The Prevalence of Small for Gestational Age and Extrauterine Growth Restriction among Extremely and Very Preterm Neonates, Using Different Growth Curves, and Its Association with Clinical and Nutritional Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Population
2.2. Indicators of Growth and Development
2.3. Nutritional Data
2.4. Clinical Data
2.5. Statistical Analysis
3. Results
3.1. Infant Characteristics
3.2. The Fenton2013 and INTERGROWTH-21st Growth References
3.3. Nutritional and Clinical Factors Associated with EUGR
3.4. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, R.H.; Olsen, I.E.; Spitzer, A.R. Assessment of neonatal growth in prematurely born infants. Clin. Perinatol. 2014, 41, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Greer, F.R.; Olsen, I.E. How Fast Should the Preterm Infant Grow? Curr. Pediatr. Rep. 2013, 1, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Silveira, R.C.; Procianoy, R.S. Preterm newborn’s postnatal growth patterns: How to evaluate them. J. Pediatr. 2019, 95, 42–48. [Google Scholar] [CrossRef]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villar, J.; Giuliani, F.; Barros, F.; Roggero, P.; Coronado Zarco, I.A.; Rego, M.A.S.; Ochieng, R.; Gianni, M.L.; Rao, S.; Lambert, A.; et al. Monitoring the Postnatal Growth of Preterm Infants: A Paradigm Change. Pediatrics 2018, 141, e20172467. [Google Scholar] [CrossRef] [Green Version]
- Papageorghiou, A.T.; Kennedy, S.H.; Salomon, L.J.; Altman, D.G.; Ohuma, E.O.; Stones, W.; Gravett, M.G.; Barros, F.C.; Victora, C.; Purwar, M.; et al. The INTERGROWTH-21st fetal growth standards: Toward the global integration of pregnancy and pediatric care. Am. J. Obstet. Gynecol. 2018, 218, S630–S640. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, C.; Embleton, N.D.; Jacobs, S.E.; O’Connell, L.A.F.; Kuschel, C.A. Enteral feeding practices in very preterm infants: An international survey. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F56–F61. [Google Scholar] [CrossRef] [Green Version]
- Berman, L.; Moss, R.L. Necrotizing enterocolitis: An update. Semin. Fetal. Neonatal Med. 2011, 16, 145–150. [Google Scholar] [CrossRef]
- Kwok, T.C.; Dorling, J.; Gale, C. Early enteral feeding in preterm infants. Semin. Perinatol. 2019, 43, 151159. [Google Scholar] [CrossRef]
- Brune, K.D.; Donn, S.M. Enteral Feeding of the Preterm Infant. NeoReviews 2018, 19, e645–e653. [Google Scholar] [CrossRef]
- Ruth, V.A. Extrauterine growth restriction: A review of the literature. Neonatal Netw. NN 2008, 27, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Hokken-Koelega, A.C.S.; van der Steen, M.; Boguszewski, M.C.S.; Cianfarani, S.; Dahlgren, J.; Horikawa, R.; Mericq, V.; Rapaport, R.; Alherbish, A.; Braslavsky, D.; et al. International Consensus Guideline on Small for Gestational Age: Etiology and Management From Infancy to Early Adulthood. Endocr. Rev. 2023, 44, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Lucaccioni, L.; Iughetti, L.; Berardi, A.; Predieri, B. Challenges in the growth and development of newborns with extra-uterine growth restriction. Expert Rev. Endocrinol. Metab. 2022, 17, 415–423. [Google Scholar] [CrossRef]
