Resveratrol, a Multitasking Molecule That Improves Skeletal Muscle Health
Abstract
:1. Introduction
2. Resveratrol Can Affect Distinct Skeletal Muscle Components
2.1. Resveratrol and Skeletal Muscle Fiber
2.2. Resveratrol and the NMJ
2.3. Resveratrol, Connective Sheaths and Tendons
2.4. Resveratrol and Skeletal Muscle Vascularization
3. Resveratrol and Skeletal Muscle in Clinical Trials
3.1. Search Strategy
3.2. Effects of Resveratrol on Human Skeletal Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordova, A.C.; Jackson, L.S.M.; Berke-Schlessel, D.W.; Sumpio, B.E. The Cardiovascular Protective Effect of Red Wine. J. Am. Coll. Surg. 2005, 200, 428. [Google Scholar] [CrossRef]
- Renaud, S.; de Lorgeril, M. Wine, Alcohol, Platelets, and the French Paradox for Coronary Heart Disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Valenzano, D.R.; Terzibasi, E.; Genade, T.; Cattaneo, A.; Domenici, L.; Cellerino, A. Resveratrol Prolongs Lifespan and Retards the Onset of Age-Related Markers in a Short-Lived Vertebrate. Curr. Biol. 2006, 16, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.-L.; et al. Small Molecule Activators of Sirtuins Extend Saccharomyces Cerevisiae Lifespan. Nature 2003, 425, 191–196. [Google Scholar] [CrossRef]
- Wood, J.G.; Rogina, B.; Lavu, S.; Howitz, K.; Helfand, S.L.; Tatar, M.; Sinclair, D. Sirtuin Activators Mimic Caloric Restriction and Delay Ageing in Metazoans. Nature 2004, 430, 686–689. [Google Scholar] [CrossRef]
- Chung, J.H.; Manganiello, V.; Dyck, J.R.B. Resveratrol as a Calorie Restriction Mimetic: Therapeutic Implications. Trends Cell Biol. 2012, 22, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]
- Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol Improves Health and Survival of Mice on a High-Calorie Diet. Nature 2006, 444, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Dirks Naylor, A.J. Cellular Effects of Resveratrol in Skeletal Muscle. Life Sci. 2009, 84, 637–640. [Google Scholar] [CrossRef]
- Meng, X.; Zhou, J.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods 2020, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.S.; Cantó, C. The Molecular Targets of Resveratrol. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2015, 1852, 1114–1123. [Google Scholar] [CrossRef] [Green Version]
- Pezzuto, J.M. The Phenomenon of Resveratrol: Redefining the Virtues of Promiscuity. Ann. N. Y. Acad. Sci. 2011, 1215, 123–130. [Google Scholar] [CrossRef]
- Gehm, B.D.; McAndrews, J.M.; Chien, P.-Y.; Jameson, J.L. Resveratrol, a Polyphenolic Compound Found in Grapes and Wine, Is an Agonist for the Estrogen Receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 14138–14143. [Google Scholar] [CrossRef]
- Giacomello, E.; Toniolo, L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021, 13, 2346. [Google Scholar] [CrossRef]
- Toniolo, L.; Giacomello, E. Resveratrol, Aging, and Fatigue. In Aging: Oxidative Stress and Dietary Antioxidants; Academic Press: Cambridge, MA, USA, 2020; pp. 309–317. ISBN 978-0-12-818698-5. [Google Scholar]
- Tieland, M.; Trouwborst, I.; Clark, B.C. Skeletal Muscle Performance and Ageing. J. Cachexia Sarcopenia Muscle 2018, 9, 3–19. [Google Scholar] [CrossRef]
- Kumar, L.; Bisen, M.; Khan, A.; Kumar, P.; Patel, S.K.S. Role of Matrix Metalloproteinases in Musculoskeletal Diseases. Biomedicines 2022, 10, 2477. [Google Scholar] [CrossRef]
- Sinha, U.; Malis, V.; Chen, J.-S.; Csapo, R.; Kinugasa, R.; Narici, M.V.; Sinha, S. Role of the Extracellular Matrix in Loss of Muscle Force with Age and Unloading Using Magnetic Resonance Imaging, Biochemical Analysis, and Computational Models. Front. Physiol. 2020, 11, 626. [Google Scholar] [CrossRef]
