Effects of Unripe Black Raspberry Extract Supplementation on Male Climacteric Syndrome and Voiding Dysfunction: A Pilot, Randomized, Double-Blind, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Supplement
2.2. Subjects
2.3. Study Design
2.4. Randomization
2.5. Outcome Measurement
2.6. Primary Outcome
2.7. Secondary Outcome
2.7.1. International Prostate Symptom Score (IPSS)
2.7.2. Measurement of Sex Hormones
2.7.3. Lipid Profiles and Anthropometric Index
2.8. Safety Outcome Measurements
2.9. Evaluation of Diet and Physical Activity
2.10. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Participants
3.2. Diet Intake and Physical Activity
3.3. Efficacy Evaluations
3.3.1. Primary Outcome
3.3.2. Secondary Outcome
3.4. Safety Parameters
3.5. Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Kwon, O.-J.; Henry, G.; Malewska, A.; Wei, X.; Zhang, L.; Brinkley, W.; Zhang, Y.; Castro, P.D.; Titus, M. Non-cell-autonomous regulation of prostate epithelial homeostasis by androgen receptor. Mol. Cell 2016, 63, 976–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choung, M.-G.; Lim, J.-D. Antioxidant, anticancer and immune activation of anthocyanin fraction from Rubus coreanus Miquel fruits (Bokbunja). Korean J. Med. Crop Sci. 2012, 20, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Midzak, A.S.; Chen, H.; Papadopoulos, V.; Zirkin, B.R. Leydig cell aging and the mechanisms of reduced testosterone synthesis. Mol. Cell. Endocrinol. 2009, 299, 23–31. [Google Scholar] [CrossRef]
- Decaroli, M.C.; Rochira, V. Aging and sex hormones in males. Virulence 2017, 8, 545–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.-H.; Jung, H.; Lee, S.-R.; Lee, H.-J.; Hwang, K.T.; Kim, T.-Y. Anti-oxidant, anti-proliferative and anti-inflammatory activities of the extracts from black raspberry fruits and wine. Food Chem. 2010, 123, 338–344. [Google Scholar] [CrossRef]
- Choi, H.R.; Lee, J.-H.; Lee, S.J.; Lee, M.J.; Jeong, J.T.; Lee, T.-B. Effects of unripe black raspberry water extract on lipid metabolism and oxidative stress in mice. Korean J. Food Sci. Technol. 2014, 46, 489–497. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, S.J.; Choi, H.R.; Lee, J.H.; Kwon, J.W.; Chae, K.S.; Jeong, J.T.; Lee, T.B. Improvement of cholesterol and blood pressure in fruit, leaf and stem extracts from black raspberry in vitro. Korean J. Med. Crop Sci. 2014, 22, 177–187. [Google Scholar] [CrossRef]
- Lee, S.J.; Choi, H.R.; Lee, J.-H.; Kwon, J.W.; Lee, H.K.; Jeong, J.T.; Lee, T.-B. Effects of unripe black raspberry extracts on prostate cancer cell line and rat model of benign prostatic hyperplasia. J. Korean Soc. Food Sci. Nutr. 2014, 43, 507–515. [Google Scholar] [CrossRef]