- Ordóñez-Díaz, M.D.; Pérez-Navero, J.L.; Flores-Rojas, K.; Olza-Meneses, J.; Muñoz-Villanueva, M.C.; Aguilera-García, C.M.; Gil-Campos, M. Prematurity with Extrauterine Growth Restriction Increases the Risk of Higher Levels of Glucose, Low-Grade of Inflammation and Hypertension in Prepubertal Children. Front. Pediatr. 2020, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Murray, Y.L.; Paul, I.M.; Miller, J.R.; Thrash, S.Z.; Kaiser, J.R. Variability in the use of growth curves between preterm and term infants in NICUs and newborn nurseries. Pediatr. Res. 2021, 89, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Engle, W.A. American Academy of Pediatrics Committee on Fetus and Newborn Age terminology during the perinatal period. Pediatrics 2004, 114, 1362–1364. [Google Scholar] [CrossRef] [Green Version]
- Villar, J.; Giuliani, F.; Fenton, T.R.; Ohuma, E.O.; Ismail, L.C.; Kennedy, S.H. INTERGROWTH-21st very preterm size at birth reference charts. Lancet 2016, 387, 844–845. [Google Scholar] [CrossRef] [Green Version]
- Villar, J.; Giuliani, F.; Bhutta, Z.A.; Bertino, E.; Ohuma, E.O.; Ismail, L.C.; Barros, F.C.; Altman, D.G.; Victora, C.; Noble, J.A.; et al. Postnatal growth standards for preterm infants: The Preterm Postnatal Follow-up Study of the INTERGROWTH-21(st) Project. Lancet Glob. Health 2015, 3, e681–e691. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral nutrient supply for preterm infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Embleton, N.D.; Moltu, S.J.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and invited experts. J. Pediatr. Gastroenterol. Nutr. 2022; Ahead of Print. [Google Scholar] [CrossRef]
- van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; de Pipaon, M.S.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 2018, 37, 2315–2323. [Google Scholar] [CrossRef] [Green Version]
- Iacobelli, S.; Bonsante, F.; Gouyon, J.B. Fluid and electrolyte intake during the first week of life in preterm infants receiving parenteral nutrition according current guidelines. Minerva Pediatr. 2010, 62, 203–204. [Google Scholar] [PubMed]
- Lapillonne, A.; Mis, N.F.; Goulet, O.; van den Akker, C.H.P.; Wu, J.; Koletzko, B.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clin. Nutr. 2018, 37, 2324–2336. [Google Scholar] [CrossRef]
- Mesotten, D.; Joosten, K.; van Kempen, A.; Verbruggen, S.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Carbohydrates. Clin. Nutr. 2018, 37, 2337–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.; Bhatia, J. Total parenteral nutrition for the very low birth weight infant. Semin. Fetal. Neonatal Med. 2017, 22, 2–7. [Google Scholar] [CrossRef]
- Uthaya, S.; Modi, N. Practical preterm parenteral nutrition: Systematic literature review and recommendations for practice. Early Hum. Dev. 2014, 90, 747–753. [Google Scholar] [CrossRef] [PubMed]
