Plant-Based Dairy Alternatives Contribute to a Healthy and Sustainable Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Impact of Beverages
2.2. EAT Lancet Analysis
2.3. Cost Analysis
3. Results
4. Discussion
4.1. Environmental Footprint
4.2. What Is the Nutritional and Environmental Impact of Introducing PBDs to the EAT Planetary Health Diet
4.3. Environmental and Nutritional Indices
4.4. Nutrient Adequacy
4.4.1. Protein
4.4.2. Calcium
4.4.3. Vitamin B12
4.4.4. Vitamin D
4.4.5. Iodine
4.4.6. Riboflavin
4.5. Ultra-Processed Food Classification
4.6. Factors Influencing Change towards Plant-Based Dairy Alternatives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- James-Martin, G.; Baird, D.L.; Hendrie, G.A.; Bogard, J.; Anastasiou, K.; Brooker, P.G.; Wiggins, B.; Williams, G.; Herrero, M.; Lawrence, M.; et al. Environmental Sustainability in National Food-Based Dietary Guidelines: A Global Review. Lancet Planet. Health 2022, 6, e977–e986. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.G.; Garnett, T. Plates, Pyramids, and Planets: Developments in National Healthy and Sustainable Dietary Guidelines: A State of Play Assessment; Food and Agriculture Organization of the United Nations and Food Climate Research Network, University of Oxford: Rome, Italy, 2016; ISBN 9789251092224. [Google Scholar]
- Van Dooren, C.; Marinussen, M.; Blonk, H.; Aiking, H.; Vellinga, P. Exploring Dietary Guidelines Based on Ecological and Nutritional Values: A Comparison of Six Dietary Patterns. Food Policy 2014, 44, 36–46. [Google Scholar] [CrossRef]
- Lartey, A.; Branca, F. Sustainable Healthy Diets: Guiding Principles; Food and Agriculture Organization of the United Nations: World Health Organization: Rome, Italy, 2019; ISBN 9789251318751. [Google Scholar]
- Springmann, M.; Spajic, L.; Clark, M.A.; Poore, J.; Herforth, A.; Webb, P.; Rayner, M.; Scarborough, P. The Healthiness and Sustainability of National and Global Food Based Dietary Guidelines: Modelling Study. BMJ 2020, 370, m2322. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 20 May 2023).
- British Dietetic Association. One Blue Dot. The BDA’s Environmentally Sustainable Diet Project. Available online: https://www.bda.uk.com/resource/one-blue-dot.html (accessed on 21 May 2023).
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Jones, P. UK Retailers and Plant-Based Alternatives to Meat and Dairy Products. Athens J. Bus. Econ. 2022, 8, 1–13. [Google Scholar] [CrossRef]
- Bloomberg Intelligence. Plant-Based Foods Poised for Explosive Growth, August 2021. Available online: https://assets.bbhub.io/professional/sites/10/1102795_PlantBasedFoods.pdf (accessed on 25 July 2023).
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Bussa, M.; Eberhart, M.; Jungbluth, N.; Meili, C. Okobilanz von Kuhmilch und Pflanzlichen Drinks. ESU-Services GmbH im Auftrag von WWF Schweiz. 2020. Available online: https://esu-services.ch/fileadmin/download/bussa-2020-LCA-Milk-Drinks.pdf (accessed on 25 July 2023).
- Nutritics, v5, Nutrition Analysis Software for Academics and Researchers, Dublin. Available online: https://www.nutritics.com/en/health/nutrition-research (accessed on 21 May 2023).
- Medici, E.; Craig, W.J.; Rowland, I. A comprehensive analysis of the nutritional composition of plant-based drinks and yogurt alternatives in Europe. Nutrients 2023, 15, 3415. [Google Scholar] [CrossRef]
- European Commission. Knowledge for Policy. Health Promotion and Disease Prevention Knowledge Gateway: Food-Based Dietary Guidelines in Europe—Table European Commission. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/food-based-dietary-guidelines-europe-table-7_en (accessed on 30 May 2023).
- FAO. Greenhouse Gas Emissions from the Dairy Sector. A Life Cycle Assessment. Food and Agricultural Organization of the United Nations, Animal Production and Health Division. Available online: https://www.fao.org/3/k7930e/k7930e00.pdf (accessed on 30 May 2023).
- Mangino, J.; Peterson, K.; Jacobs, H. Development of an Emissions Model to Estimate Methane from Enteric Fermentation in Cattle. Available online: https://www3.epa.gov/ttnchie1/conference/ei12/green/mangino.pdf (accessed on 15 May 2023).
- Grigoriadis, V.; Nugent, A.; Brereton, P. Working towards a Combined Measure for Describing Environmental Impact and Nutritive Value of Foods: A Review. Trends Food Sci. Technol. 2021, 112, 298–311. [Google Scholar] [CrossRef]
- Guo, A.; Bryngelsson, S.; Strid, A.; Bianchi, M.; Winkvist, A.; Hallström, E. Choice of Health Metrics for Combined Health and Environmental Assessment of Foods and Diets: A Systematic Review of Methods. J. Clean. Prod. 2022, 365, 132622. [Google Scholar] [CrossRef]
- McLaren, S.; Berardy, A.; Henderson, A.; Holden, N.; Huppertz, T.; Jolliet, O.; De Camillis, C.; Renouf, M.; Rugani, B.; Saarinen, M.; et al. Integration of Environment and Nutrition in Life Cycle Assessment of Food Items: Opportunities and Challenges; FAO: Rome Italy, 2021; Available online: https://www.fao.org/3/cb8054en/cb8054en.pdf. (accessed on 19 July 2023).