- Chae, K.S.; Lee, S.J.; Gim, S.W.; Cho, S.W.; Kwon, J.W.; Kim, Y.-S. Improvement in antioxidant activities and cholesterol secretion inhibition abilities of black raspberry extracts upon maturation. Korean J. Food Preserv. 2020, 27, 325–332. [Google Scholar] [CrossRef]
- Lee, J.-H.; Choi, H.R.; Lee, S.J.; Lee, M.J.; Ko, Y.J.; Kwon, J.W.; Lee, H.K.; Jeong, J.T.; Lee, T.-B. Blood pressure modulating effects of black raspberry extracts in vitro and in vivo. Korean J. Food Sci. Technol. 2014, 46, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Choi, H.R.; Lee, J.-H.; Lee, S.J.; Kwon, J.W.; Choi, K.-M.; Cha, J.-D.; Hwang, S.-M.; Park, J.H.; Lee, S.C. Co-treatment with fermented black raspberry and red ginseng extracts improves lipid metabolism and obesity in rats fed with a high-fat and high-cholesterol diet. Korean J. Food Sci. Technol. 2015, 47, 364–372. [Google Scholar] [CrossRef]
- Johnson, J.L.; Bomser, J.A.; Scheerens, J.C.; Giusti, M.M. Effect of black raspberry (Rubus occidentalis L.) extract variation conditioned by cultivar, production site, and fruit maturity stage on colon cancer cell proliferation. J. Agric. Food Chem. 2011, 59, 1638–1645. [Google Scholar] [CrossRef]
- Shin, D.; Chae, K.; Choi, H.; Lee, S.; Gim, S.; Kwon, G.; Lee, H.; Song, Y.; Kim, K.; Kong, H. Bioactive and pharmacokinetic characteristics of pre-matured black raspberry, rubus occidentalis. Ital. J. Food Sci. 2018, 30, 428–439. [Google Scholar]
- Bhandary, B.; Lee, H.; Back, H.; Park, S.; Kim, M.; Kwon, J.; Song, J.; Lee, H.; Kim, H.; Chae, S. Immature rubus coreanus shows a free radical-scavenging effect and inhibits cholesterol synthesis and secretion in liver cells. Indian J. Pharm. Sci. 2012, 74, 211. [Google Scholar]
- Dai, J.; Patel, J.D.; Mumper, R.J. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food 2007, 10, 258–265. [Google Scholar] [CrossRef]
- Ryu, E.H.; Gim, S.W.; Lee, S.J.; Kwon, J.W. Antioxidant and Antimicrobial Activity of Unripened and Ripened Black Raspberry (Rubus occidentalis) Fruit Extracts. In Proceedings of the 2021 KFN International Symposium and Annual Meeting, Busan, Republich of Korea, 23–25 June 2021; p. 568. [Google Scholar]
- Yu, J.S.; Yu, N.-J.; Gim, S.W.; Lee, S.J.; Kwon, G.T.; Yuk, H.-G. Antimicrobial effect of black raspberry (Rubus occidentalis, Bokbunja) extract against Escherichia coli and Staphylococcus aureus. Korean J. Food Preserv. 2019, 26, 360–364. [Google Scholar] [CrossRef]
- Choi, H.R.; Lee, J.; Lee, S.; Lee, M.; Ko, Y.; Lee, H.; Chung, J.; Lee, T. Anti-Diabetic Activity of Unripe Black Raspberry Extract in db/db Mice. In Proceedings of the 2013 KSBB Fall meeting and International Symposium, Busan, Republich of Korea, 16–18 October 2013; p. 310. [Google Scholar]