- De Curtis, M.; Rigo, J. The nutrition of preterm infants. Early Hum. Dev. 2012, 88 (Suppl. S1), S5–S7. [Google Scholar] [CrossRef]
- Parker, L.A.; Desorcy-Scherer, K.; Magalhães, M. Feeding Strategies in Preterm Very Low Birth-Weight Infants: State-of-the-Science Review. Adv. Neonatal Care 2021, 21, 493–502. [Google Scholar] [CrossRef]
- Carey, B. Neonatal Air Leaks: Pneumothorax, Pneumomediastinum, Pulmonary Interstitial Emphysema, Pneumopericardium. Neonatal Netw. 1999, 18, 81–84. [Google Scholar] [CrossRef]
- Howarth, C.; Banerjee, J.; Aladangady, N. Red Blood Cell Transfusion in Preterm Infants: Current Evidence and Controversies. Neonatology 2018, 114, 7–16. [Google Scholar] [CrossRef]
- Müller, M.J.; Paul, T.; Seeliger, S. Necrotizing enterocolitis in premature infants and newborns. J. Neonatal Perinat. Med. 2016, 9, 233–242. [Google Scholar] [CrossRef]
- Hamrick, S.E.G.; Sallmon, H.; Rose, A.T.; Porras, D.; Shelton, E.L.; Reese, J.; Hansmann, G. Patent Ductus Arteriosus of the Preterm Infant. Pediatrics 2020, 146, e20201209. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.F.; Quinn, G.E.; Fielder, A.R.; Ostmo, S.R.; Paul Chan, R.V.; Berrocal, A.; Binenbaum, G.; Blair, M.; Peter Campbell, J.; Capone, A.; et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology 2021, 128, e51–e68. [Google Scholar] [CrossRef]
- Gole, G.A.; Ells, A.L.; Katz, X.; Holmstrom, G.; Fielder, A.R.; Capone Jr, A.; Flynn, J.T.; Good, W.G.; Holmes, J.M.; McNamara, J.A.; et al. The International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [Google Scholar] [CrossRef]
- Agut, T.; Alarcon, A.; Cabañas, F.; Bartocci, M.; Martinez-Biarge, M.; Horsch, S. Preterm white matter injury: Ultrasound diagnosis and classification. Pediatr. Res. 2020, 87, 37–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Thébaud, B.; Goss, K.N.; Laughon, M.; Whitsett, J.A.; Abman, S.H.; Steinhorn, R.H.; Aschner, J.L.; Davis, P.G.; McGrath-Morrow, S.A.; Soll, R.F.; et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Primer 2019, 5, 78. [Google Scholar] [CrossRef]
- Bethou, A.; Bhat, B.V. Neonatal Sepsis—Newer Insights. Indian J. Pediatr. 2022, 89, 267–273. [Google Scholar] [CrossRef]
- McGovern, M.; Giannoni, E.; Kuester, H.; Turner, M.A.; van den Hoogen, A.; Bliss, J.M.; Koenig, J.M.; Keij, F.M.; Mazela, J.; Finnegan, R.; et al. Challenges in developing a consensus definition of neonatal sepsis. Pediatr. Res. 2020, 88, 14–26. [Google Scholar] [CrossRef]
- Tuzun, F.; Yucesoy, E.; Baysal, B.; Kumral, A.; Duman, N.; Ozkan, H. Comparison of INTERGROWTH-21 and Fenton growth standards to assess size at birth and extrauterine growth in very preterm infants. J. Matern. Fetal Neonatal Med. 2018, 31, 2252–2257. [Google Scholar] [CrossRef]
- Reddy, K.V.; Sharma, D.; Vardhelli, V.; Bashir, T.; Deshbotla, S.K.; Murki, S. Comparison of Fenton 2013 growth curves and Intergrowth-21 growth standards to assess the incidence of intrauterine growth restriction and extrauterine growth restriction in preterm neonates ≤32 weeks. J. Matern. Fetal Neonatal Med. 2021, 34, 2634–2641. [Google Scholar] [CrossRef]
