 0.1 ** | 3 ± 1 | 2 ± 0.5 | 7 ± 2 ** | 4 ± 2 | 0.3 ± 0.4 * (n = 4) | 30 ± 23 * | |
Regular food | Ice/whipped cream (n = 7) | 235 ± 67 | 3 ± 0.8 | 16 ± 13 | 10 ± 8 | 19 ± 11 | 17 ± 10 | 0.3 ± 0.4 | 50 ± 26 | |
SLPFs | Ice/whipped cream (n = 4) | 309 ± 136 | 1 ± 1 * | 14 ± 2 | 11 ± 5 | 45 ± 38 | 28 ± 24 | 3.2 ± 0.0 (n = 2) | 167 ± 131 | |
Regular food | Cheese (n = 28) | 368 ± 57 | 25 ± 8 | 29 ± 5 | 18 ± 3 | 1 ± 1 | 0.7 ± 1 | -- | 737 ± 348 | |
SLPFs | Cheese (n = 38) | 272 ± 25 ** | 0.5 ± 0.6 ** | 22 ± 3 ** | 20 ± 3 * | 18 ± 6 ** | 0.4 ± 1 | -- | 828 ± 230 * | |
Cereals | Regular food | Breakfast cereals U (n = 14) | 364 ± 41 | 8 ± 3 | 3 ± 2 | 0.6 ± 0.5 | 75 ± 14 | 24 ± 12 | 6 ± 7 | 436 ± 357 |
SLPFs | Breakfast cereals U (n = 9) | 381 ± 5 | 0.4 ± 0.3 ** | 1 ± 0.4 * | 0.8 ± 0.5 | 92 ± 3 ** | 28 ± 13 | 2 ± 2 * | 63 ± 34 † | |
Bread and mixes | Regular Food | Bread and mixes (n = 19) | 296 ± 68 | 9 ± 2 | 4 ± 5 | 1 ± 2 | 55 ± 8 | 3 ± 2 | 3 ± 2 | 583 ± 193 |
SLPFs | Bread and mixes (n = 33) | 295 ± 75 | 0.7 ± 0.3 ** | 6 ± 5 * | 2 ± 3 * | 57 ± 15 | 4 ± 2 * | 6 ± 4 * | 381 ± 232 * | |
Flour | Regular Food | Flour (n = 18) | 345 ± 13 | 10 ± 2 | 2 ± 0.8 | 0.3 ± 0.1 | 72 ± 4 | 0.8 ± 0.7 | 6 ± 4 | 63 ± 185 |
SLPFs | Flour (n = 14) | 340 ± 35 | 0.4 ± 0.2 ** | 1 ± 1 * | 0.5 ± 0.5 | 81 ± 12 * | 5 ± 3 ** | 3 ± 3 * (n = 12) | 107 ± 154 ** | |
Pasta | Regular food | Pasta (n = 32) | 351 ± 8 | 12 ± 0.8 | 2 ± 0.4 | 0. 4 ± 0.1 | 70 ± 2 | 3 ± 0.8 | 4 ± 1 | 12 ± 13 |
SLPFs | Pasta (n = 32) | 356 ± 7 * | 0.5 ± 0.2 ** | 0.9 ± 0.3 ** | 0.6 ± 0.2 * | 85 ± 3 ** | 0.6 ± 1 ** | 2 ± 3 ** | 59 ± 65 ** | |
Rice | Regular food | Rice (n = 7) | 351 ± 9 | 8 ± 0.8 | 12 ± 28 | 0.2 ± 0.2 | 77 ± 4 | 0.3 ± 0.5 | 2 ± 2 | 3 ± 2 |
SLPFs | Rice (n = 7) | 356 ± 9 | 0.4 ± 0.1 * | 1 ± 0.2 | 0.5 ± 0.3 * | 85 ± 4 * | 0.1 ± 0.2 | 2 ± 2 | 22 ± 16 | |
Cookies | Regular food | Cookies (n = 15) | 475 ± 17 | 6 ± 0.7 | 19 ± 4 | 10 ± 3 | 68 ± 5 | 25 ± 8 | 3 ± 1 | 330 ± 127 |
SLPFs | Cookies (n = 25) | 497 ± 38 * | 0.8 ± 0.5 ** | 22 ± 7 | 9 ± 5 | 73 ± 7 * | 21 ± 9 | 1 ± 1 * (n = 24) | 71 ± 67 ** | |
Cakes/pancakes/pudding | Regular food | Cakes/pancakes/desserts (n = 15) | 475 ± 17 | 6 ± 0.7 | 19 ± 4 | 10 ± 3 | 68 ± 4 | 25 ± 8 | 3 ± 1 | 330 ± 127 |
SLPFs | Cakes/pancakes/desserts (n = 25) | 497 ± 38 * | 0.8 ± 0.5 ** | 22 ± 7 | 9 ± 5 | 73 ± 7 * | 21 ± 9 | 1 ± 1 * (n = 24) | 71 ± 67 ** | |
Chocolate | Regular food | Chocolate (n = 11) | 528 ± 26 | 7 ± 1 | 29 ± 4 | 16 ± 4 | 59 ± 4 | 55 ± 5 | 5 ± 10 | 83 ± 43 |