- Sirago, G.; Pellegrino, M.A.; Bottinelli, R.; Franchi, M.V.; Narici, M.V. Loss of Neuromuscular Junction Integrity and Muscle Atrophy in Skeletal Muscle Disuse. Ageing Res. Rev. 2023, 83, 101810. [Google Scholar] [CrossRef]
- Toniolo, L.; Fusco, P.; Formoso, L.; Mazzi, A.; Canato, M.; Reggiani, C.; Giacomello, E. Resveratrol Treatment Reduces the Appearance of Tubular Aggregates and Improves the Resistance to Fatigue in Aging Mice Skeletal Muscles. Exp. Gerontol. 2018, 111, 170–179. [Google Scholar] [CrossRef]
- Chi, T.-C.; Chen, W.-P.; Chi, T.-L.; Kuo, T.-F.; Lee, S.-S.; Cheng, J.-T.; Su, M.-J. Phosphatidylinositol-3-Kinase Is Involved in the Antihyperglycemic Effect Induced by Resveratrol in Streptozotocin-Induced Diabetic Rats. Life Sci. 2007, 80, 1713–1720. [Google Scholar] [CrossRef]
- Su, H.-C.; Hung, L.-M.; Chen, J.-K. Resveratrol, a Red Wine Antioxidant, Possesses an Insulin-like Effect in Streptozotocin-Induced Diabetic Rats. Am. J. Physiol.-Endocrinol. Metab. 2006, 290, E1339–E1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szkudelski, T.; Szkudelska, K. Resveratrol and Diabetes: From Animal to Human Studies. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2015, 1852, 1145–1154. [Google Scholar] [CrossRef]
- Li, H.; Malhotra, S.; Kumar, A. Nuclear Factor-Kappa B Signaling in Skeletal Muscle Atrophy. J. Mol. Med. 2008, 86, 1113–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoda, R.; Nakashima, R.; Yano, M.; Iwahara, N.; Asakura, S.; Nojima, I.; Saga, Y.; Kunimoto, R.; Horio, Y.; Kuno, A. Resveratrol, a SIRT1 Activator, Attenuates Aging-Associated Alterations in Skeletal Muscle and Heart in Mice. J. Pharmacol. Sci. 2023, 152, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.T.; Mohamed, J.S.; Alway, S.E. Effects of Resveratrol on the Recovery of Muscle Mass Following Disuse in the Plantaris Muscle of Aged Rats. PLoS ONE 2013, 8, e83518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monti, E.; Reggiani, C.; Franchi, M.V.; Toniolo, L.; Sandri, M.; Armani, A.; Zampieri, S.; Giacomello, E.; Sarto, F.; Sirago, G.; et al. Neuromuscular Junction Instability and Altered Intracellular Calcium Handling as Early Determinants of Force Loss during Unloading in Humans. J. Physiol. 2021, 599, 3037–3061. [Google Scholar] [CrossRef] [PubMed]
- Sirago, G.; Candia, J.; Franchi, M.V.; Sarto, F.; Monti, E.; Toniolo, L.; Reggiani, C.; Giacomello, E.; Zampieri, S.; Hartnell, L.M.; et al. Upregulation of Sarcolemmal Hemichannels and Inflammatory Transcripts with Neuromuscular Junction Instability during Lower Limb Unloading in Humans. Biology 2023, 12, 431. [Google Scholar] [CrossRef]
- Gonzalez-Freire, M.; de Cabo, R.; Studenski, S.A.; Ferrucci, L. The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle. Front. Aging Neurosci. 2014, 6, 208. [Google Scholar] [CrossRef] [Green Version]
- Valdez, G.; Tapia, J.C.; Kang, H.; Clemenson, G.D.; Gage, F.H.; Lichtman, J.W.; Sanes, J.R. Attenuation of Age-Related Changes in Mouse Neuromuscular Synapses by Caloric Restriction and Exercise. Proc. Natl. Acad. Sci. USA 2010, 107, 14863–14868. [Google Scholar] [CrossRef]
- Stockinger, J.; Maxwell, N.; Shapiro, D.; deCabo, R.; Valdez, G. Caloric Restriction Mimetics Slow Aging of Neuromuscular Synapses and Muscle Fibers. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Jiao, K.; Zhou, Q.; Yang, J.; Yang, K.; Hu, C.; Zhou, M.; Li, Z. Resveratrol Alleviates 27-Hydroxycholesterol-Induced Senescence in Nerve Cells and Affects Zebrafish Locomotor Behavior via Activation of SIRT1-Mediated STAT3 Signaling. Oxid. Med. Cell Longev. 2021, 2021, 6673343. [Google Scholar] [CrossRef] [PubMed]