- Lebrão, C.W.; Suano-Souza, F.I.; Sarni, R.O.S. Is the Intrauterine INTERGROWTH-21 Growth Curve Better Than Fenton’s for the Classification at Birth and Prediction of Postnatal Growth in Preterm Infants? Matern. Child Health J. 2020, 24, 1446–1453. [Google Scholar] [CrossRef]
- Yitayew, M.; Chahin, N.; Rustom, S.; Thacker, L.R.; Hendricks-Muñoz, K.D. Fenton vs. Intergrowth-21st: Postnatal Growth Assessment and Prediction of Neurodevelopment in Preterm Infants. Nutrients 2021, 13, 2841. [Google Scholar] [CrossRef]
- De Jesus, L.C.; Pappas, A.; Shankaran, S.; Li, L.; Das, A.; Bell, E.F.; Stoll, B.J.; Laptook, A.R.; Walsh, M.C.; Hale, E.C.; et al. Outcomes of small for gestational age infants born at <27 weeks’ gestation. J. Pediatr. 2013, 163, 55–60.e3. [Google Scholar] [CrossRef] [Green Version]
- Minor, K.C.; Bianco, K.; Sie, L.; Druzin, M.L.; Lee, H.C.; Leonard, S.A. Severity of small-for-gestational-age and morbidity and mortality among very preterm neonates. J. Perinatol. 2023, 43, 437–444. [Google Scholar] [CrossRef]
- Ribas, S.A.; Paravidino, V.B.; Soares, F.V.M. Comparison of growth curves in very low birth weight preterm infants after hospital discharge. Eur. J. Pediatr. 2022, 181, 149–157. [Google Scholar] [CrossRef]
- Starc, M.; Giangreco, M.; Centomo, G.; Travan, L.; Bua, J. Extrauterine growth restriction in very low birth weight infants according to different growth charts: A retrospective 10 years observational study. PLoS ONE 2023, 18, e0283367. [Google Scholar] [CrossRef]
- Yazici, A.; Buyuktiryaki, M.; Sari, F.N.; Akin, M.S.; Ertekin, O.; Alyamac Dizdar, E. Comparison of different growth curves in the assessment of extrauterine growth restriction in very low birth weight preterm infants. Arch. Pediatr. 2023, 30, 31–35. [Google Scholar] [CrossRef]
- Cordova, E.G.; Belfort, M.B. Updates on Assessment and Monitoring of the Postnatal Growth of Preterm Infants. NeoReviews 2020, 21, e98–e108. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Shin, S.H.; Cho, H.; Shin, S.H.; Kim, S.H.; Song, I.G.; Kim, E.-K.; Kim, H.-S. Extrauterine growth restriction in extremely preterm infants based on the Intergrowth-21st Project Preterm Postnatal Follow-up Study growth charts and the Fenton growth charts. Eur. J. Pediatr. 2021, 180, 817–824. [Google Scholar] [CrossRef]
- Hay, W.W. Nutritional Support Strategies for the Preterm Infant in the Neonatal Intensive Care Unit. Pediatr. Gastroenterol. Hepatol. Nutr. 2018, 21, 234–247. [Google Scholar] [CrossRef]
- Oddie, S.J.; Young, L.; McGuire, W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst. Rev. 2017, 2017, CD001241. [Google Scholar] [CrossRef]
- Xiang, Y.; Tang, Q.; Wang, Y.; Cai, W. Nutrition profile of very low birth weight infants with extrauterine growth restriction in NICU. Clin. Nutr. ESPEN 2021, 42, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Uthaya, S. Better preterm parenteral nutrition practice. Early Hum. Dev. 2021, 162, 105468. [Google Scholar] [CrossRef]