- Park, Y.; Choi, S.; Kim, S.; Han, J.; Chung, H. Changes in Antixidant Activity Total Phenolics and Vitamin C contents during Fruit Ripening in Rubus Occidentalis. Korean J. Plant Res. 2007, 20, 461–465. [Google Scholar]
- Lee, S.; Choi, H.; Kim, J.; Choi, K.; Kwon, J.; Kwon, K.; Shin, D. Confirmation of male menopausal improvement efficacy of Rubus Occidentalis extract in TM3 (Mouse Leydig Cell) cells and menopausal white paper model. In Proceedings of the 2016 KFN International Symposium and Annual Meeting, Jeju, Republich of Korea, 31 October–2 November 2016; pp. 471–472. [Google Scholar]
- Lee, S.-A.; Jo, H.-K.; Cho, S.-H.; Ko, S.-K. Comparison of the contents of phenolic compounds of sea buckthorn (Hippophae rhamnoides) cultivated in Korea and Mongolia. Korean J. Pharmacogn. 2010, 41, 308–312. [Google Scholar]
- Hintikka, J.; Niskanen, L.; Koivumaa-Honkanen, H.; Tolmunen, T.; Honkalampi, K.; Lehto, S.M.; Viinamäki, H. Hypogonadism, decreased sexual desire, and long-term depression in middle-aged men. J. Sex. Med. 2009, 6, 2049–2057. [Google Scholar] [CrossRef]
- Lee, A.; Chu, L.W.; Chong, C.Y.; Chan, S.Y.; Tam, S.; Lam, K.L.; Lam, T.P. Relationship between symptoms of androgen deficiency and psychological factors and quality of life among Chinese men. Int. J. Androl. 2010, 33, 755–763. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Liu, Y.; Tian, H.; Flickinger, B.; Empie, M.W.; Sun, S.Z. Effects of dietary flaxseed lignan extract on symptoms of benign prostatic hyperplasia. J. Med. Food 2008, 11, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.; Bull, F. Development of the world health organization global physical activity questionnaire (GPAQ). J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Emberton, M.; Andriole, G.L.; De La Rosette, J.; Djavan, B.; Hoefner, K.; Navarrete, R.V.; Nordling, J.; Roehrborn, C.; Schulman, C.; Teillac, P. Benign prostatic hyperplasia: A progressive disease of aging men1. Urology 2003, 61, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Lieber, M.M.; Jacobsen, S.J.; Roberts, R.O.; Rhodes, T.; Girman, C.J. Prostate volume and prostate-specific antigen in the absence of prostate cancer: A review of the relationship and prediction of long-term outcomes. Prostate 2001, 49, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.J.; Touaibia, M. Improvement of Testicular Steroidogenesis Using Flavonoids and Isoflavonoids for Prevention of Late-Onset Male Hypogonadism. Antioxidants 2020, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Hamza, R.Z.; Al-Baqami, N.M. Testicular protective effects of ellagic acid on monosodium glutamate-induced testicular structural alterations in male rats. Ultrastruct. Pathol. 2019, 43, 170–183. [Google Scholar] [CrossRef]