- Masset, G.; Vieux, F.; Darmon, N. Which Functional Unit to Identify Sustainable Foods? Public Health Nutr. 2015, 18, 2488–2497. [Google Scholar] [CrossRef] [Green Version]
- Strid, A.; Hallström, E.; Sonesson, U.; Sjons, J.; Winkvist, A.; Bianchi, M. Sustainability Indicators for Foods Benefiting Climate and Health. Sustainability 2021, 13, 3621. [Google Scholar] [CrossRef]
- Smedman, A.; Lindmark-Månsson, H.; Drewnowski, A.; Edman, A.-K.M. Nutrient Density of Beverages in Relation to Climate Impact. Food Nutr. Res. 2010, 54, 5170. [Google Scholar] [CrossRef] [Green Version]
- Scarborough, P.; Rayner, M. Nutrient Density to Climate Impact Index Is an Inappropriate System for Ranking Beverages in Order of Climate Impact per Nutritional Value. Food Nutr. Res. 2010, 54, 5681. [Google Scholar] [CrossRef] [Green Version]
- Hallström, E.; Davis, J.; Woodhouse, A.; Sonesson, U. Using Dietary Quality Scores to Assess Sustainability of Food Products and Human Diets: A Systematic Review. Ecol. Indic. 2018, 93, 219–230. [Google Scholar] [CrossRef]
- Green, A.; Nemecek, T.; Chaudhary, A.; Mathys, A. Assessing Nutritional, Health, and Environmental Sustainability Dimensions of Agri-Food Production. Glob. Food Secur. 2020, 26, 100406. [Google Scholar] [CrossRef]
- Bianchi, M.; Strid, A.; Winkvist, A.; Lindroos, A.-K.; Sonesson, U.; Hallström, E. Systematic Evaluation of Nutrition Indicators for Use within Food LCA Studies. Sustainability 2020, 12, 8992. [Google Scholar] [CrossRef]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental Impact of Dietary Change: A Systematic Review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Fulgoni, V.L.; Keast, D.R.; Drewnowski, A. Development and Validation of the Nutrient-Rich Foods Index: A Tool to Measure Nutritional Quality of Foods. J. Nutr. 2009, 139, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Singh-Povel, C.M.; Van Gool, M.P.; Gual Rojas, A.P.; Bragt, M.C.; Kleinnijenhuis, A.J.; Hettinga, K.A. Nutritional Content, Protein Quantity, Protein Quality and Carbon Footprint of Plant-Based Drinks and Semi-Skimmed Milk in the Netherlands and Europe. Public Health Nutr. 2022, 25, 1416–1426. [Google Scholar] [CrossRef]
- Young, V.; Pellett, P. Plant Proteins in Relation to Human Protein and Amino Acid Nutrition. Am. J. Clin. Nutr. 1994, 59, 1203S–1212S. [Google Scholar] [CrossRef] [Green Version]
- Qin, P.; Wang, T.; Luo, Y. A Review on Plant-Based Proteins from Soybean: Health Benefits and Soy Product Development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Craig, W.J.; Brothers, C.J.; Mangels, R. Nutritional Content and Health Profile of Single-Serve Non-Dairy Plant-Based Beverages. Nutrients 2021, 14, 162. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M. Current Concepts and Unresolved Questions in Dietary Protein Requirements and Supplements in Adults. Front. Nutr. 2017, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halkjær, J.; Olsen, A.; Bjerregaard, L.J.; Deharveng, G.; Tjønneland, A.; Welch, A.A.; Crowe, F.L.; Wirfält, E.; Hellstrom, V.; Niravong, M.; et al. Intake of Total, Animal and Plant Proteins, and Their Food Sources in 10 Countries in the European Prospective Investigation into Cancer and Nutrition. Eur. J. Clin. Nutr. 2009, 63, S16–S36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Dietary Protein: Overview of Protein Intake in European Countries. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/dietary-protein-overview-countries-6_en (accessed on 15 May 2023).
- Alexy, U.; Fischer, M.; Weder, S.; Längler, A.; Michalsen, A.; Sputtek, A.; Keller, M. Nutrient Intake and Status of German Children and Adolescents Consuming Vegetarian, Vegan or Omnivore Diets: Results of the VeChi Youth Study. Nutrients 2021, 13, 1707. [Google Scholar] [CrossRef]
- Clarys, P.; Deliens, T.; Huybrechts, I.; Deriemaeker, P.; Vanaelst, B.; De Keyzer, W.; Hebbelinck, M.; Mullie, P. Comparison of Nutritional Quality of the Vegan, Vegetarian, Semi-Vegetarian, Pesco-Vegetarian and Omnivorous Diet. Nutrients 2014, 6, 1318–1332. [Google Scholar] [CrossRef] [Green Version]
- EFSA Scientific Committee Guidance on Selected Default Values to Be Used by the EFSA Scientific Committee, Scientific Panels and Units in the Absence of Actual Measured Data. EFS2 2012, 10, 2579. [CrossRef]
- EFSA Dietary Reference Values. Available online: https://www.efsa.europa.eu/en/topics/topic/dietary-reference-values (accessed on 15 January 2023).