- Thoene, M.; Anderson-Berry, A. Early Enteral Feeding in Preterm Infants: A Narrative Review of the Nutritional, Metabolic, and Developmental Benefits. Nutrients 2021, 13, 2289. [Google Scholar] [CrossRef] [PubMed]
- McCurnin, D.; Clyman, R.I. Effects of a patent ductus arteriosus on postprandial mesenteric perfusion in premature baboons. Pediatrics 2008, 122, e1262–e1267. [Google Scholar] [CrossRef] [Green Version]
- Anne, R.P.; Vardhelli, V.; Murki, S.; Deshabhotla, S.K.; Oleti, T.P. Comparison of Fenton, INTERGROWTH-21st, and Population-Based Growth Charts in Predicting Outcomes of Very Preterm Small-for-Gestational-Age Neonates. Indian J. Pediatr. 2022, 89, 1034–1036. [Google Scholar] [CrossRef] [PubMed]
- Christmann, V.; Roeleveld, N.; Visser, R.; Janssen, A.J.W.M.; Reuser, J.J.C.M.; van Goudoever, J.B.; van Heijst, A.F.J. The early postnatal nutritional intake of preterm infants affected neurodevelopmental outcomes differently in boys and girls at 24 months. Acta Paediatr. 2017, 106, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Jiménez, M.; Gómez-García, F.; Gil-Campos, M.; Pérez-Navero, J. Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: A scoping review. Eur. J. Pediatr. 2020, 179, 1255–1265. [Google Scholar] [CrossRef]
- García, H.; Loureiro, C.; Poggi, H.; D’Apremont, I.; Moore, R.; Ossa, J.T.; Bruera, M.J.; Peredo, S.; Carvajal, J.; Trincado, C.; et al. Insulin resistance parameters in children born very preterm and adequate for gestational age. Endocrinol. Diabetes Metab. 2022, 5, e00329. [Google Scholar] [CrossRef]
- Cauzzo, C.; Chiavaroli, V.; Di Valerio, S.; Chiarelli, F. Birth size, growth trajectory and later cardio-metabolic risk. Front. Endocrinol. 2023, 14, 1187261. [Google Scholar] [CrossRef]
Mean ± SD or n (%) | |
---|---|
Perinatal characteristics | |
Gestational age (weeks) | 29.6 ± 1.7 |
Extremely preterm (<28 weeks) | 81 (17.5) |
Birthweight (g) | 1341.5 ± 363.3 |
Male sex | 258 (55.8) |
Caesarean section | 406 (88.3) |
Multiple birth | 194 (43.6) |
At discharge | |
Postmenstrual age (weeks) | 37.3 ± 2.9 |
Weight (g) | 2415.9 ± 406.7 |
Length (cm) | 46 ± 2.8 |
Head circumference (cm) | 33.1 ± 1.8 |
Nutritional information | |
Parenteral feeding duration (days) | 15 ± 14.5 |
Enteral feeding starting time (days) | 4.8 ± 4.2 |
Full enteral feeding achieved (days) | 16.4 ± 11.3 |
Clinical information | |
Duration of hospitalization (days) | 54 ± 25.8 |
BPD | 66 (14.3) |
hsPDA | 43 (9.3) |
Early-onset sepsis (suspected or culture proved) | 49 (10.6) |
Late-onset sepsis (suspected or culture proved) | 122 (26.4) |
NEC | 8 (1.7) |
IVH (≥Grade II) | 53 (11.5) |
ROP (≥Stage II) | 31 (6.7) |
Pneumothorax | 21 (4.5) |
Duration of respiratory support (days) | 12.9 ± 17.0 |
Duration of mechanical ventilation (days) | 3.3 ± 7.6 |
Duration of non-invasive ventilation (days) | 9.7 ± 13.3 |
Duration of oxygen therapy (days) | 11.6 ± 18.3 |
Anemia | 211 (45.7) |
Cystic PVL | 30 (6.5) |
Fenton2013 | INTERGROWTH-21st | p-Value * | |
---|---|---|---|
At birth | |||