SLPFs | Chocolate (n = 11) | 485 ± 164 | 1 ± 1 ** | 29 ± 16 | 17 ± 11 | 61 ± 15 | 41 ± 17 * | 2 ± 3 (n = 9) | 87 ± 107 | |
Ready meals | Regular food | Ready meals (n = 23) | 195 ± 87 | 8 ± 3 | 7 ± 5 | 2 ± 2 | 26 ± 23 | 2 ± 2 | 2 ± 2 | 381 ± 216 |
SLPFs | Ready meals (n = 17) | 210 ± 147 | 1 ± 1 ** | 6 ± 6 | 3 ± 5 | 38 ± 32 | 2 ± 2 | 2 ± 2 (n = 10) | 532 ± 342 | |
Meat | Regular food | Meat (n = 23) | 185 ± 79 | 20 ± 4 | 11 ± 9 | 4 ± 4 | 1 ± 2 | 0.7 ± 2 | 0.0 ± 0.0 | 714 ± 884 |
SLPFs | Meat replacers (n = 11) | 260 ± 140 | 4 ± 2 ** | 17 ± 16 | 9 ± 12 | 20 ± 23 ** | 2 ± 2 ** | 13 ± 11 ** (n = 7) | 950 ± 326 * | |
Fish/seafood | Regular food | Fish/seafood (n = 18) | 115 ± 46 | 17 ± 5 | 4 ± 4 | 0.9 ± 0.7 | 2 ± 5 | 0.2 ± 0.3 | 0.0 ± 0.0 | 226 ± 260 |
SLPFs | Fish/seafood replacer (n = 8) | 137 ± 80 | 1 ± 0.8 ** | 5 ± 6 | 1 ± 1 | 22 ± 12 ** | 2 ± 1 ** | 6 ± 13 * | 450 ± 478 † | |
Egg | Regular food | Egg (n = 6) | 133 ± 41 | 12 ± 0.7 | 9 ± 4 | 2 ± 1 | 0.7 ± 0.4 | 0.4 ± 0.4 | 0.0 ± 0.0 | 143 ± 12 |
SLPFs | Egg replacer (n = 6) | 326 ± 69 * | 0.9 ± 2 * | 0.4 ± 0.4 * | 0.3 ± 0.3 * | 71 ± 35 † | 0.5 ± 0.8 | 18 ± 37 * | 211 ± 224 |
Characteristics | Participants with Disorders of Amino Acid Metabolism (n = 59) a |
---|---|
Age, years (IQR) | 8.9 (5.4–12.7) |
Females, n (%) | 27 (46) |
Disorder of amino acid metabolism | |
PKU, n (%) | 30 (51) |
PKU–BH4, n (%) | 9 (15) |
HCU, n (%) | 4 (7) |
HTI, n (%) | 3 (5) |
MSUD, n (%) | 2 (3) |
OAA, n (%) | 4 (7) |
MMA, n (%) | 1 (2) |
GA1, n (%) | 1 (2) |
3-HMG, n (%) | 2 (3) |
UCD, n (%) | 4 (7) |
ASS, n (%) | 2 (3) |
OTC, n (%) | 1 (2) |
HHH, n (%) | 1 (2) |
UCD, OAA liver transplanted, n (%) | 3 (5) |
ASL, n (%) | 2 (3) |
PA, n (%) | 1 (2) |
Anthropometric Parameters | |
Weight Z-score (IQR) | 0.9 (−0.7–0.7) |
Height Z-score (IQR) | −0.7 (−1.8–0.2) |
BMI Z-score (IQR) | 0.6 (−0.4–1.3) |
BMI Z-score −1 to 1 (between percentile 25 and 75), n (%) | 35 (59) |
BMI Z-score (>2), n (%) | 7 (12) |
BMI Z-score (1.5–1.95), n (%) | 2 (3) |
BMI Z-score (1.0–1.49), n (%) | 9 (15) |
BMI Z-score (−1.0–−1.49), n (%) | 1 (2) |
BMI Z-score (−1.5–−1.95), n (%) | 3 (5) |
BMI Z-score (<−2), n (%) | 2 (3) |
Plasma Biochemical Analysis (mg/dL) | |
Glucose, mg/dL (IQR) | 85 (81–92) |
Normal glucose levels (<100 mg/dL), n (%) | 55 (93) |
Prediabetes risk glucose levels (100–125 mg/dL), n (%) | 3 (5) |
Type 2 diabetes risk glucose levels (>125 mg/dL), n (%) | 1 (2) |
Triglycerides, mg/dL (IQR) | 67 (51–89) |
Acceptable TAGs values (<75 mg/dL) (under 9 y), n (%) | 20 (34) |
