Gut Microbiota and Plasma Bile Acids Associated with Non-Alcoholic Fatty Liver Disease Resolution in Bariatric Surgery Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Metagenomics
2.3. Plasma Bile Acid Profiling
2.4. Statistics
3. Results
3.1. NAFLD Resolution vs. Non-Resolution One Year after BS
Bariatric Surgery (t = 0) | One Year after Surgery (t = 1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Responders (R) | Non-Responders (NR) | Responders (R) | Non-Responders (NR) | |||||||||
Mean | SD | p R vs. NR | Mean | SD | Mean | SD | p 0–1 | p R vs. NR | Mean | SD | p 0–1 | |
Age (years) | 53.7 | 5.9 | NS | 51.2 | 8.2 | |||||||
Gender female (%) | 66.7 | 66.7 | ||||||||||
Heigh (m) | 1.64 | 0.06 | NS | 1.63 | 0.12 | |||||||
Weight max (Kg) | 123.3 | 14.9 | NS | 121.0 | 23.1 | |||||||
BMI max (kg/m2) | 45.9 | 4.2 | NS | 45.6 | 5.7 | |||||||
Weight (Kg) | 103.1 | 12.4 | NS | 102.5 | 18.3 | 70.1 | 14.2 | *** | NS | 83.8 | 17.6 | ** |
BMI (kg/m2) | 38.3 | 2.5 | NS | 38.8 | 5.4 | 26.0 | 4.1 | *** | NS | 31.8 | 6.5 | ** |
Glucose (mg/dL) | 99.2 | 15.9 | NS | 95.0 | 23.4 | 97.2 | 20.8 | NS | 89.5 | 15.1 | ||
Urea (mg/dL) | 41.2 | 14.7 | NS | 38.7 | 10.9 | 31.0 | 13.6 | NS | 36.5 | 11.3 | ||
Uric acid (mg/dL) | 6.6 | 2.0 | NS | 5.2 | 1.2 | 4.7 | 0.8 | * | NS | 4.7 | 1.3 | * |
Cholesterol (mg/dL) | 164.4 | 65.7 | NS | 180.8 | 58.7 | 149.6 | 20.5 | NS | 170.2 | 35.5 | ||
HDL (mg/dL) | 36.4 | 7.2 | NS | 39.8 | 12.7 | 49.8 | 8.1 | * | NS | 51.7 | 14.0 | ** |
LDL (mg/dL) | 86.4 | 66.1 | NS | 114.7 | 45.2 | 82.2 | 21.1 | NS | 100.5 | 28.5 | ||
Triglycerides (mg/dL) | 185.8 | 70.0 | NS | 130.7 | 79.5 | 87.8 | 20.7 | * | NS | 88.8 | 45.3 | |
AST (IU/L) | 16.8 | 5.4 | NS | 17.8 | 7.5 | 22.6 | 4.0 | NS | 20.3 | 6.7 | ||
ALT (IU/L) | 19.8 | 8.6 | NS | 24.0 | 15.7 | 29.2 | 13.7 | NS | 23.7 | 17.1 | ||
GGT (IU/L) | 23.0 | 3.7 | NS | 22.7 | 9.6 | 24.6 | 16.9 | NS | 15.0 | 6.6 | * | |
ALP (IU/L) | 76.6 | 24.6 | NS | 84.2 | 17.7 | 94.8 | 21.5 | NS | 88.3 | 18.4 | ||
Albumin (g/dL) | 4.4 | 0.4 | NS | 4.2 | 0.4 | 4.3 | 0.3 | NS | 4.2 | 0.4 | ||
Fe (µg/dL) | 92.0 | 35.2 | NS | 92.0 | 38.2 | 92.2 | 58.9 | NS | 113.2 | 21.7 | ||
HbA1c (%) | 6.2 | 1.0 | NS | 5.8 | 0.7 | 5.3 | 0.5 | NS | 5.3 | 0.4 | ||
Insulin (µU/mL) | 12.7 | 5.2 | NS | 17.9 | 6.6 | 5.8 | 2.4 | * | NS | 10.6 | 5.1 | * |
HOMA-IR | 3.5 | 1.2 | NS | 4.4 | 2.2 | 1.6 | 1.1 | * | NS | 2.1 | 1.0 | * |
INR | 1.0 | 0.1 | NS | 1.0 | 0.1 | 1.0 | 0.0 | NS | 1.0 | 0.0 | ||
Fibrinogen (g/L) | 426.8 | 66.7 | NS | 538.0 | 133.3 | 484.0 | 31.1 | NS | 470.7 | 66.4 | ||
Hemoglobin (g/dL) | 14.7 | 0.7 | NS | 13.6 | 1.1 | 14.0 | 1.3 | NS | 13.9 | 1.1 | ||
Platelets (103/µL) | 268.0 | 68.1 | NS | 260.2 | 47.8 | 216.8 | 47.2 | * | NS | 243.0 | 32.2 | |
MRI-PDFF (%) | 12.9 | 9.2 | NS | 7.7 | 5.8 | 1.3 | 1.0 | * | ** | 5.7 | 2.2 | |