- Adedara, A.O.; Babalola, A.D.; Stephano, F.; Awogbindin, I.O.; Olopade, J.O.; Rocha, J.B.T.; Whitworth, A.J.; Abolaji, A.O. An Assessment of the Rescue Action of Resveratrol in Parkin Loss of Function-Induced Oxidative Stress in Drosophila Melanogaster. Sci. Rep. 2022, 12, 3922. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, Y.; Lai, J.; Wei, L.; Zhou, G.; Yu, Y.; Liu, J. Resveratrol Suppresses Bupivacaine-Induced Spinal Neurotoxicity in Rats by Inhibiting Endoplasmic Reticulum Stress via SIRT1 Modulation. Biomed. Res. Int. 2023, 2023, 1176232. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Mei, X.; Yang, D.; Tu, G. Resveratrol Inhibits Inflammation after Spinal Cord Injury via SIRT-1/NF-ΚB Signaling Pathway. Neurosci. Lett. 2021, 762, 136151. [Google Scholar] [CrossRef]
- Csapo, R.; Gumpenberger, M.; Wessner, B. Skeletal Muscle Extracellular Matrix–What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front. Physiol. 2020, 11, 253. [Google Scholar] [CrossRef] [Green Version]
- Lieber, R.L.; Ward, S.R. Cellular Mechanisms of Tissue Fibrosis. 4. Structural and Functional Consequences of Skeletal Muscle Fibrosis. Am. J. Physiol.-Cell Physiol. 2013, 305, C241–C252. [Google Scholar] [CrossRef] [Green Version]
- Brightwell, C.R.; Kulkarni, A.S.; Paredes, W.; Zhang, K.; Perkins, J.B.; Gatlin, K.J.; Custodio, M.; Farooq, H.; Zaidi, B.; Pai, R.; et al. Muscle Fibrosis and Maladaptation Occur Progressively in CKD and Are Rescued by Dialysis. JCI Insight 2021, 6, e150112. [Google Scholar] [CrossRef]
- Voermans, N.C.; van Alfen, N.; Pillen, S.; Lammens, M.; Schalkwijk, J.; Zwarts, M.J.; van Rooij, I.A.; Hamel, B.C.J.; van Engelen, B.G. Neuromuscular Involvement in Various Types of Ehlers–Danlos Syndrome. Ann. Neurol. 2009, 65, 687–697. [Google Scholar] [CrossRef]
- Nygaard, R.H.; Jensen, J.K.; Voermans, N.C.; Heinemeier, K.M.; Schjerling, P.; Holm, L.; Agergaard, J.; Mackey, A.L.; Andersen, J.L.; Remvig, L.; et al. Skeletal Muscle Morphology, Protein Synthesis, and Gene Expression in Ehlers-Danlos Syndrome. J. Appl. Physiol. 2017, 123, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Abramowitz, M.K.; Paredes, W.; Zhang, K.; Brightwell, C.R.; Newsom, J.N.; Kwon, H.-J.; Custodio, M.; Buttar, R.S.; Farooq, H.; Zaidi, B.; et al. Skeletal Muscle Fibrosis Is Associated with Decreased Muscle Inflammation and Weakness in Patients with Chronic Kidney Disease. Am. J. Physiol.-Ren. Physiol. 2018, 315, F1658–F1669. [Google Scholar] [CrossRef] [PubMed]
- Yaman, I.; Derici, H.; Kara, C.; Kamer, E.; Diniz, G.; Ortac, R.; Sayin, O. Effects of Resveratrol on Incisional Wound Healing in Rats. Surg. Today 2013, 43, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Tang, Z.; Li, B.; Yu, J.; Li, W.; Liu, Z.; Tian, C. Resveratrol against Cardiac Fibrosis: Research Progress in Experimental Animal Models. Molecules 2021, 26, 6860. [Google Scholar] [CrossRef] [PubMed]
- Gliemann, L.; Olesen, J.; Biensø, R.S.; Schmidt, J.F.; Akerstrom, T.; Nyberg, M.; Lindqvist, A.; Bangsbo, J.; Hellsten, Y. Resveratrol Modulates the Angiogenic Response to Exercise Training in Skeletal Muscles of Aged Men. Am. J. Physiol.-Heart Circ. Physiol. 2014, 307, H1111–H1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Zhang, Y.; Chen, J.; Xu, Y. Thrombospondin-1: A Key Protein That Induces Fibrosis in Diabetic Complications. J. Diabetes Res. 2020, 2020, e8043135. [Google Scholar] [CrossRef]
- Agarwal, R.; Agarwal, P. Targeting Extracellular Matrix Remodeling in Disease: Could Resveratrol Be a Potential Candidate? Exp. Biol. Med. 2017, 242, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Hendrickse, P.; Degens, H. The Role of the Microcirculation in Muscle Function and Plasticity. J. Muscle Res. Cell Motil. 2019, 40, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Giacomello, E.; Crea, E.; Torelli, L.; Bergamo, A.; Reggiani, C.; Sava, G.; Toniolo, L. Age Dependent Modification of the Metabolic Profile of the Tibialis Anterior Muscle Fibers in C57BL/6J Mice. Int. J. Mol. Sci. 2020, 21, 3923. [Google Scholar] [CrossRef]