Birth weight z, mean ± SD | 0.1 ± 0.9 | 0.1 ± 1.1 | 0.001 |
SGA weight, n (%) | 29 (6.3) | 43 (9.3) | <0.001 |
At discharge | |||
Weight z score, mean ± SD | −1.2 ± 1.4 | −0.7 ± 1.5 | <0.001 |
Length z score, mean ± SD | −0.9 ± 1.5 | −0.7 ± 2.0 | <0.001 |
HC z score, mean ± SD | −0.1 ± 1.2 | 0.0 ± 1.6 | <0.001 |
EUGR weight, n (%) | 209 (45.9) | 133 (29.2) | <0.001 |
EUGR length, n (%) | 165 (36.0) | 158 (34.4) | 0.039 |
EUGR HC, n (%) | 50 (10.9) | 70 (15.3) | <0.001 |
Fenton2013 | INTERGROWTH-21st | |||||
---|---|---|---|---|---|---|
Restricted | Non Restricted | p-Value 2 | Restricted | Non Restricted | p-Value 2 | |
Perinatal factors | ||||||
Male sex | 111 (53.1) | 141 (57.3) | 0.395 | 81 (60.9) | 171 (53.1) | 0.147 |
Gestational age (weeks) | 29.2 ± 1.8 | 30.0 ± 1.5 | <0.001 | 28.9 ± 1.9 | 29.9 ± 1.5 | <0.001 |
Extremely preterm (<28 weeks) | 48 (23.0) | 30 (12.2) | 0.003 | 38 (28.6) | 40 (12.4) | <0.001 |
Birth weight (g) | 1144.3 ± 288.1 | 1510.9 ± 334.6 | <0.001 | 1064.2 ± 276.5 | 1457.5 ± 331.3 | <0.001 |
BW z-score | −0.3 ± 0.8 | 0.5 ± 0.9 | <0.001 | −0.7 ± 1.4 | 0.4 ± 0.8 | <0.001 |
SGA | 26 (12.4) | 3 (1.2) | <0.001 | 35 (26.3) | 8 (2.5) | <0.001 |
Caesarean section | 186 (89.0) | 213 (87.3) | 0.663 | 116 (87.2) | 283 (88.4) | 0.751 |
Multiple birth | 114 (56.4) | 131 (55.5) | 0.848 | 78 (60.0) | 167 (54.2) | 0.293 |
Duration of hospitalization (days) | 66.3 ± 27.5 | 43.5 ± 19.1 | <0.001 | 75.1 ± 29.4 | 45.2 ± 18.2 | <0.001 |
Nutritional factors | ||||||
Parenteral feeding duration (days) | 11.5 (6–24) | 8 (4–13) | <0.001 | 14 (8–30) | 8 (4–13.5) | <0.001 |
Enteral feeding initiation (days) | 4 (2–8) | 3 (2–5) | <0.001 | 5 (3–9) | 3 (2–5) | <0.001 |
Full enteral feeding achieved (days) | 18 (11–27) | 11 (8–16) | <0.001 | 19 (12–30) | 11 (8–18) | <0.001 |
Clinical factors | ||||||
BPD | 38 (18.2) | 28 (11.4) | 0.045 | 29 (21.8) | 37 (11.5) | 0.008 |
Early-onset sepsis | 29 (13.9) | 20 (8.1) | 0.068 | 16 (12.0) | 33 (10.3) | 0.619 |
Late-onset sepsis | 74 (35.4) | 46 (18.7) | <0.001 | 64 (48.1) | 56 (17.4) | <0.001 |
Anemia | 117 (56.0) | 92 (37.4) | <0.001 | 90 (67.7) | 119 (37.0) | <0.001 |
NEC | 8 (3.8) | 0 (0.0) | 0.002 | 7 (5.3) | 1 (0.3) | 0.001 |
hsPDA | 31 (14.8) | 11 (4.5) | <0.001 | 25 (18.8) | 17 (5.3) | <0.001 |
ROP | 22 (10.5) | 9 (3.7) | 0.005 | 17 (12.8) | 14 (4.4) | 0.002 |
Respiratory support (days) | 17.0 ± 20.5 | 9.5 ± 12.5 | <0.001 | 20.7 ± 21.1 | 9.7 ± 13.9 | <0.001 |
Mechanical ventilation (days) | 5.5 ± 10.4 | 1.5 ± 2.9 | <0.001 | 7.0 ± 11.6 | 1.8 ± 4.4 | <0.001 |
Non-invasive ventilation(days) | 11.7 ± 14.8 | 8.0 ± 11.5 | 0.003 | 13.9 ± 15.3 | 8.0 ± 11.9 | <0.001 |
Oxygen administration (days) | 16.8 ± 23.0 | 7.2 ± 11.7 | <0.001 | 21.0 ± 24.9 | 7.7 ± 13.2 | <0.001 |
Cystic PVL | 18 (8.6) | 12 (4.9) | 0.130 | 13 (9.8) | 17 (5.3) | 0.096 |
IVH (Grade ≥ II) | 11 (5.3) | 12 (4.9) | 0.999 | 6 (4.5) | 17 (5.3) | 0.818 |
Fenton2013 | INTERGROWTH-21st | |||
---|---|---|---|---|
Weight z-Score | EUGR | Weight z-Score | EUGR | |