Histopathology | ||||||||||||
Steatosis (S0/S1/S2/S3) | 0/5/1/0 | 0/5/0/1 | ||||||||||
Activity (A0/A1/A2/A3/A4) | 1/3/1/0/1 | 1/3/1/1/0 |
3.2. Microbiota Diversity and Number of Bacteria
3.3. Taxonomic Composition
3.4. Analyses of Bacterial Genera and Species
3.5. Plasma BA in Responders and Non-Responders
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subichin, M.; Clanton, J.; Makuszewski, M.; Bohon, A.; Zografakis, J.G.; Dan, A. Liver Disease in the Morbidly Obese: A Review of 1000 Consecutive Patients Undergoing Weight Loss Surgery. Surg. Obes. Relat. Dis. 2015, 11, 137–141. [Google Scholar] [CrossRef]
- Geerts, A.; Lefere, S. Bariatric Surgery for Non-Alcoholic Fatty Liver Disease: Indications and Post-Operative Management. Clin. Mol. Hepatol. 2023, 29, S276–S285. [Google Scholar] [CrossRef]
- Lee, Y.; Doumouras, A.G.; Yu, J.; Brar, K.; Banfield, L.; Gmora, S.; Anvari, M.; Hong, D. Complete Resolution of Nonalcoholic Fatty Liver Disease after Bariatric Surgery: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2019, 17, 1040–1060.e11. [Google Scholar] [CrossRef] [Green Version]
- Mullish, B.H. Further Insights into the Impact of Bariatric Surgery on the Progression of Nonalcoholic Fatty Liver Disease. Gastroenterology 2022, 163, 528–529. [Google Scholar] [CrossRef]
- Mathurin, P.; Gonzalez, F.; Kerdraon, O.; Leteurtre, E.; Arnalsteen, L.; Hollebecque, A.; Louvet, A.; Dharancy, S.; Cocq, P.; Jany, T.; et al. The Evolution of Severe Steatosis after Bariatric Surgery Is Related to Insulin Resistance. Gastroenterology 2006, 130, 1617–1624. [Google Scholar] [CrossRef]
- Wolf, R.M.; Oshima, K.; Canner, J.K.; Steele, K.E. Impact of a Preoperative Low-Calorie Diet on Liver Histology in Patients with Fatty Liver Disease Undergoing Bariatric Surgery. Surg. Obes. Relat. Dis. 2019, 15, 1766–1772. [Google Scholar] [CrossRef]
- Cerreto, M.; Santopaolo, F.; Gasbarrini, A.; Pompili, M.; Ponziani, F. Bariatric Surgery and Liver Disease: General Considerations and Role of the Gut–Liver Axis. Nutrients 2021, 13, 2649. [Google Scholar] [CrossRef]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Ren, M.; Yang, J.; Cai, C.; Cheng, W.; Zhou, X.; Lu, D.; Ji, F. Gut Microbiome and Microbial Metabolites in NAFLD and after Bariaztric Surgery: Correlation and Causality. Front. Microbiol. 2022, 13, 1003755. [Google Scholar] [CrossRef]
- Consensus Development Conference Panel. Gastrointestinal Surgery for Severe Obesity: National Institutes of Health Consensus Development Conference Statement. Am. J. Clin. Nutr. 1992, 55, 615S–619S. [Google Scholar] [CrossRef]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic Steatohepatitis: A Proposal for Grading and Staging the Histological Lesions. Am. J. Gastroenterol. 1999, 94, 2467–2474. [Google Scholar] [CrossRef]