- Mehrzadi, S.; Bahrami, N.; Mehrabani, M.; Motevalian, M.; Mansouri, E.; Goudarzi, M. Ellagic acid: A promising protective remedy against testicular toxicity induced by arsenic. Biomed. Pharmacother. 2018, 103, 1464–1472. [Google Scholar] [CrossRef]
- Park, W.Y.; Song, G.; Park, J.Y.; Ahn, K.S.; Kwak, H.J.; Park, J.; Lee, J.H.; Um, J.-Y. Ellagic acid improves benign prostate hyperplasia by regulating androgen signaling and STAT3. Cell Death Dis. 2022, 13, 554. [Google Scholar] [CrossRef]
- Vahlensieck, W.; Theurer, C.; Pfitzer, E.; Patz, B.; Banik, N.; Engelmann, U. Effects of pumpkin seed in men with lower urinary tract symptoms due to benign prostatic hyperplasia in the one-year, randomized, placebo-controlled GRANU study. Urol. Int. 2015, 94, 286–295. [Google Scholar] [CrossRef]
- Friederich, M.; Theurer, C.; Schiebel-Schlosser, G. Prosta Fink Forte capsules in the treatment of benign prostatic hyperplasia. Multicentric surveillance study in 2245 patients. Res. Complement. Nat. Class. Med. 2000, 7, 200–204. [Google Scholar] [CrossRef]
- Bach, D. Placebokontrollierte langzeittherapiestudie mit kürbissamenextrakt bei BPH-bedingten miktionsbeschwerden. Urol. B 2000, 40, 437–443. [Google Scholar] [CrossRef]
- De Nunzio, C.; Cindolo, L.; Gacci, M.; Pellegrini, F.; Carini, M.; Lombardo, R.; Franco, G.; Tubaro, A. Metabolic syndrome and lower urinary tract symptoms in patients with benign prostatic enlargement: A possible link to storage symptoms. Urology 2014, 84, 1181–1187. [Google Scholar] [CrossRef]
- Jiwrajka, M.; Yaxley, W.; Ranasinghe, S.; Perera, M.; Roberts, M.J.; Yaxley, J. Drugs for benign prostatic hypertrophy. Aust. Prescr. 2018, 41, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.W.; Yang, J.H.; Choi, J.B.; Bae, W.J.; Cho, H.J.; Hong, S.-H.; Lee, J.Y.; Kim, S.W.; Park, S.-H.; Han, K.; et al. Prescription pattern of alpha-blockers for management of lower urinary tract symptoms/benign prostatic hyperplasia. Sci. Rep. 2018, 8, 13223. [Google Scholar] [CrossRef] [Green Version]
- Lerner, L.B.; McVary, K.T.; Barry, M.J.; Bixler, B.R.; Dahm, P.; Das, A.K.; Gandhi, M.C.; Kaplan, S.A.; Kohler, T.S.; Martin, L. Management of lower urinary tract symptoms attributed to benign prostatic hyperplasia: AUA guideline part I—Initial work-up and medical management. J. Urol. 2021, 206, 806–817. [Google Scholar] [CrossRef]
- Park, J.S.; Koo, K.C.; Kim, H.K.; Chung, B.H.; Lee, K.S. Impact of metabolic syndrome-related factors on the development of benign prostatic hyperplasia and lower urinary tract symptoms in Asian population. Medicine 2019, 98, e17635. [Google Scholar] [CrossRef]