Borderline TAGs values (75–99 mg/dL) (under 9 y), n (%) | 5 (8.5) |
High TAGs values (>100 mg/dL) (under 9 y), n (%) | 5 (8.5) |
Acceptable TAGs values (<90 mg/dl)(10–19 y), n (%) | 23 (39) |
Borderline TAGs values (90–129 mg/dL) (10–19 y), n (%) | 4 (7) |
High TAGs values (>130 mg/dL) (10–19 y), n (%) | 2 (3) |
Total Cholesterol, mg/dL (IQR) | 136 (121–166) |
Acceptable TC values (<170 mg/dL), n (%) | 46 (78) |
Borderline TC values (170–199 mg/dL), n (%) | 9 (15) |
High TC values (≥200 mg/dL), n (%) | 4 (7) |
HDL-C, mg/dL (IQR) | 52 (47–60) |
Acceptable HDL-C values (>45 mg/dL), n (%) | 46 (77.9) |
Borderline HDL-C values (40–45 mg/dL), n (%) | 7 (11.9) |
Low HDL-C values values (<40 mg/dl), n (%) | 6 (10.2) |
LDL-C, mg/dL (IQR) | 76 (61–91) |
Acceptable LDL-C values (<110 mg/dL), n (%) | 50 (85) |
Borderline LDL-C values (110–129 mg/dL), n (%) | 7 (12) |
High LDL-C values (≥130 mg/dL), n (%) | 2 (3) |
Variables | Dietary Intake (Including SLPFs and PFAAs) (n = 59) | SLPFs Intake (n = 59) | PFAAs Intake (n = 59) |
---|---|---|---|
Energy, kcal/day | 1944 (1581–2432) | 579 (341–813) | 474 (278–800) |
Energy, % | 100 | 29 (20–36) | 26 (14–35) |
Total protein, g/day | 56.1 (38.5–77.9) | 1.9 (0.9–3.0) | 40.3 (19.0–60.0) |
Total protein, % | 10.8 (8.2–14.2) | 1.3 (0.8–2.0) | 8.0 (3.8–11.3) |
Natural protein, g/day | 15.2 (9.9–21.1) | -- | -- |
Natural protein, % | 2.8 (1.9–4.5) | -- | -- |
Carbohydrates, g/day | 267.5 (202.7–343.9) | 97.9 (67.6–154.9) | 44.6 (21.1–81.9) |
Carbohydrates, % | 53.3 (50.7–57.3) | 21.1 (15.1–27.8) | 10.0 (3.8–13.6) |
Sugars, g/day | 65.8 (50.3–89.5) | 13.0 (4.2–22.8) | 6.5 (0.0–11.7) |
Sugars, % | 13.6 (10.2–16.5) | 2.4 (1.2–4.0) | 1.2 (0.0–2.7) |
Fibre, g/day | 19.0 (14.9–27.8) | 2.5 (0.7–6.9) | 0.5 (0.0–8.7) |
Total fats, g/day | 76.5 (63.7–88.7) | 16.9 (7.0–22.5) | 11.6 (2.8–20.7) |
Total fats, % | 34.0 (30.5–38.4) | 7.6 (3.3–10.3) | 5.5 (1.1–9.9) |
SFAs, % | 8.8 (7.3–11.7) | 3.5 (1.8–4.7) | 1.0 (0.0–2.0) |
MUFAs, % | 15.7 (12.6–17.5) | 1.1 (0.1–2.2) | 1.7 (0.0–4.4) |
PUFAs, % | 4.1 (3.1–5.2) | 0.3 (0.1–0.5) | 1.6 (0.0–2.6) |
Cholesterol, mg/day | 42.5 (6.8–85.4) | 0.0 (0.0–0.2) | 0.0 (0.0–0.0) |
Energy from SLPFs, % | Carbohydrates from SLPFs, % | Sugars from SLPFs, % | Total Fats from SLPFs, % | SFAs from SLPFs, % | |
---|---|---|---|---|---|
Total protein, % | 0.09 | 0.14 | 0.03 | −0.15 | −0.16 |
Natural protein, % | −0.31 * | −0.49 ** | −0.08 | −0.04 | −0.04 |
Carbohydrates, % | 0.18 | 0.35 * | −0.05 | −0.10 | −0.13 |
Sugars, % | 0.16 | 0.00 | 0.28 * | 0.13 | 0.13 |