- Bedossa, P. Utility and Appropriateness of the Fatty Liver Inhibition of Progression (FLIP) Algorithm and Steatosis, Activity, and Fibrosis (SAF) Score in the Evaluation of Biopsies of Nonalcoholic Fatty Liver Disease. Hepatology 2014, 60, 565–575. [Google Scholar] [CrossRef] [PubMed]
- García-Cañaveras, J.C.; Donato, M.T.; Castell, J.V.; Lahoz, A. Targeted Profiling of Circulating and Hepatic Bile Acids in Human, Mouse, and Rat Using a UPLC-MRM-MS-Validated Method. J. Lipid Res. 2012, 53, 2231–2241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juárez-Fernández, M.; Porras, D.; Petrov, P.; Román-Sagüillo, S.; García-Mediavilla, M.V.; Soluyanova, P.; Martínez-Flórez, S.; González-Gallego, J.; Nistal, E.; Jover, R.; et al. The Synbiotic Combination of Akkermansia muciniphila and Quercetin Ameliorates Early Obesity and NAFLD through Gut Microbiota Reshaping and Bile Acid Metabolism Modulation. Antioxidants 2021, 10, 2001. [Google Scholar] [CrossRef] [PubMed]
- Park, C.C.; Nguyen, P.; Hernandez, C.; Bettencourt, R.; Ramirez, K.; Fortney, L.; Hooker, J.; Sy, E.; Savides, M.T.; Alquiraish, M.H.; et al. Magnetic Resonance Elastography vs. Transient Elastography in Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gastroenterology 2017, 152, 598–607.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garteiser, P.; Castera, L.; Coupaye, M.; Doblas, S.; Calabrese, D.; Burgio, M.D.; Ledoux, S.; Bedossa, P.; Esposito-Farèse, M.; Msika, S.; et al. Prospective Comparison of Transient Elastography, MRI and Serum Scores for Grading Steatosis and Detecting Non-Alcoholic Steatohepatitis in Bariatric Surgery Candidates. JHEP Rep. 2021, 3, 100381. [Google Scholar] [CrossRef]
- Oduro-Donkor, D.; Turner, M.; Farnaud, S.; Renshaw, D.; Kyrou, I.; Hanson, P.; Hattersley, J.; Weickert, M.O.; Menon, V.; Randeva, H.S.; et al. Modification of Fecal Microbiota as a Mediator of Effective Weight Loss and Metabolic Benefits Following Bariatric Surgery. Expert Rev. Endocrinol. Metab. 2020, 15, 363–373. [Google Scholar] [CrossRef]
- Kim, H.-N.; Joo, E.-J.; Cheong, H.S.; Kim, Y.; Kim, H.-L.; Shin, H.; Chang, Y.; Ryu, S. Gut Microbiota and Risk of Persistent Nonalcoholic Fatty Liver Diseases. J. Clin. Med. 2019, 8, 1089. [Google Scholar] [CrossRef] [Green Version]
- Del Chierico, F.; Nobili, V.; Vernocchi, P.; Russo, A.; De Stefanis, C.; Gnani, D.; Furlanello, C.; Zandonà, A.; Paci, P.; Capuani, G.; et al. Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta-omics-based Approach. Hepatology 2017, 65, 451–464. [Google Scholar] [CrossRef]