- Barnouin, Y.; McPhee, J.S.; Butler-Browne, G.; Bosutti, A.; De Vito, G.; Jones, D.A.; Narici, M.; Behin, A.; Hogrel, J.; Degens, H. Coupling between Skeletal Muscle Fiber Size and Capillarization Is Maintained during Healthy Aging. J. Cachexia Sarcopenia Muscle 2017, 8, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Gueugneau, M.; Coudy-Gandilhon, C.; Meunier, B.; Combaret, L.; Taillandier, D.; Polge, C.; Attaix, D.; Roche, F.; Féasson, L.; Barthélémy, J.-C.; et al. Lower Skeletal Muscle Capillarization in Hypertensive Elderly Men. Exp. Gerontol. 2016, 76, 80–88. [Google Scholar] [CrossRef]
- Prior, S.J.; Ryan, A.S.; Blumenthal, J.B.; Watson, J.M.; Katzel, L.I.; Goldberg, A.P. Sarcopenia Is Associated with Lower Skeletal Muscle Capillarization and Exercise Capacity in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1096–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toniolo, L.; Formoso, L.; Torelli, L.; Crea, E.; Bergamo, A.; Sava, G.; Giacomello, E. Long-Term Resveratrol Treatment Improves the Capillarization in the Skeletal Muscles of Ageing C57BL/6J Mice. Int. J. Food Sci. Nutr. 2021, 72, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Pollack, R.M.; Barzilai, N.; Anghel, V.; Kulkarni, A.S.; Golden, A.; O’Broin, P.; Sinclair, D.A.; Bonkowski, M.S.; Coleville, A.J.; Powell, D.; et al. Resveratrol Improves Vascular Function and Mitochondrial Number but Not Glucose Metabolism in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1703–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolinsky, V.W.; Dyck, J.R.B. Experimental Studies of the Molecular Pathways Regulated by Exercise and Resveratrol in Heart, Skeletal Muscle and the Vasculature. Molecules 2014, 19, 14919–14947. [Google Scholar] [CrossRef] [Green Version]
- Diaz, M.; Degens, H.; Vanhees, L.; Austin, C.; Azzawi, M. The Effects of Resveratrol on Aging Vessels. Exp. Gerontol. 2016, 85, 41–47. [Google Scholar] [CrossRef]
- Kaga, S.; Zhan, L.; Matsumoto, M.; Maulik, N. Resveratrol Enhances Neovascularization in the Infarcted Rat Myocardium through the Induction of Thioredoxin-1, Heme Oxygenase-1 and Vascular Endothelial Growth Factor. J. Mol. Cell. Cardiol. 2005, 39, 813–822. [Google Scholar] [CrossRef]
- Pearson, K.J.; Baur, J.A.; Lewis, K.N.; Peshkin, L.; Price, N.L.; Labinskyy, N.; Swindell, W.R.; Kamara, D.; Minor, R.K.; Perez, E.; et al. Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span. Cell Metab. 2008, 8, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Sirago, G.; Toniolo, L.; Crea, E.; Giacomello, E. A Short-Term Treatment with Resveratrol Improves the Inflammatory Conditions of Middle-Aged Mice Skeletal Muscles. Int. J. Food Sci. Nutr. 2022, 73, 630–637. [Google Scholar] [CrossRef]
- Bresciani, L.; Calani, L.; Bocchi, L.; Delucchi, F.; Savi, M.; Ray, S.; Brighenti, F.; Stilli, D.; Del Rio, D. Bioaccumulation of Resveratrol Metabolites in Myocardial Tissue Is Dose-Time Dependent and Related to Cardiac Hemodynamics in Diabetic Rats. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 408–415. [Google Scholar] [CrossRef]
- Scotto di Palumbo, A.; McSwiney, F.T.; Hone, M.; McMorrow, A.M.; Lynch, G.; De Vito, G.; Egan, B. Effects of a Long Chain N-3 Polyunsaturated Fatty Acid-Rich Multi-Ingredient Nutrition Supplement on Body Composition and Physical Function in Older Adults with Low Skeletal Muscle Mass. J. Diet. Suppl. 2022, 19, 499–514. [Google Scholar] [CrossRef]