Total fats, % | −0.13 | −0.28 * | 0.07 | 0.26 † | 0.27 * |
SFAs, % | 0.13 | −0.08 | 0.25 † | 0.39 ** | 0.52 ** |
MUFAs, % | −0.27 * | −0.45 ** | −0.07 | 0.01 | 0.07 |
PUFAs, % | −0.37 ** | −0.31 * | −0.21 | −0.07 | −0.07 |
Energy from SLPFs, % | -- | 0.88 ** | 0.72 ** | 0.72 ** | 0.66 ** |
Total protein from SLPFs, % | 0.07 | 0.09 | 0.20 | 0.05 | −0.01 |
Carbohydrates from SLPFs, % | 0.88 ** | -- | 0.56 ** | 0.54 ** | 0.43 ** |
Sugars from SLPFs, % | 0.72 ** | 0.56 ** | -- | 0.82 ** | 0.79 ** |
Total fats from SLPFs, % | 0.72 ** | 0.54 ** | 0.92 ** | -- | 0.91 ** |
SFAs from SLPFs, % | 0.66 ** | 0.43 ** | 0.79 ** | 0.91 ** | -- |
MUFAs from SLPFs, % | 0.46 ** | 0.27 * | 0.64 ** | 0.78 ** | 0.70 ** |
PUFAs from SLPFs, % | 0.42 ** | 0.29 * | 0.61 ** | 0.74 ** | 0.65 ** |
Energy from PFAAs, % | −0.26 † | −0.07 | −0.21 | −0.36 * | −0.30 * |
Total protein from PFAAs, % | 0.45 ** | 0.46 ** | 0.28 * | 0.15 | 0.13 |
Carbohydrates from PFAAs, % | −0.29 * | −0.07 | −0.29 * | −0.39 ** | −0.33 * |
Sugars from PFAAs, % | 0.05 | 0.06 | −0.08 | −0.20 | −0.18 |
Total fats from PFAAs, % | −0.38 ** | −0.19 | −0.30 * | −0.42 ** | −0.34 * |
SFAs from PFAAs, % | −0.44 ** | −0.27 * | −0.37 ** | −0.44 ** | −0.35 * |
MUFAs from PFAAs, % | −0.42 ** | −0.28 * | −0.31 * | −0.45 ** | −0.35 * |
PUFAs from PFAAs, % | −0.31 * | −0.12 | −0.26 * | −0.32 * | −0.25 † |
Tertiles of Dairy SLPF Consumption | ||||
---|---|---|---|---|
1 <1.0% (n = 19) | 2 1.0–5.2% (n = 20) | 3 >5.2% (n = 20) | P | |
Age, years | 8.8 (7.4–14.6) | 8.9 (4.2–14.5) | 9.2 (5.7–11.4) | 0.65 |
Females, n (%) | 6 (31.6) | 10 (37.0) | 11 (40.7) | 0.31 |
Anthropometric parameters | ||||
Weight Z-score | 0.31 (−0.41–0.55) | −0.39 (−0.71–0.99) | 0.06 (−1.43–0.67) | 0.79 |
Height Z-score | −1.03 (−2.02–0.16) | −0.61 (−1.81–0.72) | −0.69 (−1.50–0.16) | 0.88 |
BMI Z-score | 0.62 (−0.03–1.41) | 0.84 (−0.29–1.31) | 0.44 (−0.84–1.09) | 0.36 |
Dietary intake | ||||
Energy from SLPFs, % | 23.9 (14.6–28.7) b | 30.2 (16.0–35.2) ab | 33.9 (25.7–43.5) a | 0.009 |
Energy from dairy SLPFs, % | 0 (0–0) c | 2.8 (1.4–4.2) b | 10.7 (8.5–12.9) a | <0.001 |
Energy from PFAAs, % | 33.9 (20.0–36.7) a | 25.9 (14.4–29.4) ab | 20.4 (5.1–32.4) b | 0.041 |
Total protein, % | 10.7 (9.3–16.0) | 11.9 (8.3–14.0) | 9.8 (7.7–13.8) | 0.55 |
Natural protein, % | 3.0 (1.9–5.1) | 2.6 (1.9; 4.5) | 2.8 (2.3–5.4) | 0.59 |
Carbohydrates, % | 56.1 (52.4–59.4) | 53.3 (50.1–57.1) | 52.8 (50.3–54.0) | 0.08 |
Sugars, % | 13.2 (8.5–16.5) b | 12.0 (9.4–13.9) b | 15.8 (14.0–17.7) a | 0.007 |