- Mouzaki, M.; Comelli, E.M.; Arendt, B.M.; Bonengel, J.; Fung, S.K.; Fischer, S.E.; McGilvray, I.D.; Allard, J.P. Intestinal Microbiota in Patients with Nonalcoholic Fatty Liver Disease. Hepatology 2013, 58, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Wong, V.W.-S.; Tse, C.-H.; Lam, T.-T.Y.; Wong, G.L.-H.; Chim, A.M.-L.; Chu, W.C.-W.; Yeung, D.K.-W.; Law, P.T.-W.; Kwan, H.S.; Yu, J.; et al. Molecular Characterization of the Fecal Microbiota in Patients with Nonalcoholic Steatohepatitis–A Longitudinal Study. PLoS ONE 2013, 8, e62885. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-B.; Do, M.-H.; Jhun, H.; Ha, S.-K.; Song, H.-S.; Roh, S.-W.; Chung, W.-H.; Nam, Y.-D.; Park, H.-Y. Amelioration of Hepatic Steatosis in Mice through Bacteroides uniformis CBA7346-Mediated Regulation of High-Fat Diet-Induced Insulin Resistance and Lipogenesis. Nutrients 2021, 13, 2989. [Google Scholar] [CrossRef]
- Dong, T.S.; Katzka, W.; Yang, J.C.; Chang, C.; Arias-Jayo, N.; Lagishetty, V.; Balioukova, A.; Chen, Y.; Dutson, E.; Li, Z.; et al. Microbial Changes from Bariatric Surgery Alters Glucose-Dependent Insulinotropic Polypeptide and Prevents Fatty Liver Disease. Gut Microbes 2023, 15, 2167170. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, Z.E.; DiBaise, J.K.; Dautel, S.E.; Isern, N.G.; Kim, Y.-M.; Hoyt, D.W.; Schepmoes, A.A.; Brewer, H.M.; Weitz, K.K.; Metz, T.O.; et al. Temporospatial Shifts in the Human Gut Microbiome and Metabolome after Gastric Bypass Surgery. npj Biofilms Microbiomes 2020, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Kim, G.; Ahn, E.; Jung, S.; Jung, Y.; Kim, Y.; Ha, E.; Heo, Y.; Ryu, D.H.; Park, H.; et al. Integrated Metagenomics and Metabolomics Analysis Illustrates the Systemic Impact of the Gut Microbiota on Host Metabolism after Bariatric Surgery. Diabetes Obes. Metab. 2022, 24, 1224–1234. [Google Scholar] [CrossRef]
- Quesada-Vázquez, S.; Aragonès, G.; Del Bas, J.M.; Escoté, X. Diet, Gut Microbiota and Non-Alcoholic Fatty Liver Disease: Three Parts of the Same Axis. Cells 2020, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Long, W.; Hao, B.; Ding, D.; Ma, X.; Zhao, L.; Pang, X. A Human Stool-Derived Bilophila Wadsworthia Strain Caused Systemic Inflammation in Specific-Pathogen-Free Mice. Gut Pathog. 2017, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Baker, S.S.; Gill, C.; Liu, W.; Alkhouri, R.; Baker, R.D.; Gill, S.R. Characterization of Gut Microbiomes in Nonalcoholic Steatohepatitis (NASH) Patients: A Connection between Endogenous Alcohol and NASH. Hepatology 2013, 57, 601–609. [Google Scholar] [CrossRef]
- Rau, M.; Rehman, A.; Dittrich, M.; Groen, A.K.; Hermanns, H.M.; Seyfried, F.; Beyersdorf, N.; Dandekar, T.; Rosenstiel, P.; Geier, A. Fecal SCFAs and SCFA-Producing Bacteria in Gut Microbiome of Human NAFLD as a Putative Link to Systemic T-cell Activation and Advanced Disease. United Eur. Gastroenterol. J. 2018, 6, 1496–1507. [Google Scholar] [CrossRef]