- Harper, S.A.; Bassler, J.R.; Peramsetty, S.; Yang, Y.; Roberts, L.M.; Drummer, D.; Mankowski, R.T.; Leeuwenburgh, C.; Ricart, K.; Patel, R.P.; et al. Resveratrol and Exercise Combined to Treat Functional Limitations in Late Life: A Pilot Randomized Controlled Trial. Exp. Gerontol. 2021, 143, 111111. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Li, X.; Zhu, X. The Role of GM130 in Nervous System Diseases. Front. Neurol. 2021, 12, 743787. [Google Scholar] [CrossRef] [PubMed]
- Beijers, R.J.H.C.G.; Gosker, H.R.; Sanders, K.J.C.; de Theije, C.; Kelders, M.; Clarke, G.; Cryan, J.F.; van den Borst, B.; Schols, A.M.W.J. Resveratrol and Metabolic Health in COPD: A Proof-of-Concept Randomized Controlled Trial. Clin. Nutr. 2020, 39, 2989–2997. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Liu, C.-C.; Tsao, J.-P.; Hsu, C.-L.; Cheng, I.-S. Effects of Oral Resveratrol Supplementation on Glycogen Replenishment and Mitochondria Biogenesis in Exercised Human Skeletal Muscle. Nutrients 2020, 12, 3721. [Google Scholar] [CrossRef]
- Van Polanen, N.; Zacharewicz, E.; de Ligt, M.; Timmers, S.; Moonen-Kornips, E.; Schaart, G.; Hoeks, J.; Schrauwen, P.; Hesselink, M.K.C. Resveratrol-induced Remodelling of Myocellular Lipid Stores: A Study in Metabolically Compromised Humans. Physiol. Rep. 2021, 9, e14692. [Google Scholar] [CrossRef]
- De Ligt, M.; Bruls, Y.M.H.; Hansen, J.; Habets, M.-F.; Havekes, B.; Nascimento, E.B.M.; Moonen-Kornips, E.; Schaart, G.; Schrauwen-Hinderling, V.B.; van Marken Lichtenbelt, W.; et al. Resveratrol Improves Ex Vivo Mitochondrial Function but Does Not Affect Insulin Sensitivity or Brown Adipose Tissue in First Degree Relatives of Patients with Type 2 Diabetes. Mol. Metab. 2018, 12, 39–47. [Google Scholar] [CrossRef]
- Alway, S.E.; McCrory, J.L.; Kearcher, K.; Vickers, A.; Frear, B.; Gilleland, D.L.; Bonner, D.E.; Thomas, J.M.; Donley, D.A.; Lively, M.W.; et al. Resveratrol Enhances Exercise-Induced Cellular and Functional Adaptations of Skeletal Muscle in Older Men and Women. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1595–1606. [Google Scholar] [CrossRef] [Green Version]
- Kjær, T.N.; Ornstrup, M.J.; Poulsen, M.M.; Stødkilde-Jørgensen, H.; Jessen, N.; Jørgensen, J.O.L.; Richelsen, B.; Pedersen, S.B. No Beneficial Effects of Resveratrol on the Metabolic Syndrome: A Randomized Placebo-Controlled Clinical Trial. J. Clin. Endocrinol. Metab. 2017, 102, 1642–1651. [Google Scholar] [CrossRef] [Green Version]
- Korsholm, A.S.; Kjær, T.N.; Ornstrup, M.J.; Pedersen, S.B. Comprehensive Metabolomic Analysis in Blood, Urine, Fat, and Muscle in Men with Metabolic Syndrome: A Randomized, Placebo-Controlled Clinical Trial on the Effects of Resveratrol after Four Months’ Treatment. Int. J. Mol. Sci. 2017, 18, 554. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Leeuwenburgh, C.; Guralnik, J.M.; Tian, L.; Sufit, R.; Zhao, L.; Criqui, M.H.; Kibbe, M.R.; Stein, J.H.; Lloyd-Jones, D.; et al. Effect of Resveratrol on Walking Performance in Older People With Peripheral Artery Disease. JAMA Cardiol. 2017, 2, 902–907. [Google Scholar] [CrossRef] [Green Version]
- Most, J.; Timmers, S.; Warnke, I.; Jocken, J.W.; van Boekschoten, M.; de Groot, P.; Bendik, I.; Schrauwen, P.; Goossens, G.H.; Blaak, E.E. Combined Epigallocatechin-3-Gallate and Resveratrol Supplementation for 12 Wk Increases Mitochondrial Capacity and Fat Oxidation, but Not Insulin Sensitivity, in Obese Humans: A Randomized Controlled Trial1,2. Am. J. Clin. Nutr. 2016, 104, 215–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polley, K.R.; Jenkins, N.; O’Connor, P.; McCully, K. Influence of Exercise Training with Resveratrol Supplementation on Skeletal Muscle Mitochondrial Capacity. Appl. Physiol. Nutr. Metab. 2016, 41, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goh, K.P.; Lee, H.Y.; Lau, D.P.; Supaat, W.; Chan, Y.H.; Koh, A.F.Y. Effects of Resveratrol in Patients with Type 2 Diabetes Mellitus on Skeletal Muscle SIRT1 Expression and Energy Expenditure. Int. J. Sport. Nutr. Exerc. Metab. 2014, 24, 2–13. [Google Scholar] [CrossRef]