- Huysentruyt, K.; Laire, D.; Van Avondt, T.; De Schepper, J.; Vandenplas, Y. Energy and Macronutrient Intakes and Adherence to Dietary Guidelines of Infants and Toddlers in Belgium. Eur. J. Nutr. 2016, 55, 1595–1604. [Google Scholar] [CrossRef]
- Madrigal, C.; Soto-Méndez, M.J.; Hernández-Ruiz, Á.; Valero, T.; Lara Villoslada, F.; Leis, R.; de Victoria, E.M.; Moreno, J.M.; Ortega, R.M.; Ruiz-López, M.D.; et al. Dietary Intake, Nutritional Adequacy, and Food Sources of Protein and Relationships with Personal and Family Factors in Spanish Children Aged One to <10 Years: Findings of the EsNuPI Study. Nutrients 2021, 13, 1062. [Google Scholar] [CrossRef]
- FAO. Available online: https://www.fao.org/faostat/en/ (accessed on 8 June 2023).
- Storhaug, C.L.; Fosse, S.K.; Fadnes, L.T. Country, Regional, and Global Estimates for Lactose Malabsorption in Adults: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Cámara, M.; Giner, R.M.; González-Fandos, E.; López-García, E.; Mañes, J.; Portillo, M.P.; Rafecas, M.; Domínguez, L.; Martínez, J.A. Food-Based Dietary Guidelines around the World: A Comparative Analysis to Update AESAN Scientific Committee Dietary Recommendations. Nutrients 2021, 13, 3131. [Google Scholar] [CrossRef]
- Qiu, R.; Cao, W.; Tian, H.; He, J.; Chen, G.; Chen, Y. Greater Intake of Fruit and Vegetables Is Associated with Greater Bone Mineral Density and Lower Osteoporosis Risk in Middle-Aged and Elderly Adults. PLoS ONE 2017, 12, e0168906. [Google Scholar] [CrossRef] [PubMed]
- Prynne, C.J.; Mishra, G.D.; O’Connell, M.A.; Muniz, G.; Laskey, M.A.; Yan, L.; Prentice, A.; Ginty, F. Fruit and Vegetable Intakes and Bone Mineral Status: A Cross-Sectional Study in 5 Age and Sex Cohorts. Am. J. Clin. Nutr. 2006, 83, 1420–1428. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ho, S.C.; Woo, J.L.F. Greater Fruit and Vegetable Intake Is Associated with Increased Bone Mass among Postmenopausal Chinese Women. Br. J. Nutr. 2006, 96, 745–751. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; He, L.-P.; Liu, Y.-H.; Liu, J.; Su, Y.-X.; Chen, Y.-M. Association between Dietary Intake of Flavonoid and Bone Mineral Density in Middle Aged and Elderly Chinese Women and Men. Osteoporos. Int. 2014, 25, 2417–2425. [Google Scholar] [CrossRef]
- Welch, A.; MacGregor, A.; Jennings, A.; Fairweather-Tait, S.; Spector, T.; Cassidy, A. Habitual Flavonoid Intakes Are Positively Associated with Bone Mineral Density in Women. J. Bone. Miner Res. 2012, 27, 1872–1878. [Google Scholar] [CrossRef]
- Hardcastle, A.C.; Aucott, L.; Reid, D.M.; Macdonald, H.M. Associations between Dietary Flavonoid Intakes and Bone Health in a Scottish Population. J. Bone. Miner. Res. 2011, 26, 941–947. [Google Scholar] [CrossRef]
- Welch, A.A.; Hardcastle, A.C. The Effects of Flavonoids on Bone. Curr. Osteoporos. Rep. 2014, 12, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Fresán, U. International Analysis of the Nutritional Content and a Review of Health Benefits of Non-Dairy Plant-Based Beverages. Nutrients 2021, 13, 842. [Google Scholar] [CrossRef]
- EUR-Lex. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Oganic Products and Repealing Council Regulation (EC) No 834/2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R0848 (accessed on 25 July 2023).
- Zhao, Y.; Martin, B.R.; Weaver, C.M. Calcium Bioavailability of Calcium Carbonate Fortified Soymilk Is Equivalent to Cow’s Milk in Young Women. J. Nutr. 2005, 135, 2379–2382. [Google Scholar] [CrossRef] [Green Version]
- Heaney, R.P.; Dowell, M.S.; Rafferty, K.; Bierman, J. Bioavailability of the Calcium in Fortified Soy Imitation Milk, with Some Observations on Method. Am. J. Clin. Nutr. 2000, 71, 1166–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, W.J. Nutrition Concerns and Health Effects of Vegetarian Diets. Nutr. Clin. Pract. 2010, 25, 613–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langan, R.C.; Goodbred, A.J. Vitamin B12 Deficiency: Recognition and Management. Am. Fam. Physician 2017, 96, 384–389. [Google Scholar]
- NIH. Office of Dietary Supplements. Available online: https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/ (accessed on 15 May 2023).
- The Vegan Society. Vitamin B12. 2022. Available online: https://www.vegansociety.com/resources/nutrition-and-health/nutrients/vitamin-b12 (accessed on 1 June 2023).