- Ruuskanen, M.O.; Åberg, F.; Männistö, V.; Havulinna, A.S.; Méric, G.; Liu, Y.; Loomba, R.; Vázquez-Baeza, Y.; Tripathi, A.; Valsta, L.M.; et al. Links between Gut Microbiome Composition and Fatty Liver Disease in a Large Population Sample. Gut Microbes 2021, 13, 1888673. [Google Scholar] [CrossRef]
- Liu, R.; Hong, J.; Xu, X.; Feng, Q.; Zhang, D.; Gu, Y.; Shi, J.; Zhao, S.; Liu, W.; Wang, X.; et al. Gut Microbiome and Serum Metabolome Alterations in Obesity and after Weight-Loss Intervention. Nat. Med. 2017, 23, 859–868. [Google Scholar] [CrossRef]
- Sangineto, M.; Grander, C.; Grabherr, F.; Mayr, L.; Enrich, B.; Schwärzler, J.; Dallio, M.; Bukke, V.N.; Moola, A.; Moschetta, A.; et al. Recovery of Bacteroides thetaiotaomicron Ameliorates Hepatic Steatosis in Experimental Alcohol-Related Liver Disease. Gut Microbes 2022, 14, 2089006. [Google Scholar] [CrossRef]
- Guzior, D.V.; Quinn, R.A. Review: Microbial Transformations of Human Bile Acids. Microbiome 2021, 9, 140. [Google Scholar] [CrossRef]
- Kohli, R.; Bradley, D.; Setchell, K.D.; Eagon, J.C.; Abumrad, N.; Klein, S. Weight Loss Induced by Roux-En-Y Gastric Bypass but Not Laparoscopic Adjustable Gastric Banding Increases Circulating Bile Acids. J. Clin. Endocrinol. Metab. 2013, 98, E708–E712. [Google Scholar] [CrossRef] [Green Version]
- Bhutta, H.Y.; Rajpal, N.; White, W.; Freudenberg, J.M.; Liu, Y.; Way, J.; Rajpal, D.; Cooper, D.C.; Young, A.; Tavakkoli, A.; et al. Effect of Roux-En-Y Gastric Bypass Surgery on Bile Acid Metabolism in Normal and Obese Diabetic Rats. PLoS ONE 2015, 10, e0122273. [Google Scholar] [CrossRef]
- Steinert, R.E.; Peterli, R.; Keller, S.; Meyer-Gerspach, A.C.; Drewe, J.; Peters, T.; Beglinger, C. Bile Acids and Gut Peptide Secretion after Bariatric Surgery: A 1-Year Prospective Randomized Pilot Trial. Obesity 2013, 21, E660–E668. [Google Scholar] [CrossRef]
- de Siqueira Cardinelli, C.; Torrinhas, R.S.; Sala, P.; Pudenzi, M.A.; Fernando F Angolini, C.; Marques da Silva, M.; Machado, N.M.; Ravacci, G.; Eberlin, M.N.; Waitzberg, D.L. Fecal Bile Acid Profile after Roux-En-Y Gastric Bypass and Its Association with the Remission of Type 2 Diabetes in Obese Women: A Preliminary Study. Clin. Nutr. 2019, 38, 2906–2912. [Google Scholar] [CrossRef]
- Hernández-Gómez, J.G.; López-Bonilla, A.; Trejo-Tapia, G.; Ávila-Reyes, S.V.; Jiménez-Aparicio, A.R.; Hernández-Sánchez, H. In Vitro Bile Salt Hydrolase (BSH) Activity Screening of Different Probiotic Microorganisms. Foods 2021, 10, 674. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B. Bile Salt Biotransformations by Human Intestinal Bacteria. J. Lipid Res. 2006, 47, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Sun, L.; Gonzalez, F.J. Gut Microbiota-Derived Bile Acids in Intestinal Immunity, Inflammation, and Tumorigenesis. Cell Host Microbe 2022, 30, 289–300. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, R. Dysregulation of Bile Acids in Patients with NAFLD. In Nonalcoholic Fatty Liver Disease—An Update; IntechOpen: London, UK, 2019. [Google Scholar]