- Olesen, J.; Gliemann, L.; Biensø, R.; Schmidt, J.; Hellsten, Y.; Pilegaard, H. Exercise Training, but Not Resveratrol, Improves Metabolic and Inflammatory Status in Skeletal Muscle of Aged Men. J. Physiol. 2014, 592, 1873–1886. [Google Scholar] [CrossRef]
- Scribbans, T.D.; Ma, J.K.; Edgett, B.A.; Vorobej, K.A.; Mitchell, A.S.; Zelt, J.G.E.; Simpson, C.A.; Quadrilatero, J.; Gurd, B.J. Resveratrol Supplementation Does Not Augment Performance Adaptations or Fibre-Type–Specific Responses to High-Intensity Interval Training in Humans. Appl. Physiol. Nutr. Metab. 2014, 39, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.B.; Hughes, M.C.; Edgett, B.A.; Scribbans, T.D.; Simpson, C.A.; Perry, C.G.R.; Gurd, B.J. An Examination of Resveratrol’s Mechanisms of Action in Human Tissue: Impact of a Single Dose In Vivo and Dose Responses in Skeletal Muscle Ex Vivo. PLoS ONE 2014, 9, e102406. [Google Scholar] [CrossRef]
- Gliemann, L.; Schmidt, J.F.; Olesen, J.; Biensø, R.S.; Peronard, S.L.; Grandjean, S.U.; Mortensen, S.P.; Nyberg, M.; Bangsbo, J.; Pilegaard, H.; et al. Resveratrol Blunts the Positive Effects of Exercise Training on Cardiovascular Health in Aged Men. J. Physiol. 2013, 591, 5047–5059. [Google Scholar] [CrossRef]
- O’Connor, P.J.; Caravalho, A.L.; Freese, E.C.; Cureton, K.J. Grape Consumption’s Effects on Fitness, Muscle Injury, Mood, and Perceived Health. Int. J. Sport. Nutr. Exerc. Metab. 2013, 23, 57–64. [Google Scholar] [CrossRef]
- Poulsen, M.M.; Vestergaard, P.F.; Clasen, B.F.; Radko, Y.; Christensen, L.P.; Stødkilde-Jørgensen, H.; Møller, N.; Jessen, N.; Pedersen, S.B.; Jørgensen, J.O.L. High-Dose Resveratrol Supplementation in Obese Men: An Investigator-Initiated, Randomized, Placebo-Controlled Clinical Trial of Substrate Metabolism, Insulin Sensitivity, and Body Composition. Diabetes 2013, 62, 1186–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshino, J.; Conte, C.; Fontana, L.; Mittendorfer, B.; Imai, S.; Schechtman, K.B.; Gu, C.; Kunz, I.; Fanelli, F.R.; Patterson, B.W.; et al. Resveratrol Supplementation Does Not Improve Metabolic Function in Non-Obese Women with Normal Glucose Tolerance. Cell Metab. 2012, 16, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; van de Weijer, T.; Goossens, G.H.; Hoeks, J.; van der Krieken, S.; Ryu, D.; Kersten, S.; et al. Calorie Restriction-like Effects of 30 Days of Resveratrol (ResVidaTM) Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. Cell Metab. 2011, 14, 612–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.-C.; Lee, M.-C.; Ho, C.-S.; Hsu, Y.-J.; Ho, C.-C.; Kan, N.-W. Protective and Recovery Effects of Resveratrol Supplementation on Exercise Performance and Muscle Damage Following Acute Plyometric Exercise. Nutrients 2021, 13, 3217. [Google Scholar] [CrossRef] [PubMed]
- Murgia, M.; Brocca, L.; Monti, E.; Franchi, M.V.; Zwiebel, M.; Steigerwald, S.; Giacomello, E.; Sartori, R.; Zampieri, S.; Capovilla, G.; et al. Plasma Proteome Profiling of Healthy Subjects Undergoing Bed Rest Reveals Unloading-dependent Changes Linked to Muscle Atrophy. J. Cachexia Sarcopenia Muscle 2022, 14, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Sirago, G.; Picca, A.; Giacomello, E.; Marzetti, E.; Toniolo, L. The Contribution of Genetics to Muscle Disuse, Retraining, and Aging. Genes 2022, 13, 1378. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Bal, N.B.; Sadi, G.; Usanmaz, S.E.; Uludag, M.O.; Demirel-Yilmaz, E. The Effects of Resveratrol and Exercise on Age and Gender-Dependent Alterations of Vascular Functions and Biomarkers. Exp. Gerontol. 2018, 110, 191–201. [Google Scholar] [CrossRef]