- Erbay, G.; Ceyhun, G. Association between hyperlipidemia and prostatic enlargement: A case-control study. Urol. J. 2022, 89, 58–63. [Google Scholar] [CrossRef]
- Aghababaee, S.K.; Vafa, M.; Shidfar, F.; Tahavorgar, A.; Gohari, M.; Katebi, D.; Mohammadi, V. Effects of blackberry (Morus nigra L.) consumption on serum concentration of lipoproteins, apo A-I, apo B, and high-sensitivity-C-reactive protein and blood pressure in dyslipidemic patients. J. Res. Med. Sci. 2015, 20, 684–691. [Google Scholar] [CrossRef]
- Quesada-Morúa, M.S.; Hidalgo, O.; Morera, J.; Rojas, G.; Pérez, A.M.; Vaillant, F.; Fonseca, L. Hypolipidaemic, hypoglycaemic and antioxidant effects of a tropical highland blackberry beverage consumption in healthy individuals on a high-fat, high-carbohydrate diet challenge. J. Berry Res. 2020, 10, 459–474. [Google Scholar] [CrossRef]
- Cai, C.; He, H.H.; Chen, S.; Coleman, I.; Wang, H.; Fang, Z.; Chen, S.; Nelson, P.S.; Liu, X.S.; Brown, M.; et al. Androgen Receptor Gene Expression in Prostate Cancer Is Directly Suppressed by the Androgen Receptor Through Recruitment of Lysine-Specific Demethylase 1. Cancer Cell 2011, 20, 457–471. [Google Scholar] [CrossRef] [Green Version]
- Vickman, R.E.; Franco, O.E.; Moline, D.C.; Vander Griend, D.J.; Thumbikat, P.; Hayward, S.W. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J. Urol. 2020, 7, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Vanella, L.; Di Giacomo, C.; Acquaviva, R.; Barbagallo, I.; Cardile, V.; Kim, D.H.; Abraham, N.G.; Sorrenti, V. Apoptotic markers in a prostate cancer cell line: Effect of ellagic acid. Oncol. Rep. 2013, 30, 2804–2810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredients | Test Tablet (%) | Placebo Supplement (%) |
---|---|---|
Unripe black berry extract (BRE) | 62.5 | - |
Lactose mixed powder | 10.6 | 31.65 |
Microcrystalline cellulose | 5.38 | 23.25 |
Maltodextrin | 10.63 | 35.42 |
HPMC | 6.80 | 5.30 |
Silicon dioxide | 1.00 | 1.00 |
CMC-CA | 1.00 | 1.00 |
Magnesium stearate | 0.70 | 0.70 |
Beet red pigment | 0.20 | 0.20 |
Anhydrous citric acid | 0.005 | 0.005 |
Titanium dioxide | 0.60 | 0.60 |
Propylene glycol | 0.59 | 0.57 |
Caramel coloring | - | 0.30 |
Total | 100 | 100 |
BRE Group (n = 15) | Placebo Group (n = 15) | Total (n = 30) | p-Value (1) | |
---|---|---|---|---|
Age (years) | 66.13 ± 6.16 | 61.47 ± 7.65 | 63.80 ± 7.23 | 0.109 |
Height (cm) | 167.27 ± 6.67 | 170.67 ± 6.84 | 168.97 ± 6.6 | 0.140 |
Weight (kg) | 69.96 ± 9.26 | 75.35 ± 9.10 | 72.65 ± 9.43 | 0.159 |
BMI (kg/m2) | 24.90 ± 1.95 | 25.79 ± 1.97 | 25.35 ± 1.98 | 0.350 |
SBP (mmHg) | 124.27 ± 10.87 | 124.60 ± 13.80 | 124.43 ± 12.21 | 0.868 |
DBP (mmHg) | 75.80 ± 11.26 | 76.60 ± 8.08 | 76.20 ± 9.64 | 0.999 |
Pulse (bpm) | 67.33 ± 8.62 | 68.67 ± 10.95 | 68.00 ± 9.71 | 0.901 |