- Wang, H.; Chen, J.; Hollister, K.; Sowers, L.C.; Forman, B.M. Endogenous Bile Acids Are Ligands for the Nuclear Receptor FXR/BAR. Mol. Cell 1999, 3, 543–553. [Google Scholar] [CrossRef]
- Clifford, B.L.; Sedgeman, L.R.; Williams, K.J.; Morand, P.; Cheng, A.; Jarrett, K.E.; Chan, A.P.; Brearley-Sholto, M.C.; Wahlström, A.; Ashby, J.W.; et al. FXR Activation Protects Against NAFLD via Bile-Acid-Dependent Reductions in Lipid Absorption. Cell Metab. 2021, 33, 1671–1684.e4. [Google Scholar] [CrossRef]
- Xi, Y.; Li, H. Role of Farnesoid X Receptor in Hepatic Steatosis in Nonalcoholic Fatty Liver Disease. Biomed. Pharmacother. 2020, 121, 109609. [Google Scholar] [CrossRef]
R1-R0 | NR1-NR0 | R0-NR0 | R1-NR1 | |
---|---|---|---|---|
PHYLUM | ||||
Bacteroidota | 0.007 (↑R1) | 0.346 | 0.698 | 0.044 (↑R1) |
Proteobacteria | 0.023 (↑R1) | 0.631 | 0.465 | 0.332 |
Actinomycetota | 0.054 (↓R1) | 0.948 | 0.466 | 0.144 (↓R1) |
Verrucomicrobiota | 0.778 | 0.330 | 0.509 | 0.015 (↑R1) |
CLASS | ||||
Bacteroidia | 0.008 (↑R1) | 0.442 | 0.822 | 0.035 (↑R1) |
Bacilli | 0.051 (↑R1) | 0.101 | 0.261 | 0.373 |
Actinomycetes | 0.075 (↓R1) | 0.724 | 0.672 | 0.100 (↓R1) |
Negativicutes | 0.521 | 0.071 (↓NR1) | 0.785 | 0.318 |
Verrucomicrobiae | 0.776 | 0.330 | 0.509 | 0.015 (↑R1) |
ORDER | ||||
Bacteroidales | 0.008 (↑R1) | 0.443 | 0.821 | 0.036 (↑R1) |
Lactobacillales | 0.051 (↑R1) | 0.291 | 0.260 | 0.600 |
Bifidobacteriales | 0.075 (↓R1) | 0.724 | 0.672 | 0.100 (↓R1) |
Veillonellales | 0.521 | 0.071 (↓NR1) | 0.785 | 0.318 |
Verrucomicrobiales | 0.776 | 0.330 | 0.509 | 0.015 (↑R1) |
FAMILY | ||||
Bacteroidaceae | 0.025 (↑R1) | 0.770 | 0.417 | 0.089 (↑R1) |
Prevotellaceae | 0.071 (↑R1) | 0.986 | 0.559 | 0.655 |
Streptococcaceae | 0.053 (↑R1) | 0.113 | 0.227 | 0.701 |
Akkermansiaceae | 0.776 | 0.330 | 0.509 | 0.015 (↑R1) |
Bifidobacteriaceae | 0.075 (↓R1) | 0.724 | 0.672 | 0.100 (↓R1) |
Veillonellaceae | 0.521 | 0.071 (↓NR1) | 0.785 | 0.318 |
Oscillospiraceae | 0.691 | 0.066 (↓NR1) | 0.932 | 0.211 |
Odoribacteraceae | 0.030 (↑R1) | 0.047 (↑NR1) | 0.626 | 0.784 |
GENUS | ||||
Bacteroides | 0.025 (↑R1) | 0.764 | 0.417 | 0.097 (↑R1) |
Roseburia | 0.054 (↑R1) | 0.280 | 0.224 | 0.103 (↑R1) |
Anaerobutyricum | 0.015 (↑R1) | 0.126 | 0.510 | 0.777 |
Prevotella | 0.066 (↑R1) | 0.967 | 0.439 | 0.668 |
Streptococcus | 0.055 (↑R1) | 0.114 | 0.227 | 0.700 |
Akkermansia | 0.776 | 0.330 | 0.509 | 0.015 (↑R1) |
Bifidobacterium | 0.075 (↓R1) | 0.724 | 0.672 | 0.100 (↓R1) |
Oscillibacter | 0.044 (↓R1) | 0.207 | 0.247 | 0.234 |
Faecalicatena | 0.389 | 0.696 | 0.774 | 0.100 (↓R1) |
Butyricicoccus | 0.402 | 0.014 (↓NR1) | 0.557 | 0.030 (↑R1) |
Butyricimonas | 0.161 | 0.053 (↑NR1) | 0.431 | 0.910 |