- Langan, R.C.; Zawistoski, K.J. Update on Vitamin B12 Deficiency. Am. Fam. Physician 2011, 83, 1425–1430. [Google Scholar]
- Baik, H.W.; Russell, R.M. Vitamin B12 deficiency in the elderly. Annu. Rev. Nutr. 1999, 19, 357–377. [Google Scholar] [CrossRef]
- Obeid, R.; Murphy, M.; Solé-Navais, P.; Yajnik, C. Cobalamin Status from Pregnancy to Early Childhood: Lessons from Global Experience. Adv. Nutr. 2017, 8, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Molloy, A.M.; Kirke, P.N.; Brody, L.C.; Scott, J.M.; Mills, J.L. Effects of Folate and Vitamin B 12 Deficiencies During Pregnancy on Fetal, Infant, and Child Development. Food Nutr. Bull. 2008, 29, S101–S111. [Google Scholar] [CrossRef]
- Matte, J.J.; Britten, M.; Girard, C.L. The Importance of Milk as a Source of Vitamin B12 for Human Nutrition. Anim. Front. 2014, 4, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Gille, D.; Schmid, A. Vitamin B12 in Meat and Dairy Products. Nutr. Rev. 2015, 73, 106–115. [Google Scholar] [CrossRef]
- European Milk Forum: Milk Nutritious by Nature: Nutritional Information. Available online: http://www.milknutritiousbynature.eu/milk-facts/nutritional-info/ (accessed on 15 May 2023).
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on dietary reference values for vitamin D. EFSA J. 2016, 14, 145. [Google Scholar]
- Schmid, A.; Walther, B. Natural Vitamin D Content in Animal Products. Adv. Nutr. 2013, 4, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattila, P.H.; Piironen, V.I.; Uusi-Rauva, E.J.; Koivistoinen, P.E. Vitamin D Contents in Edible Mushrooms. J. Agric. Food Chem. 1994, 42, 2449–2453. [Google Scholar] [CrossRef]
- Benedik, E. Sources of Vitamin D for Humans. Int. J. Vitam. Nutr. Res. 2022, 92, 118–125. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on the Tolerable Upper Intake Level of Vitamin D. EFS2 2012, 10, 21. [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D Deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.D.; Sheehy, T.; O’Neill, C.M. Is Vitamin D Deficiency a Public Health Concern for Low Middle Income Countries? A Systematic Literature Review. Eur. J. Nutr. 2019, 58, 433–453. [Google Scholar] [CrossRef]
- Schleicher, R.L.; Sternberg, M.R.; Lacher, D.A.; Sempos, C.T.; Looker, A.C.; Durazo-Arvizu, R.A.; Yetley, E.A.; Chaudhary-Webb, M.; Maw, K.L.; Pfeiffer, C.M.; et al. The Vitamin D Status of the US Population from 1988 to 2010 Using Standardized Serum Concentrations of 25-Hydroxyvitamin D Shows Recent Modest Increases. Am. J. Clin. Nutr. 2016, 104, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Itkonen, S.; Erkkola, M.; Lamberg-Allardt, C. Vitamin D Fortification of Fluid Milk Products and Their Contribution to Vitamin D Intake and Vitamin D Status in Observational Studies—A Review. Nutrients 2018, 10, 1054. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.D.; Kiely, M. Tackling Inadequate Vitamin D Intakes within the Population: Fortification of Dairy Products with Vitamin D May Not Be Enough. Endocrine 2016, 51, 38–46. [Google Scholar] [CrossRef]
- Keats, E.C.; Neufeld, L.M.; Garrett, G.S.; Mbuya, M.N.N.; Bhutta, Z.A. Improved Micronutrient Status and Health Outcomes in Low- and Middle-Income Countries Following Large-Scale Fortification: Evidence from a Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2019, 109, 1696–1708. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, R.V.C.; Fernandes, Â.; Gonzaléz-Paramás, A.M.; Barros, L.; Ferreira, I.C.F.R. Flour Fortification for Nutritional and Health Improvement: A Review. Food Res. Int. 2019, 125, 108576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppönen, E.; Berry, J.; Vieth, R.; et al. Comparison of Vitamin D2 and Vitamin D3 Supplementation in Raising Serum 25-Hydroxyvitamin D Status: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO; International Council for Control of Iodine Deficiency Disorders. Salt Iodization for the Elimination of Iodine Deficiency. 1995. Available online: https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/15392/107397.pdf (accessed on 12 May 2023).