β (95% CI) | OR (95% CI) | β (95% CI) | OR (95% CI) | |
Perinatal factors | ||||
Extremely preterm | 0.53 (0.23, 0.84) | 0.49 (0.19, 1.27) | 0.48 (0.17, 0.80) | 0.67 (0.26, 1.76) |
BW z-score | 0.36 (0.26, 0.45) | 0.21 (0.14, 0.31) | 0.43 (0.33, 0.53) | 0.27 (0.19, 0.39) |
Hospitalization (days) | −0.04 (−0.04, −0.03) | 1.05 (1.03, 1.07) | −0.04 (−0.04, −0.03) | 1.05 (1.03, 1.08) |
Nutritional factors | ||||
PN duration (days) | 0.01 (0.00, 0.02) | 0.97 (0.94, 1.01) | 0.01 (−0.00, 0.02) | 0.99 (0.95, 1.03) |
EN initiation (days) | −0.02 (−0.05, 0.00) | 1.04 (0.94, 1.14) | −0.03 (−0.06, 0.00) | 1.16 (1.05, 1.28) |
Full EN achieved (days) | −0.02 (−0.03, −0.01) | 1.07 (1.03, 1.12) | −0.02 (−0.04, −0.01) | 1.03 (0.99, 1.07) |
Clinical factors | ||||
BPD | 0.28 (−0.07, 0.63) | 0.81 (0.27, 2.40) | 0.37 (0.00, 0.73) | 0.98 (0.33, 2.97) |
Late-onset sepsis | −0.07 (−0.30, 0.15) | 1.33 (0.70, 2.52) | −0.13 (−0.37, 0.10) | 3.08 (1.56, 6.08) |
Anemia | 0.33 (0.10, 0.56) | 0.49 (0.25, 0.95) | 0.31 (0.06, 0.55) | 0.55 (0.25, 1.19) |
hsPDA | −0.41 (−0.75, −0.07) | 2.59 (0.88, 7.61) | −0.39 (−0.75, −0.04) | 1.67 (0.56, 4.95) |
ROP | 0.14 (−0.29, 0.57) | 2.04 (0.52, 8.07) | 0.08 (−0.36, 0.53) | 0.99 (0.25, 3.86) |
Respiratory support (days) | 0.00 (−0.01, 0.01) | 0.99 (0.95, 1.02) | 0.00 (−0.01, 0.01) | 1.00 (0.97, 1.03) |
Oxygen administration (days) | 0.00 (−0.00, 0.01) | 1.00 (0.97, 1.03) | 0.00 (−0.01, 0.01) | 0.99 (0.96, 1.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakatsaki, I.; Papanikolaou, S.; Roumeliotaki, T.; Anagnostatou, N.H.; Lygerou, I.; Hatzidaki, E. The Prevalence of Small for Gestational Age and Extrauterine Growth Restriction among Extremely and Very Preterm Neonates, Using Different Growth Curves, and Its Association with Clinical and Nutritional Factors. Nutrients 2023, 15, 3290. https://doi.org/10.3390/nu15153290
Kakatsaki I, Papanikolaou S, Roumeliotaki T, Anagnostatou NH, Lygerou I, Hatzidaki E. The Prevalence of Small for Gestational Age and Extrauterine Growth Restriction among Extremely and Very Preterm Neonates, Using Different Growth Curves, and Its Association with Clinical and Nutritional Factors. Nutrients. 2023; 15(15):3290. https://doi.org/10.3390/nu15153290
Chicago/Turabian StyleKakatsaki, Ioanna, Styliani Papanikolaou, Theano Roumeliotaki, Nicolina Hilda Anagnostatou, Ioanna Lygerou, and Eleftheria Hatzidaki. 2023. "The Prevalence of Small for Gestational Age and Extrauterine Growth Restriction among Extremely and Very Preterm Neonates, Using Different Growth Curves, and Its Association with Clinical and Nutritional Factors" Nutrients 15, no. 15: 3290. https://doi.org/10.3390/nu15153290
APA StyleKakatsaki, I., Papanikolaou, S., Roumeliotaki, T., Anagnostatou, N. H., Lygerou, I., & Hatzidaki, E. (2023). The Prevalence of Small for Gestational Age and Extrauterine Growth Restriction among Extremely and Very Preterm Neonates, Using Different Growth Curves, and Its Association with Clinical and Nutritional Factors. Nutrients, 15(15), 3290. https://doi.org/10.3390/nu15153290