Total testosterone (ng/mL) | 3.55 ± 0.73 | 3.40 ± 0.68 | 3.47 ± 0.69 | 0.383 |
SHBG (ng/mL) | 47.2 ± 29.5 | 39.0 ± 11.5 | 43.1 ± 20.5 | 0.407 |
FT (ng/mL) | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.619 |
BT (ng/mL) | 1.43 ± 0.36 | 1.51 ± 0.38 | 1.47 ± 0.37 | 0.619 |
FSH (ng/mL) | 14.1 ± 13.3 | 13.8 ± 14.1 | 14.0 ± 13.7 | 0.836 |
LH (ng/mL) | 6.69 ± 5.19 | 6.46 ± 5.89 | 6.56 ± 5.54 | 0.351 |
HbA1c (%) | 5.87 ± 0.31 | 5.71 ± 0.35 | 5.79 ± 0.34 | 0.268 |
Prolactin (ng/mL) | 10.35 ± 4.81 | 9.83 ± 2.61 | 10.09 ± 3.81 | 0.934 |
Alcohol (Y/N) | 8(53.3)/7(46.7) | 5(33.3)/10(66.7) | 13(43.3)/17(56.7) | 0.423 (2) |
Drinking (years) | 38.13 ± 11.6 | 36.0 ± 5.5 | 37.3 ± 9.5 | 0.495 |
Alcohol (unit (3)/week) | 5.03 ± 5.26 | 2.42 ± 2.15 | 4.02 ± 4.41 | 0.262 |
Smoking (Y/N) | 1(3.3)/14(97.3) | 0(0)/5(100) | 1(3.3)/29(97.3) | 0.999 (2) |
Smoking (pieces/day) | 0.00 ± 0.00 | 12.5 ± 3.5 | 12.5 ± 3.5 | - |
BRE Group (n = 15) | Placebo Group (n = 15) | p-Value (2) | p-Value (4) | ||
---|---|---|---|---|---|
Energy (kcal) | Baseline | 1486.15 ± 356.04 | 1742.39 ± 349.10 | 0.056 | 0.565 |
6 week | 1590.35 ± 450.47 | 1890.97 ± 410.07 | 0.678 (0.828) | ||
Change from baseline | 104.20 ± 345.20 | 148.58 ± 309.79 | |||
p-value (1) | 0.326 | 0.107 | |||
12 week | 1496.95 ± 397.68 | 1908.68 ± 534.69 | 0.619 (0.374) | ||
Change from baseline | 10.81 ± 274.09 | 166.29 ± 587.85 | |||
p-value (1) | >0.999 | 0.525 | |||
p-value (3) | 0.375 | 0.361 | - | ||
CHO (g) | Baseline | 237.35 ± 75.03 | 276.35 ± 53.25 | 0.042 | 0.624 |
6 week | 258.98 ± 71.00 | 295.85 ± 55.50 | 0.868 (0.380) | ||
Change from baseline | 21.62 ± 74.28 | 19.50 ± 60.41 | |||
p-value (1) | 0.296 | 0.252 | |||
12 week | 250.64 ± 78.20 | 268.67 ± 43.12 | 0.648 (0.827) | ||
Change from baseline | 13.28 ± 53.74 | −7.68 ± 61.86 | |||
p-value (1) | 0.626 | 0.934 | |||
p-value (3) | 0.464 | 0.236 | - | ||
Lipids (g) | Baseline | 32.72 ± 17.23 | 38.82 ± 21.64 | 0.281 | 0.327 |
6 week | 35.37 ± 23.36 | 45.52 ± 19.02 | 0.384 (0.689) | ||
Change from baseline | 2.66 ± 27.23 | 6.70 ± 26.09 | |||
p-value (1) | 0.808 | 0.188 | |||
12 week | 31.05 ± 17.49 | 55.66 ± 42.94 | 0.534 (0.353) | ||
Change from baseline | −1.67 ± 26.03 | 16.84 ± 51.40 | |||
p-value (1) | 0.855 | 0.359 | |||
p-value (3) | 0.805 | 0.324 | - | ||
Protein (g) | Baseline | 60.15 ± 15.79 | 70.62 ± 30.55 | 0.678 | 0.352 |
6 week | 65.47 ± 22.87 | 70.25 ± 20.76 | 0.740 (0.261) | ||
Change from baseline | 5.32 ± 24.52 | −0.38 ± 36.04 | |||
p-value (1) | 0.807 | >0.999 | |||
12 week | 56.97 ± 15.48 | 80.41 ± 41.59 | 0.619 (0.670) | ||
Change from baseline | −3.18 ± 17.19 | 9.79 ± 53.83 | |||
p-value (1) | 0.626 | 0.804 | |||
p-value (3) | 0.308 | 0.631 | - | ||