- Andersson, M.; Karumbunathan, V.; Zimmermann, M.B. Global Iodine Status in 2011 and Trends over the Past Decade. J. Nutr. 2012, 142, 744–750. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Takkouche, B.; Egli, I.; Allen, H.E.; de Benoist, B. Current Global Iodine Status and Progress over the Last Decade towards the Elimination of Iodine Deficiency. Bull. World Health Organ. 2005, 83, 518–525. [Google Scholar] [PubMed]
- Zimmermann, M.B.; Andersson, M. Global perspectives in endocrinology: Coverage of iodized salt programs and iodine status in 2020. Eur. J. Endocrinol. 2021, 185, R13–R21. [Google Scholar] [CrossRef]
- Ittermann, T.; Albrecht, D.; Arohonka, P.; Bilek, R.; De Castro, J.J.; Dahl, L.; Filipsson Nystrom, H.; Gaberscek, S.; Garcia-Fuentes, E.; Gheorghiu, M.L.; et al. Standardized Map of Iodine Status in Europe. Thyroid 2020, 30, 1346–1354. [Google Scholar] [CrossRef]
- Charlton, K.; Skeaff, S. Iodine Fortification: Why, When, What, How, and Who? Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 618–624. [Google Scholar] [CrossRef]
- Van Der Reijden, O.L.; Zimmermann, M.B.; Galetti, V. Iodine in Dairy Milk: Sources, Concentrations and Importance to Human Health. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 385–395. [Google Scholar] [CrossRef]
- Roseland, J.M.; Phillips, K.M.; Patterson, K.Y.; Pehrsson, P.R.; Bahadur, R.; Ershow, A.G.; Somanchi, M. Large Variability of Iodine Content in Retail Cow’s Milk in the U.S. Nutrients 2020, 12, 1246. [Google Scholar] [CrossRef]
- Thomson, C.D. Selenium and Iodine Intakes and Status in New Zealand and Australia. Br. J. Nutr. 2004, 91, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Bath, S.C.; Button, S.; Rayman, M.P. Iodine Concentration of Organic and Conventional Milk: Implications for Iodine Intake. Br. J. Nutr. 2012, 107, 935–940. [Google Scholar] [CrossRef] [Green Version]
- Bath, S.C.; Hill, S.; Infante, H.G.; Elghul, S.; Nezianya, C.J.; Rayman, M.P. Iodine Concentration of Milk-Alternative Drinks Available in the UK in Comparison with Cows’ Milk. Br. J. Nutr. 2017, 118, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Flachowsky, G.; Franke, K.; Meyer, U.; Leiterer, M.; Schöne, F. Influencing Factors on Iodine Content of Cow Milk. Eur. J. Nutr. 2014, 53, 351–365. [Google Scholar] [CrossRef]
- Carriquiry, A.L.; Spungen, J.H.; Murphy, S.P.; Pehrsson, P.R.; Dwyer, J.T.; Juan, W.; Wirtz, M.S. Variation in the Iodine Concentrations of Foods: Considerations for Dietary Assessment. Am. J. Clin. Nutr. 2016, 104, 877S–887S. [Google Scholar] [CrossRef] [Green Version]
- Witard, O.C.; Bath, S.C.; Dineva, M.; Sellem, L.; Mulet-Cabero, A.-I.; Dongen, L.H.V.; Zheng, J.-S.; Valenzuela, C.; Smeuninx, B. Dairy as a Source of Iodine and Protein in the UK: Implications for Human Health Across the Life Course, and Future Policy and Research. Front. Nutr. 2022, 9, 800559. [Google Scholar] [CrossRef]
- Dineva, M.; Rayman, M.P.; Bath, S.C. Iodine Status of Consumers of Milk-Alternative Drinks v. Cows’ Milk: Data from the UK National Diet and Nutrition Survey. Br. J. Nutr. 2021, 126, 28–36. [Google Scholar] [CrossRef]
- Walther, B.; Guggisberg, D.; Badertscher, R.; Egger, L.; Portmann, R.; Dubois, S.; Haldimann, M.; Kopf-Bolanz, K.; Rhyn, P.; Zoller, O.; et al. Comparison of Nutritional Composition between Plant-Based Drinks and Cow’s Milk. Front. Nutr. 2022, 9, 988707. [Google Scholar] [CrossRef]
- BDA. Food Fact Sheet. Available online: https://www.bda.uk.com/resource/iodine.html (accessed on 12 May 2023).
- European Food Safety Authority. Use of the EFSA Comprehensive European Food Consumption Database in Exposure Assessment. EFS2 2011, 9, 34. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; et al. Dietary Reference Values for Riboflavin. EFS2 2017, 15, 4919. [Google Scholar] [CrossRef]
- Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline; Institute of Medicine (U.S.), National Academy Press: Washington, DC, USA, 1998; ISBN 9780309065542.
- World Health Organization; Food and Agriculture Organization of the United Nations (Eds.) Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; FAO: Rome, Italy, 2004; ISBN 9789241546126. [Google Scholar]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High Compliance with Dietary Recommendations in a Cohort of Meat Eaters, Fish Eaters, Vegetarians, and Vegans: Results from the European Prospective Investigation into Cancer and Nutrition–Oxford Study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef] [Green Version]
- Allès, B.; Baudry, J.; Méjean, C.; Touvier, M.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Comparison of Sociodemographic and Nutritional Characteristics between Self-Reported Vegetarians, Vegans, and Meat-Eaters from the NutriNet-Santé Study. Nutrients 2017, 9, 1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weikert, C.; Trefflich, I.; Menzel, J.; Obeid, R.; Longree, A.; Dierkes, J.; Meyer, K.; Herter-Aeberli, I.; Mai, K.; Stangl, G.I.; et al. Vitamin and Mineral Status in a Vegan Diet. Dtsch. Ärzteblatt Int. 2020, 17, 35–36. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, H.M.; Rådjursöga, M.; Torstensson, T.; Jansson, L.; Ellegård, L.; Winkvist, A. Urine Metabolite Profiles and Nutrient Intake Based on 4-Day Weighed Food Diary in Habitual Vegans, Vegetarians, and Omnivores. J. Nutr. 2021, 151, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Vanga, S.K.; Raghavan, V. How Well Do Plant Based Alternatives Fare Nutritionally Compared to Cow’s Milk? J. Food Sci. Technol. 2018, 55, 10–20. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture, Agricultural Research Service. FoodData Central. Available online: https://www.fdc.nal.usda.gov (accessed on 12 April 2023).