Total fats, % | 31.9 (28.2–33.9) b | 34.9 (30.5–40.8) a | 36.8 (32.0–40.6) a | 0.012 |
SFAs, % | 7.7 (6.1–8.6) c | 8.8 (7.1–11.4) b | 11.3 (9.5–12.7) a | <0.001 |
MUFAs, % | 14.3 (12.2–17.2) | 16.0 (14.2–17.3) | 16.9 (13.3–19.4) | 0.20 |
PUFAs, % | 4.6 (3.4–5.9) | 4.1 (3.0–4.8) | 3.9 (2.8–4.9) | 0.24 |
Plasma biochemical parameters (mg/dL) | ||||
Glucose, mg/dL | 85.0 (83.0–94.0) | 84.0 (77.0–90.5) | 86.0 (80.3–93.5) | 0.31 |
Triglycerides, mg/dL | 67.0 (55.0–89.0) | 60.5 (45.3–83.5) | 71.5 (55.5–89.8) | 0.39 |
Total cholesterol, mg/dL | 131.0 (120.0–166.0) b | 125.0 (117.0–153.3) b | 164.5 (146.3–173.3) a | 0.006 |
HDL-C, mg/dL | 52.0 (49.0–60.0) ab | 48.5 (44.3–52.8) b | 55.5 (49.3–67.3) a | 0.026 |
LDL-C mg/dL | 67.0 (58.0–98.0) b | 69.5 (56.5–86.8) b | 87.0 (76.5–115.5) a | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Arenas, D.; Barrau-Martinez, B.; Gonzalez-Rodriguez, A.; Llorach, R.; Campistol-Plana, J.; García-Cazorla, A.; Ormazabal, A.; Urpi-Sarda, M. Effect of Special Low-Protein Foods Consumption in the Dietary Pattern and Biochemical Profile of Patients with Inborn Errors of Protein Metabolism: Application of a Database of Special Low-Protein Foods. Nutrients 2023, 15, 3475. https://doi.org/10.3390/nu15153475
Garcia-Arenas D, Barrau-Martinez B, Gonzalez-Rodriguez A, Llorach R, Campistol-Plana J, García-Cazorla A, Ormazabal A, Urpi-Sarda M. Effect of Special Low-Protein Foods Consumption in the Dietary Pattern and Biochemical Profile of Patients with Inborn Errors of Protein Metabolism: Application of a Database of Special Low-Protein Foods. Nutrients. 2023; 15(15):3475. https://doi.org/10.3390/nu15153475
Chicago/Turabian StyleGarcia-Arenas, Dolores, Blanca Barrau-Martinez, Arnau Gonzalez-Rodriguez, Rafael Llorach, Jaume Campistol-Plana, Angeles García-Cazorla, Aida Ormazabal, and Mireia Urpi-Sarda. 2023. "Effect of Special Low-Protein Foods Consumption in the Dietary Pattern and Biochemical Profile of Patients with Inborn Errors of Protein Metabolism: Application of a Database of Special Low-Protein Foods" Nutrients 15, no. 15: 3475. https://doi.org/10.3390/nu15153475
APA StyleGarcia-Arenas, D., Barrau-Martinez, B., Gonzalez-Rodriguez, A., Llorach, R., Campistol-Plana, J., García-Cazorla, A., Ormazabal, A., & Urpi-Sarda, M. (2023). Effect of Special Low-Protein Foods Consumption in the Dietary Pattern and Biochemical Profile of Patients with Inborn Errors of Protein Metabolism: Application of a Database of Special Low-Protein Foods. Nutrients, 15(15), 3475. https://doi.org/10.3390/nu15153475