Fiber (g) | Baseline | 19.67 ± 6.86 | 20.05 ± 7.50 | 0.934 | 0.813 |
6 week | 22.40 ± 7.96 | 23.61 ± 8.12 | 0.836 (0.639) | ||
Change from baseline | 2.73 ± 5.85 | 3.56 ± 6.10 | |||
p-value (1) | 0.119 | 0.041 | |||
12 week | 20.88 ± 7.40 | 22.87 ± 5.94 | 0.431 (0.620) | ||
Change from baseline | 1.21 ± 5.18 | 2.83 ± 8.49 | |||
p-value (1) | 0.391 | 0.252 | |||
p-value (3) | 0.202 | 0.195 | - | ||
MET (min/week) | Baseline | 2053.33 ± 1845.68 | 2120.00 ± 1998.40 | 0.405 | 0.403 |
6 week | 2277.33 ± 2460.27 | 3514.67 ± 3575.37 | 0.520 | ||
Change from baseline | 224.00 ± 2709.47 | 1394.67 ± 2885.11 | |||
p-value (1) | 0.749 | 0.140 | |||
12 week | 1826.67 ± 1766.59 | 2925.33 ± 2783.83 | 0.146 | ||
Change from baseline | −226.67 ± 1602.33 | 805.33 ± 2956.48 | |||
p-value (1) | 0.466 | 0.124 | |||
p-value (3) | 0.746 | 0.183 | - |
BRE Group (n = 15) | Placebo Group (n = 15) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Week 6 | Week 12 | p-Value (1) | Baseline | Week 6 | Week 12 | p-Value (1) | p-Value (2) | |
AMS total scores | 45.3 ± 10.7 | 42.0 ± 8.1 | 38.3 ± 8.7 | 0.037 | 48.1 ± 8.0 | 41.0 ± 9.8 * | 40.7 ± 8.1 | 0.001 | 0.967 |
Total IPSS | 11.4 ± 3.3 | 9.0 ± 2.5 ** | 7.9 ± 6.4 | 0.047 | 10.8 ± 5.6 | 11.3 ± 6.9 | 9.7 ± 6.2 | 0.256 | 0.064 |
Storage symptomssub-score | 4.0 ± 2.4 | 3.5 ± 1.7 | 3.2 ± 2.9 | 0.312 | 4.5 ± 1.5 | 4.7 ± 2.2 | 4.2 ± 1.9 | 0.406 | 0.526 |
Voiding symptoms sub-score | 7.4 ± 2.0 | 5.5 ± 2.2 ** | 4.7 ± 4.5 | 0.023 | 6.3 ± 4.7 | 6.6 ± 5.4 | 5.5 ± 5.0 | 0.010 | 0.039 |
IPSS-QoL | 3.1 ± 0.8 | 2.9 ± 1.1 | 2.2 ± 1.2 | 0.047 | 3.2 ± 1.4 | 2.9 ± 1.4 | 2.9 ± 1.2 | 0.281 | 0.275 |
Total testosterone (ng/mL) | 3.55 ± 0.73 | 3.44 ± 0.79 | 0.538 | 3.40 ± 0.68 | 3.37 ± 0.78 | 0.772 | 0.999 | ||
SHBG (ng/mL) | 47.17 ± 23.26 | 44.27 ± 23.26 | 0.241 | 38.96 ± 11.54 | 37.71 ± 13.19 | 0.679 | 0.481 | ||
FT (ng/mL) | 0.06 ± 0.01 | 0.06 ± 0.02 | 0.903 | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.934 | 0.836 | ||
BT (ng/mL) | 1.43 ± 0.36 | 1.47 ± 0.44 | 0.999 | 1.51 ± 0.38 | 1.52 ± 0.35 | 0.993 | 0.999 | ||
FSH (ng/mL) | 14.0 ± 13.29 | 12.73 ± 11.14 | 0.173 | 13.78 ± 14.14 | 13.13 ± 14.23 | 0.086 | 0.846 | ||
LH (ng/mL) | 6.69 ± 4.82 | 6.65 ± 5.19 | 0.987 | 6.83 ± 6.64 | 6.46 ± 5.89 | 0.710 | 0.648 |
BRE Group (n = 15) | Placebo Group (n = 15) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Week 12 | Change | p-Value (1) | Baseline | Week 12 | Change | p-Value (1) | p-Value (2) | |
Weight (kg) | 70.0 ± 9.3 | 70.0 ± 8.7 | 0.0 ± 1.4 | 0.879 | 75.4 ± 9.1 | 75.8 ± 9.5 | 0.5 ± 1.3 | 0.210 | 0.917 |
BMI (kg/m2) | 24.9 ± 2.0 | 25.0 ± 2.0 | 0.1 ± 0.6 | 0.692 | 25.8 ± 2.0 | 25.9 ± 2.1 | 0.2 ± 0.5 | 0.253 | 0.999 |