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Small, D.M.; DiFeliceantonio, A.G. Processed Foods and Food Reward. Science 2019, 363, 346–347. [Google Scholar] [CrossRef]
- Fardet, A. Minimally Processed Foods Are More Satiating and Less Hyperglycemic than Ultra-Processed Foods: A Preliminary Study with 98 Ready-to-Eat Foods. Food Funct. 2016, 7, 2338–2346. [Google Scholar] [CrossRef]
- Louzada, M.L.D.C.; Baraldi, L.G.; Steele, E.M.; Martins, A.P.B.; Canella, D.S.; Moubarac, J.-C.; Levy, R.B.; Cannon, G.; Afshin, A.; Imamura, F.; et al. Consumption of Ultra-Processed Foods and Obesity in Brazilian Adolescents and Adults. Prev. Med. 2015, 81, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gómez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed Food and Chronic Noncommunicable Diseases: A Systematic Review and Meta-analysis of 43 Observational Studies. Obesity Rev. 2021, 22, e13146. [Google Scholar] [CrossRef]
- Wang, L.; Du, M.; Wang, K.; Khandpur, N.; Rossato, S.L.; Drouin-Chartier, J.-P.; Steele, E.M.; Giovannucci, E.; Song, M.; Zhang, F.F. Association of Ultra-Processed Food Consumption with Colorectal Cancer Risk among Men and Women: Results from Three Prospective US Cohort Studies. BMJ 2022, 378, e068921. [Google Scholar] [CrossRef]
- Astrup, A.; Monteiro, C.A.; Ludwig, D.S. Does the Concept of “Ultra-Processed Foods” Help Inform Dietary Guidelines, beyond Conventional Classification Systems? NO. Am. J. Clin. Nutr. 2022, 116, 1482–1488. [Google Scholar] [CrossRef]
- Adams, J.; White, M. Characterisation of UK Diets According to Degree of Food Processing and Associations with Socio-Demographics and Obesity: Cross-Sectional Analysis of UK National Diet and Nutrition Survey (2008–12). Int. J. Behav. Nutr. Phys. Act. 2015, 12, 160. [Google Scholar] [CrossRef] [Green Version]
- Gibney, M.J. Ultra-Processed Foods: Definitions and Policy Issues. Curr. Dev. Nutr. 2019, 3, nzy077. [Google Scholar] [CrossRef] [Green Version]
- Lockyer, S.; Spiro, A.; Berry, S.; He, J.; Loth, S.; Martinez-Inchausti, A.; Mellor, D.; Raats, M.; Sokolović, M.; Vijaykumar, S.; et al. How Do We Differentiate Not Demonise—Is There a Role for Healthier Processed Foods in an Age of Food Insecurity? Proceedings of a Roundtable Event. Nutr. Bull. 2023, 48, 278–295. [Google Scholar] [CrossRef]
- Braesco, V.; Souchon, I.; Sauvant, P.; Haurogné, T.; Maillot, M.; Féart, C.; Darmon, N. Ultra-Processed Foods: How Functional Is the NOVA System? Eur. J. Clin. Nutr. 2022, 76, 1245–1253. [Google Scholar] [CrossRef]
- Drewnowski, A. Perspective: Identifying Ultra-Processed Plant-Based Milk Alternatives in the USDA Branded Food Products Database. Adv. Nutr. 2021, 12, 2068–2075. [Google Scholar] [CrossRef]
- Messina, M.; Sievenpiper, J.L.; Williamson, P.; Kiel, J.; Erdman, J.W. Perspective: Soy-Based Meat and Dairy Alternatives, Despite Classification as Ultra-Processed Foods, Deliver High-Quality Nutrition on Par with Unprocessed or Minimally Processed Animal-Based Counterparts. Adv. Nutr. 2022, 13, 726–738. [Google Scholar] [CrossRef]
- Silva, B.Q.; Smetana, S. Review on Milk Substitutes from an Environmental and Nutritional Point of View. Appl. Food Res. 2022, 2, 100105. [Google Scholar] [CrossRef]
- Serrano, J.C.; Martín-Gari, M.; Cassanye, A.; Granado-Serrano, A.B.; Portero-Otín, M. Characterization of the Post-Prandial Insulinemic Response and Low Glycaemic Index of a Soy Beverage. PLoS ONE 2017, 12, e0182762. [Google Scholar] [CrossRef] [Green Version]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Messina, M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giugliano, R.; Musolino, N.; Ciccotelli, V.; Ferraris, C.; Savio, V.; Vivaldi, B.; Ercolini, C.; Bianchi, D.M.; Decastelli, L. Soy, Rice and Oat Drinks: Investigating Chemical and Biological Safety in Plant-Based Milk Alternatives. Nutrients 2023, 15, 2258. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Dwyer, J.; Fulgoni, V.L.; King, J.C.; Leveille, G.A.; MacDonald, R.S.; Ordovas, J.; Schnakenberg, D. Processed Foods: Contributions to Nutrition. Am. J. Clin. Nutr. 2014, 99, 1525–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Which? Five Ultra-Processed Foods You Shouldn’t Dismiss. Available online: https://www.which.co.uk/news/article/five-ultra-processed-foods-you-shouldnt-dismiss-aXlGr9Z5Dn18 (accessed on 18 July 2023).