- Barger, J.L.; Kayo, T.; Vann, J.M.; Arias, E.B.; Wang, J.; Hacker, T.A.; Wang, Y.; Raederstorff, D.; Morrow, J.D.; Leeuwenburgh, C.; et al. A Low Dose of Dietary Resveratrol Partially Mimics Caloric Restriction and Retards Aging Parameters in Mice. PLoS ONE 2008, 3, e2264. [Google Scholar] [CrossRef]
- Bosutti, A.; Degens, H. The Impact of Resveratrol and Hydrogen Peroxide on Muscle Cell Plasticity Shows a Dose-Dependent Interaction. Sci. Rep. 2015, 5, 8093. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-J.; Jung, U.J.; Choi, M.-S. Differential Effects of Low-Dose Resveratrol on Adiposity and Hepatic Steatosis in Diet-Induced Obese Mice. Br. J. Nutr. 2012, 108, 2166–2175. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, W.; Zhou, Z.; Deng, S.; Ma, X.; Ma, X.; Li, C.; Shu, X. Therapeutic Versatility of Resveratrol Derivatives. Nutrients 2017, 9, 1188. [Google Scholar] [CrossRef] [Green Version]
- Biasutto, L.; Mattarei, A.; Azzolini, M.; La Spina, M.; Sassi, N.; Romio, M.; Paradisi, C.; Zoratti, M. Resveratrol Derivatives as a Pharmacological Tool. Ann. N. Y. Acad. Sci. 2017, 1403, 27–37. [Google Scholar] [CrossRef]
- Svensson, K.; Schnyder, S.; Albert, V.; Cardel, B.; Quagliata, L.; Terracciano, L.M.; Handschin, C. Resveratrol and SRT1720 Elicit Differential Effects in Metabolic Organs and Modulate Systemic Parameters Independently of Skeletal Muscle Peroxisome Proliferator-Activated Receptor γ Co-Activator 1α (PGC-1α). J. Biol. Chem. 2015, 290, 16059–16076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Groups Subjects No./Sex/Age | Health Condition | Dose | Treatment | Treatment Length | Parameters Measured | Effect | |
SCOTTO DI PALUMBO, 2022 [61] | 10 f + 11 m RES (75.0 ± 3.4) 8 f + 8 m PL (74.8 ± 3.9) | Sedentary | 150 mg/day | Nutrition supplement drink | 6 months | Performance | Positive effect |
HARPER, 2021 [62] | 13 f + 7 m RES 500 mg (72 ± 5.1) 18 f + 2 m RES 1000 mg (70.3 ± 5.8) 14 f + 6 m PL (73.3 ± 7.8) | Functional limitations | 500 mg, 1000 mg/day | Resveratrol + exercise | 12 weeks | Metabolism, inflammation markers, performance | Positive effect |
HUANG, 2021 [63] | 18 m RES (21.09 ± 1.33) 18 m PL (21.09 ± 1.33) | T2DM | 500 mg, 1000 mg/day | Trans-resveratrol extract | 7 days | Muscle damage markers | Positive effect |
BEIJERS, 2020 [64] | 4 f + 7 m RES (67.8 ± 9.0) 5 f + 5 m PL (65.3 ± 9.1) | COPD | 150 mg/day | resVidaTM | 4 weeks | Metabolism, inflammation markers | No effect |
HUANG, 2020 [65] | 18 m RES (20.2 ± 0.4) 18 m PL (20.2 ± 0.4) | Healthy | 480 mg/day | Resveratrol extract + exercise | 4 days | Metabolism markers | No effect |
VAN POLANEN, 2020 [66] | 18 m RES (61 ± 8) 18 m PL (61 ± 8) | Obese Normoglycemic | 150 mg/day | Trans-resveratrol | 30 days | Metabolism, histological markers | Positive effect |
DE LIGT, 2018 [67] | 13 m RES (66) 13 m PL (66) | Overweight (T2DM first-degree relatives) | 150 mg/day | Trans-resveratrol | 30–34 days | Metabolism markers, respiration | Partially positive effect |
ALWAY, 2017 [68] | 9 f + 6 m RES (67.9 ± 1.1) 9 f + 6 m PL (67.9 ± 1.1) | Healthy | 500 mg/day | Resveratrol + exercise | 12 weeks | Metabolism, histological markers, performance | Positive effect |
KJAER, 2017 [69] | 21 m RES 150 mg (49.1 ± 1.46) 21 m RES 1000 mg (51.9 ± 1.28) 24 m PL (47.8 ± 1.3) | Metabolic syndrome | 150 mg 1000 mg/day | Resveratrol | 16 weeks | Metabolism markers | No effect |