Parabacteroides | 0.443 | 0.074 (↑NR1) | 0.094 (↑R0) | 0.300 |
Bilophila | 0.698 | 0.812 | 0.027 (↑R0) | 0.135 |
R0 vs. NR0 | FC | p Values | R1 vs. NR1 | FC | p Values |
---|---|---|---|---|---|
Bacteroides bouchesdurhonensis | 4.2 | 0.063 | Bacteroides faecis | 2.9 | 0.099 |
Bacteroides caccae | 4.6 | 0.020 | Bacteroides salyersiae | 24.8 | 0.077 |
Bacteroides caecimuris | 12.4 | 0.030 | Bacteroides thetaiotaomicron | 3.0 | 0.059 |
Bacteroides faecis | 9.8 | 0.047 | Bacteroides zhangwenhongii | 5.9 | 0.055 |
Bacteroides finegoldii | 3.6 | 0.014 | Blautia brookingsii | 5.2 | 0.0003 |
Bacteroides koreensis | 5.3 | 0.055 | Blautia faecicola | 1.8 | 0.065 |
Bacteroides thetaiotaomicron | 7.8 | 0.0031 | Blautia obeum | 4.6 | 0.00003 |
Bacteroides xylanisolvens | 15.1 | 0.084 | Butyricicoccus faecihominis | 2.0 | 0.030 |
Bacteroides zhangwenhongii | 9.3 | 0.021 | Clostridium fessum | 4.5 | 0.005 |
Bilophila wadsworthia | 5.0 | 0.027 | Clostridium pacaense | 2.1 | 0.061 |
Blautia intestinalis | 4.7 | 0.063 | Faecalibacterium longum | 2.9 | 0.072 |
Clostridium geopurificans | 4.1 | 0.051 | Fusobacterium animalis | 3.4 | 0.025 |
Olsenella intestinalis | 4.3 | 0.090 | Roseburia hominis | 5.2 | 0.022 |
Oscillibacter valericigenes | 4.1 | 0.068 | |||
Parabacteroides distasonis | 5.7 | 0.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Rubio, Á.; Soluyanova, P.; Moro, E.; Quintás, G.; Rienda, I.; Periañez, M.D.; Painel, A.; Vizuete, J.; Pérez-Rojas, J.; Castell, J.V.; et al. Gut Microbiota and Plasma Bile Acids Associated with Non-Alcoholic Fatty Liver Disease Resolution in Bariatric Surgery Patients. Nutrients 2023, 15, 3187. https://doi.org/10.3390/nu15143187
Pérez-Rubio Á, Soluyanova P, Moro E, Quintás G, Rienda I, Periañez MD, Painel A, Vizuete J, Pérez-Rojas J, Castell JV, et al. Gut Microbiota and Plasma Bile Acids Associated with Non-Alcoholic Fatty Liver Disease Resolution in Bariatric Surgery Patients. Nutrients. 2023; 15(14):3187. https://doi.org/10.3390/nu15143187
Chicago/Turabian StylePérez-Rubio, Álvaro, Polina Soluyanova, Erika Moro, Guillermo Quintás, Iván Rienda, María Dolores Periañez, Andrés Painel, José Vizuete, Judith Pérez-Rojas, José V. Castell, and et al. 2023. "Gut Microbiota and Plasma Bile Acids Associated with Non-Alcoholic Fatty Liver Disease Resolution in Bariatric Surgery Patients" Nutrients 15, no. 14: 3187. https://doi.org/10.3390/nu15143187
APA StylePérez-Rubio, Á., Soluyanova, P., Moro, E., Quintás, G., Rienda, I., Periañez, M. D., Painel, A., Vizuete, J., Pérez-Rojas, J., Castell, J. V., Trullenque-Juan, R., Pareja, E., & Jover, R. (2023). Gut Microbiota and Plasma Bile Acids Associated with Non-Alcoholic Fatty Liver Disease Resolution in Bariatric Surgery Patients. Nutrients, 15(14), 3187. https://doi.org/10.3390/nu15143187