- Karanja, A.; Ickowitz, A.; Stadlmayr, B.; McMullin, S. Understanding Drivers of Food Choice in Low- and Middle-Income Countries: A Systematic Mapping Study. Glob. Food Secur. 2022, 32, 100615. [Google Scholar] [CrossRef]
- Dowd, K.; Burke, K.J. The Influence of Ethical Values and Food Choice Motivations on Intentions to Purchase Sustainably Sourced Foods. Appetite 2013, 69, 137–144. [Google Scholar] [CrossRef]
- Marty, L.; Chambaron, S.; De Lauzon-Guillain, B.; Nicklaus, S. The Motivational Roots of Sustainable Diets: Analysis of Food Choice Motives Associated to Health, Environmental and Socio-Cultural Aspects of Diet Sustainability in a Sample of French Adults. Clean. Responsible Consum. 2022, 5, 100059. [Google Scholar] [CrossRef]
- Nie, W.; Medina-Lara, A.; Williams, H.; Smith, R. Do Health, Environmental and Ethical Concerns Affect Purchasing Behavior? A Meta-Analysis and Narrative Review. Soc. Sci. 2021, 10, 413. [Google Scholar] [CrossRef]
- Ensaff, H. A Nudge in the Right Direction: The Role of Food Choice Architecture in Changing Populations’ Diets. Proc. Nutr. Soc. 2021, 80, 195–206. [Google Scholar] [CrossRef]
- Laila, A.; Topakas, N.; Farr, E.; Haines, J.; Ma, D.W.; Newton, G.; Buchholz, A.C. Barriers and Facilitators of Household Provision of Dairy and Plant-Based Dairy Alternatives in Families with Preschool-Age Children. Public Health Nutr. 2021, 24, 5673–5685. [Google Scholar] [CrossRef]
- Gillison, F.; Verplanken, B.; Barnett, J.; Griffin, T.; Beasley, L. A Rapid Evidence Review of the Psychology of Food Choice; Food Standards Agency: London, UK, 2022. [Google Scholar]
- Haas, R.; Schnepps, A.; Pichler, A.; Meixner, O. Cow Milk versus Plant-Based Milk Substitutes: A Comparison of Product Image and Motivational Structure of Consumption. Sustainability 2019, 11, 5046. [Google Scholar] [CrossRef] [Green Version]
- Villegas, B.; Carbonell, I.; Costell, E. Acceptability of Milk and Soymilk Vanilla Beverages: Demographics Consumption Frequency and Sensory Aspects. Food Sci. Technol. Int. 2009, 15, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Karaağaç, Y.; Bellikci-Koyu, E. A Narrative Review on Food Neophobia throughout the Lifespan: Relationships with Dietary Behaviours and Interventions to Reduce It. Br. J. Nutr. 2022, 17, 1–34. [Google Scholar] [CrossRef]
- Culliford, A.; Bradbury, J. A Cross-Sectional Survey of the Readiness of Consumers to Adopt an Environmentally Sustainable Diet. Nutr. J. 2020, 19, 138. [Google Scholar] [CrossRef]
- Brandner, M.M.E.; Fyfe, C.L.; Horgan, G.W.; Johnstone, A.M. Self-Reported Purchasing Behaviour, Sociodemographic Predictors of Plant-Based Protein Purchasing and Knowledge about Protein in Scotland and England. Nutrients 2022, 14, 4706. [Google Scholar] [CrossRef]
- Kent, K.; Visentin, D.; Peterson, C.; Primo, C.; Elliott, C.; Otlowski, M.; Murray, S. The Perceived Importance and Intended Purchasing Patterns of Sustainable Foods in Australian University Students. Sustainability 2021, 13, 11928. [Google Scholar] [CrossRef]
- Brunin, J.; Allès, B.; Péneau, S.; Reuzé, A.; Pointereau, P.; Touvier, M.; Hercberg, S.; Lairon, D.; Baudry, J.; Kesse-Guyot, E. Do Individual Sustainable Food Purchase Motives Translate into an Individual Shift towards a More Sustainable Diet? A Longitudinal Analysis in the NutriNet-Santé Cohort. Clean. Responsible Consum. 2022, 5, 100062. [Google Scholar] [CrossRef]
- Adamczyk, D.; Jaworska, D.; Affeltowicz, D.; Maison, D. Plant-Based Dairy Alternatives: Consumers’ Perceptions, Motivations, and Barriers—Results from a Qualitative Study in Poland, Germany, and France. Nutrients 2022, 14, 2171. [Google Scholar] [CrossRef]
- Moss, R.; Barker, S.; Falkeisen, A.; Gorman, M.; Knowles, S.; McSweeney, M.B. An Investigation into Consumer Perception and Attitudes towards Plant-Based Alternatives to Milk. Food Res. Int. 2022, 159, 111648. [Google Scholar] [CrossRef]
- Clegg, M.E.; Tarrado Ribes, A.; Reynolds, R.; Kliem, K.; Stergiadis, S. A Comparative Assessment of the Nutritional Composition of Dairy and Plant-Based Dairy Alternatives Available for Sale in the UK and the Implications for Consumers’ Dietary Intakes. Food Res. Int. 2021, 148, 110586. [Google Scholar] [CrossRef]
- Alae-Carew, C.; Green, R.; Stewart, C.; Cook, B.; Dangour, A.D.; Scheelbeek, P.F.D. The Role of Plant-Based Alternative Foods in Sustainable and Healthy Food Systems: Consumption Trends in the UK. Sci. Total Environ. 2022, 807, 151041. [Google Scholar] [CrossRef]