BFM (kg) | 18.0 ± 5.0 | 18.3 ± 4.9 | 0.3 ± 1.2 | 0.435 | 17.9 ± 4.2 | 18.3 ± 4.4 | 0.4 ± 1.3 | 0.234 | 0.561 |
PBF (%) | 25.5 ± 5.4 | 25.9 ± 5.3 | 0.4 ± 1.3 | 0.221 | 23.6 ± 3.7 | 24.0 ± 0.9 | 0.4 ± 1.4 | 0.235 | 0.724 |
FFM (kg) | 51.9 ± 6.2 | 51.6 ± 5.7 | −0.3 ± 1.0 | 0.332 | 57.4 ± 6.1 | 575 ± 6.4 | 0.03 ± 1.0 | 0.923 | 0.395 |
WC (cm) | 89.5 ± 7.3 | 90.1 ± 7.1 | 0.6 ± 1.7 | 0.170 | 91.7 ± 6.0 | 91.6 ± 6.0 | −0.01 ± 1.6 | 0.911 | 0.271 |
HC (cm) | 94.1 ± 4.7 | 95.1 ± 5.1 | 0.9 ± 1.6 | 0.025 | 96.8 ± 3.8 | 97.5 ± 3.7 | 0.7 ± 0.7 | 0.003 | 0.587 |
WHR | 0.97 ± 0.05 | 0.95 ± 0.04 | −0.02 ± 0.04 | 0.287 | 0.95 ± 0.04 | 0.94 ± 0.04 | −0.01 ± 0.02 | 0.109 | 0.445 |
TC (mg/dL) | 199.3 ± 42.3 | 185.7 ± 39.5 | −13.6 ± 30.4 | 0.079 | 177.6 ± 37.6 | 186.5 ± 36.8 | 8.9 ± 15.7 | 0.044 | 0.011 |
TG (mg/dL) | 149.0 ± 59.6 | 179.7 ± 83.1 | 30.7 ± 77.2 | 0.492 | 162.3 ± 75.5 | 143.1 ± 39.5 | −19.2 ± 66.5 | 0.463 | 0.319 |
HDL-C (mg/dL) | 49.2 ± 11.7 | 49.6 ± 13.6 | 0.40 ± 5.7 | 0.528 | 41.3 ± 7.7 | 44.9 ± 8.5 | 3.6 ± 5.9 | 0.012 | 0.307 |
LDL-C (mg/dL) | 120.3 ± 38.0 | 100.1 ± 29.8 | −20.1 ± 34.7 | 0.049 | 105.7 ± 30.5 | 113.0 ± 31.4 | 7.3 ± 13.3 | 0.083 | 0.007 |
LDL-C/HDL-C | 2.55 ± 0.81 | 2.13 ± 0.76 | −0.41 ± 0.62 | 0.017 | 2.56 ± 0.62 | 2.52 ± 0.67 | −0.04 ± 0.40 | 0.934 | 0.062 |
TC/HDL-C | 4.19 ± 0.34 | 3.94 ± 1.10 | −0.25 ± 0.81 | 0.217 | 4.32 ± 0.70 | 4.19 ± 0.74 | −0.13 ± 0.57 | 0.639 | 0.589 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-J.; Park, E.-O.; Chae, S.-W.; Lee, S.-O.; Kwon, J.-W.; You, J.-H.; Kim, Y.-G. Effects of Unripe Black Raspberry Extract Supplementation on Male Climacteric Syndrome and Voiding Dysfunction: A Pilot, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 3313. https://doi.org/10.3390/nu15153313
Jung S-J, Park E-O, Chae S-W, Lee S-O, Kwon J-W, You J-H, Kim Y-G. Effects of Unripe Black Raspberry Extract Supplementation on Male Climacteric Syndrome and Voiding Dysfunction: A Pilot, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2023; 15(15):3313. https://doi.org/10.3390/nu15153313
Chicago/Turabian StyleJung, Su-Jin, Eun-Ock Park, Soo-Wan Chae, Seung-Ok Lee, Ji-Wung Kwon, Jae-Hyung You, and Young-Gon Kim. 2023. "Effects of Unripe Black Raspberry Extract Supplementation on Male Climacteric Syndrome and Voiding Dysfunction: A Pilot, Randomized, Double-Blind, Placebo-Controlled Trial" Nutrients 15, no. 15: 3313. https://doi.org/10.3390/nu15153313
APA StyleJung, S.-J., Park, E.-O., Chae, S.-W., Lee, S.-O., Kwon, J.-W., You, J.-H., & Kim, Y.-G. (2023). Effects of Unripe Black Raspberry Extract Supplementation on Male Climacteric Syndrome and Voiding Dysfunction: A Pilot, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 15(15), 3313. https://doi.org/10.3390/nu15153313