KORSHOLM, 2017 [70] | 21 m RES (47.8 ± 1.3) 24 m PL (47.8 ± 1.3) | Metabolic syndrome | 1000 mg/day | resVidaTM | 4 months | Metabolomic analyses | Positive effect |
MCDERMOTT, 2017 [71] | 8 f + 13 m RES 125 mg (73.6 ± 6.6) 6 f + 17 m RES 500 mg (75.6 ± 7.3) 21 f + 45 m PL (74.4 ± 6.1) | PAD | 125, 500 mg/day | Resveratrol | 6 months | Performance | Partially positive effect |
POLLACK, 2017 [54] | 19 f (67 ± 7) 11 m (67 ± 7) | Glucose intolerant | 2000–3000 mg/day | Resveratrol | 6 weeks | Metabolism markers | Positive effect |
MOST, 2016 [72] | 18 EGCG + RES (36.1 ± 2.2) 20 PL (38.7 ± 2.2) | Overweight Obese | 80 mg/day | Trans-resveratrol extract + epigallocatechine-3 | 12 weeks | Metabolism markers, respiration | Positive effects |
POLLEY, 2016 [73] | 4 f (19.7 ± 0.6) + 4 m (21.07 ± 2.4) RES 3 f (19.0 ± 0.8) + 5 m (20.0 ± 0.8) PL | Healthy | 500 mg/day | Trans-resveratrol + 10mg/day piperine + exercise | 4 weeks | Metabolism markers, respiration | Positive effects |
GLIEMANN, 2014 [45] | 9 m RES (60–72) 14 m RES + exercise (60–72) 7 m PL (60–72) 13 m PL + exercise (60–72) | Healthy | 250 mg/day | Trans-resveratrol + exercise | 8 weeks | Angiogenic markers | No effect |
GOH, 2014 [74] | 5 m RES (55.8 ± 7.3) 5 m PL (56.8 ± 5.3) | T2DM | 500 mg/day | Trans-resveratrol | 12 weeks | Metabolisms markers, performance | Partially positive effect |
OLESEN, 2014 [75] | 9 m RES (60–72) 14 m RES + exercise (60–72) 7 m PL (60–72) 13 m PL + exercise (60–72) | Healthy | 250 mg/day | Trans-resveratrol + exercise | 8 weeks | Metabolism, inflammation markers | No effect |
SCRIBBANS, 2014 [76] | 8 m RES (21 ± 1) 8 m PL (22 ± 1) | Healthy | 150 mg/day | resVidaTM + exercise | 4 weeks | Metabolism, histological markers, performance | Partially positive effect |
WILLIAMS, 2014 [77] | 8 m RES (23.8 ± 2.4) 8 m PL (23.4 ± 6.1) | Sedentary | 300 mg | resVidaTM | Single dose | Metabolism markers, respiration | No effect |
GLIEMANN, 2013 [78] | 9 m RES (60–72) 14 m RES + exercise (60–72) 7 m PL (60–72) 13 m PL + exercise (60–72) | Healthy | 250 mg/day | Trans-resveratrol + exercise | 8 weeks | Metabolism, inflammation markers | No effect |
O’CONNOR, 2013 [79] | 9 f + 11 m RES (19.9 ± 2.2) 12 f + 10 m PL (19.8 ± 1.7) | Healthy | Grape powder drink | 45 days | Muscle performance, injury | No effect | |
POULSEN, 2013 [80] | 12 m RES (44.7 ± 3.5) 12 m PL (31.1 ± 3.9) | Obese | 1500 mg/day | Trans-resveratrol | 4 weeks | Metabolism markers | No effect |
YOSHINO, 2012 [81] | 15 f RES (58.2.5 ± 4.0) 14 f PL (59.8.5 ± 4.3) | Healthy, postmenopausal | 75 mg/day | Resveratrol | 12 weeks | Metabolism markers | No effect |
TIMMERS, 2011 [82] | 11 m RES (52.5 ± 2.1) 11 m PL (52.5 ± 2.1) | Obese | 150 mg/day | resVidaTM | 30 days | Metabolism markers | Positive effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toniolo, L.; Concato, M.; Giacomello, E. Resveratrol, a Multitasking Molecule That Improves Skeletal Muscle Health. Nutrients 2023, 15, 3413. https://doi.org/10.3390/nu15153413
Toniolo L, Concato M, Giacomello E. Resveratrol, a Multitasking Molecule That Improves Skeletal Muscle Health. Nutrients. 2023; 15(15):3413. https://doi.org/10.3390/nu15153413
Chicago/Turabian StyleToniolo, Luana, Monica Concato, and Emiliana Giacomello. 2023. "Resveratrol, a Multitasking Molecule That Improves Skeletal Muscle Health" Nutrients 15, no. 15: 3413. https://doi.org/10.3390/nu15153413
APA StyleToniolo, L., Concato, M., & Giacomello, E. (2023). Resveratrol, a Multitasking Molecule That Improves Skeletal Muscle Health. Nutrients, 15(15), 3413. https://doi.org/10.3390/nu15153413