- Zampelas, A. The Effects of Soy and its Components on Risk Factors and End Points of Cardiovascular Diseases. Nutrients 2019, 11, 2621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Wang, M.; Li, Z.; Jiang, H.; Shi, J.; Shi, X.; Liu, S.; Zhao, J.; Kong, L.; Zhang, W.; et al. Intake of Soy, Soy Isoflavones and Soy Protein and Risk of Cancer Incidence and Mortality. Front. Nutr. 2022, 9, 847421. [Google Scholar] [CrossRef] [PubMed]
- Pabich, M.; Materska, M. Biological Effect of Soy Isoflavones in the Prevention of Civilization Diseases. Nutrients 2019, 11, 1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhtiari, A.; Hajian-Tilaki, K.; Omidvar, S.; Nasiri-Amiri, F. Clinical and Metabolic Response to Soy Administration in Older Women with Metabolic Syndrome: A Randomized Controlled Trial. Diabetol. Metab. Syndr. 2019, 11, 47. [Google Scholar] [CrossRef] [Green Version]
- Azadbakht, L.; Atabak, S.; Esmaillzadeh, A. Soy Protein Intake, Cardiorenal Indices, and C-Reactive Protein in Type 2 Diabetes With Nephropathy: A Longitudinal Randomized Clinical Trial. Diabetes Care 2008, 31, 648. [Google Scholar] [CrossRef] [Green Version]
Original EAT PHD Analysis [8] | EU EAT PHD with 250 mL Low-Fat Dairy Milk 1 | |||
---|---|---|---|---|
Nutrients | % Difference 2 | % DRV 3 | ||
kJ | 10,500 | 9946 | −1% | 104% |
Kcal | 2500 | 2370 | −1% | 104% |
Fat g | 105.6 | 99.4 | −4% | 112% |
Saturated Fat g | 22.7 | 21.3 | −9% | 106% 4 |
Carbohydrate g | 317.3 | 277.2 | 0% | 97% |
Total Sugars g | NA | 83.4 | NA | 146% |
Fibre g | 42.9 | 36.7 | 0% | 147% |
Protein g | 90.1 | 89.2 | −1% | 154% |
Salt g | not > 5.75 | 0.61 | NA | 10% |
Calcium mg | 718 | 729 | 2% | 73% |
Iodine mcg | NA | 84.5 | NA | 56% |
Vit A (REA) mcg | 1068 | 1186 | −6% | 158% |
Vit D mcg | 4.87 | 2.17 | −60% | 14% |
Riboflavin (B2) mg | 1.70 | 1.45 | 2% | 90% |
Vit B12 mcg | 2.30 | 2.91 | −1% | 73% |
Baseline EU EAT PHD with 250 mL Low-Fat Dairy Milk 1 | Replacing the 250 mL Low-Fat Diary Milk in the Baseline EU EAT PHD with a Fortified Plant-Based Drink | |||||||
---|---|---|---|---|---|---|---|---|
250 mL Fortified Soya Drink | 250 mL Fortified Oat Drink | |||||||
Nutrients | % DRV 3 | Nutrients | % Difference 2 | % DRV 3 | Nutrients | % Difference 2 | % DRV 3 | |
kJ | 9946 | 104% | 9860 | −1% | 103% | 9913 | 0% | 103% |
Kcal | 2370 | 104% | 2350 | −1% | 103% | 2362 | 0% | 104% |
Fat g | 99.4 | 112% | 100 | 1% | 113% | 99.3 | 0% | 112% |
Sat. Fat g | 21.3 | 84%4 | 19.5 | −8% | 77%4 | 19.3 | −9% | 76% 4 |
Carbohydrate g | 277.2 | 97% | 271.5 | −2% | 95% | 281.7 | 2% | 99% |
Total Sugars g | 83.4 | 146% | 76.6 | −8% | 134% | 79.9 | −4% | 140% |
Fibre g | 36.7 | 147% | 37.9 | 3% | 152% | 38.7 | 5% | 155% |
Protein g | 89.2 | 154% | 88.4 | −1% | 152% | 82.9 | −7% | 143% |
Salt | 0.61 | 10% | 0.61 | 0% | 10% | 0.61 | 0% | 10% |
Calcium mg | 729 | 73% | 729 | 0% | 73% | 729 | 0% | 73% |
Iodine ug | 84.5 | 56% | 110.5 | 31% | 74% | 110.5 | 31% | 74% |
Vit A (REA) mcg | 1186 | 158% | 1151 | −3% | 153% | 1151 | −3% | 153% |
Vit D ug | 2.17 | 14% | 4.02 | 85% | 27% | 4.02 | 85% | 27% |
Riboflavin (B2) mg | 1.45 | 90% | 1.52 | 5% | 95% | 1.52 | 5% | 95% |
Vitamin B12 mcg | 2.91 | 73% | 2.76 | −5% | 69% | 2.76 | −5% | 69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craig, W.J.; Messina, V.; Rowland, I.; Frankowska, A.; Bradbury, J.; Smetana, S.; Medici, E. Plant-Based Dairy Alternatives Contribute to a Healthy and Sustainable Diet. Nutrients 2023, 15, 3393. https://doi.org/10.3390/nu15153393
Craig WJ, Messina V, Rowland I, Frankowska A, Bradbury J, Smetana S, Medici E. Plant-Based Dairy Alternatives Contribute to a Healthy and Sustainable Diet. Nutrients. 2023; 15(15):3393. https://doi.org/10.3390/nu15153393
Chicago/Turabian StyleCraig, Winston J., Virginia Messina, Ian Rowland, Angelina Frankowska, Jane Bradbury, Sergiy Smetana, and Elphee Medici. 2023. "Plant-Based Dairy Alternatives Contribute to a Healthy and Sustainable Diet" Nutrients 15, no. 15: 3393. https://doi.org/10.3390/nu15153393
APA StyleCraig, W. J., Messina, V., Rowland, I., Frankowska, A., Bradbury, J., Smetana, S., & Medici, E. (2023). Plant-Based Dairy Alternatives Contribute to a Healthy and Sustainable Diet. Nutrients, 15(15), 3393. https://doi.org/10.3390/nu15153393